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▶ A linear variable must be used
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▶ “You can’t have your cake and
eat it too”

▶ In Granule, where types are by
default linear:

impossible : Cake -> (Happy, Cake)

impossible cake = (eat cake, have cake)
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Use of linearity

▶ For example useful for file handling

twoChars : (Char, Char) <IO>

twoChars = let

h <- openHandle ReadMode "someFile";

(h, c1) <- readChar h;

(h, c2) <- readChar h;

() <- closeHandle h

in pure (c1, c2)

▶ Must always have only 1 file handle for a certain file

▶ Must always close the file when done with it

▶ Each time, new file handle created after use, and each file
handle is used exactly once
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▶ Different from affine types, which must be used at most once
▶ Subtle difference:

▶ Affine variables may not be copied
▶ There may not exist copies of unique variables
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Example uniqueness

▶ Example: unique variable for a
cinema ticket

▶ A unique ticket can be used at
the cinema

▶ It’s fine if you don’t use the ticket though

▶ You can’t sell a copy of your ticket to someone and still expect
to be able to use it yourself at the cinema (it’s only valid once)

▶ If all types are by default unique:

impossible : Ticket -> (Cash, Ticket)

impossible ticket = (sell ticket, ticket)
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▶ Consider for example mutable arrays

▶ With lazy evaluation the order of actions is not always clear

▶ Example:

a = [1,1,3,4]

f(a, writeArray(a,1,2))

▶ We want to prevent this
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Use of uniqueness

▶ To fix this, you get a new array reference from read/write
operations:

a0 = [15,25,30]

a1 = writeArray(a0, 35, 2)

▶ If you know your reference is unique, you can directly update
the array instead of having to copy the whole array

▶ Therefore, only allow at most one reference
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Relation between linearity and uniqueness

▶ Uniqueness: constraint about past
▶ Guarantees that the reference has not yet been duplicated

▶ Linearity: constraint about future

▶ Guarantees that it will not be duplicated nor discarded from
here on

▶ Consider the earlier example with mutable arrays

▶ Linearity is too restrictive: discarding arrays is no problem
▶ Linear (or affine) types are not strong enough: could have

previously been a non-linear variable that was duplicated
multiple times before being specialized to linear
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Shared / non-linear variables

▶ Difference in how they relate to unrestricted variables

▶ Relation linear vs non-linear

▶ Linear cannot be turned into non-linear, because then we
can’t guarantee they’ll be used exactly once

▶ Non-linear can be turned into linear, since it doesn’t matter
for linearity what happened to it before

▶ Relation unique vs shared (=non-unique)

▶ Unique can be turned into shared by “forgetting” the
constraint about their past

▶ Shared cannot be turned into unique, since they might have
been duplicated already
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▶ Goal: formalize/interpret uniqueness in
several ways

▶ Logic
▶ Typing rules
▶ Category

▶ We will discuss some of the rules of this
logic and compare them with linear logic
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Comparison logic - introduction modalities

▶ Non-linear modality ! and shared modality ◦

▶ Left/right introduction rules for both

Γ,P ⊢ Q
!LΓ, !P ⊢ Q

!Γ ⊢ P !R!Γ ⊢ !P
Linear Logic

.

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

Γ ⊢ P ◦R
Γ ⊢ P◦

Uniqueness Logic
.

▶ introduction of ! on the left is unrestricted, while introduction
of ◦ on the right is unrestricted
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Comparison logic - contraction & weakening

▶ Thus, uniqueness and linearity behave dually w.r.t. their
relation with unrestricted values

▶ However, for contraction and weakening, both modalities act
exactly the same way

Γ, !P, !P ⊢ R
!contractionΓ, !P ⊢ R

Γ ⊢ R !weakening
Γ, !P ⊢ R

Linear Logic

Γ,P◦,P◦ ⊢ R ◦contraction
Γ,P◦ ⊢ R

Γ ⊢ R ◦weakening
Γ,P◦ ⊢ R

Uniqueness Logic
▶ So linearity and uniqueness behave identically w.r.t. structural

rules
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Typing rules

▶ Harrington also made typing rules based on this

▶ Closely related to the logic, through the Curry-Howard
isomorphism
▶ Types correspond to formulas in the logic

▶ Example (weakening rule):

Γ ⊢ R
Γ,P◦ ⊢ R

→ u : Γ ⊢ t : R
u : Γ, x : P◦ ⊢ t : R

▶ Later, these typing rules are used by other researchers
▶ Uniqueness Typing for Resource Management in

Message-Passing Concurrency (Hennessey et al.)
▶ Linearity and Uniqueness: An Entente Cordiale (Marshall et

al.)

https://doi.org/10.4204/EPTCS.22.3
https://doi.org/10.4204/EPTCS.22.3
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Paper: Linearity and Uniqueness

▶ Linearity and Uniqueness: An Entente Cordiale
by Danielle Marshall, Michael Vollmer and Dominic Orchard

▶ Goal: combine uniqueness and linearity in one system /
programming language

▶ Because it’s faster, better performance

▶ With the guarantees from linearity/uniqueness, you don’t have
to account for when a value is non-linear/shared

▶ You don’t have to copy an array to edit it if you know it’s
unique, then you can edit in-place

▶ They create a type system containing both unique and linear
types (partly based on typing rules from Harrington)
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Uniqueness and Linearity Logic Typing rules As programming language

Base system

▶ They use lazy evaluation

▶ The base system is linearly typed

▶ Already the default in the used programming language, Granule
▶ Avoids problems; for example if a product (t1, t2) of two linear

values would be unique by default, then it can be converted to
an unrestricted value and can then be duplicated
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▶ They have a uniqueness modality ∗

▶ They treat non-linearity and non-uniqueness as the same
state: both are unrestricted

▶ Therefore, they have a single unrestricted modality !

▶ Progression: unique → unrestricted → linear



Uniqueness and Linearity Logic Typing rules As programming language

Modalities

▶ They have a uniqueness modality ∗
▶ They treat non-linearity and non-uniqueness as the same

state: both are unrestricted

▶ Therefore, they have a single unrestricted modality !

▶ Progression: unique → unrestricted → linear



Uniqueness and Linearity Logic Typing rules As programming language

Modalities

▶ They have a uniqueness modality ∗
▶ They treat non-linearity and non-uniqueness as the same

state: both are unrestricted

▶ Therefore, they have a single unrestricted modality !

▶ Progression: unique → unrestricted → linear



Uniqueness and Linearity Logic Typing rules As programming language

Modalities

▶ They have a uniqueness modality ∗
▶ They treat non-linearity and non-uniqueness as the same

state: both are unrestricted

▶ Therefore, they have a single unrestricted modality !

▶ Progression: unique → unrestricted → linear



Uniqueness and Linearity Logic Typing rules As programming language

Syntax

▶ Terms, usually denoted by t. For example:

▶ lambda terms: x , λx .t, t1 t2
▶ unrestricted terms !t, unique terms ∗t, borrowed terms &t
▶ products (t1, t2)
▶ unit, which can be seen as the empty product
▶ some constructs like: copy t1 as x in t2, let !x = t1 in t2

▶ Types
A,B ::= A⊸ B | A⊗ B | 1 | !A | ∗A

▶ Typing contexts

Γ ::= ∅ | Γ, x : A | Γ, x : [A]

▶ Typing judgements Γ ⊢ t : A
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Typing contexts

▶ Non-linear assignments in a typing context are denoted by
x : [A]

▶ These variables can be used multiple times

▶ Note: different from x : !A, which we’ll see more clearly in the
typing rules

▶ We write [Γ] to mark a context as containing only non-linear
assignments (which includes the empty context)

Definition 1
Context addition Γ1 + Γ2 is the union of two contexts as long as
every variable x that occurs in both contexts is assigned the same
non-linear type in both contexts (x : [A]).
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Typing rules: λ-calculus

▶ The usual λ-calculus is typed by these three typing rules

var
[Γ], x : A ⊢ x : A

Γ, x : A ⊢ t : B
abs

Γ ⊢ λx .t : A⊸ B

Γ1 ⊢ t1 : A⊸ B Γ2 ⊢ t2 : A app
Γ1 + Γ2 ⊢ t1t2 : B

▶ For variables, abstraction and application

▶ Note that for var, the rest of the typing context has to be
non-linear while the variable itself is linear
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Typing rules: non-linear modality

▶ Introduction rule / promotion

[Γ] ⊢ t : A
!I

[Γ] ⊢ !t : !A

!Γ ⊢ P !R!Γ ⊢ !P
▶ Elimination rule

Γ1 ⊢ t1 : !A Γ2, x : [A] ⊢ t2 : B
!EΓ1 + Γ2 ⊢ let !x = t1 in t2 : B

▶ Dereliction rule: non-linear variables can be used linearly

Γ, x : A ⊢ t : B
der

Γ, x : [A] ⊢ t : B

Γ,P ⊢ Q
!LΓ, !P ⊢ Q
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Typing rules: uniqueness modality

▶ Borrowing: “forget” uniqueness guarantee

Γ ⊢ t : ∗A borrow
Γ ⊢ &t : !A

Γ ⊢ P ◦R
Γ ⊢ P◦

▶ Copying: make new variable with same value as non-linear
term

Γ1 ⊢ t1 : !A Γ2, x : ∗A ⊢ t2 : !B
copy

Γ1 + Γ2 ⊢ copy t1 as x in t2 : !B

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

▶ Necessitation: values without dependencies can be assumed
unique

∅ ⊢ t : A
nec

[Γ] ⊢ ∗t : ∗A
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▶ In the paper, a couple theorems are proven about the model

▶ Conservation: after reduction step, term still has same type in
a typing context compatible with the heap

▶ Progress: if well-typed term is not a value, another reduction
step is possible

▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),
then there is a value to which they both reduce

▶ Uniqueness: if a term reduces to a unique value, then any
unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!



Uniqueness and Linearity Logic Typing rules As programming language

Metatheory

▶ In the paper, a couple theorems are proven about the model
▶ Conservation: after reduction step, term still has same type in

a typing context compatible with the heap

▶ Progress: if well-typed term is not a value, another reduction
step is possible

▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),
then there is a value to which they both reduce

▶ Uniqueness: if a term reduces to a unique value, then any
unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!



Uniqueness and Linearity Logic Typing rules As programming language

Metatheory

▶ In the paper, a couple theorems are proven about the model
▶ Conservation: after reduction step, term still has same type in

a typing context compatible with the heap
▶ Progress: if well-typed term is not a value, another reduction

step is possible

▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),
then there is a value to which they both reduce

▶ Uniqueness: if a term reduces to a unique value, then any
unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!



Uniqueness and Linearity Logic Typing rules As programming language

Metatheory

▶ In the paper, a couple theorems are proven about the model
▶ Conservation: after reduction step, term still has same type in

a typing context compatible with the heap
▶ Progress: if well-typed term is not a value, another reduction

step is possible
▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),

then there is a value to which they both reduce

▶ Uniqueness: if a term reduces to a unique value, then any
unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!



Uniqueness and Linearity Logic Typing rules As programming language

Metatheory

▶ In the paper, a couple theorems are proven about the model
▶ Conservation: after reduction step, term still has same type in

a typing context compatible with the heap
▶ Progress: if well-typed term is not a value, another reduction

step is possible
▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),

then there is a value to which they both reduce
▶ Uniqueness: if a term reduces to a unique value, then any

unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!



Uniqueness and Linearity Logic Typing rules As programming language

Metatheory

▶ In the paper, a couple theorems are proven about the model
▶ Conservation: after reduction step, term still has same type in

a typing context compatible with the heap
▶ Progress: if well-typed term is not a value, another reduction

step is possible
▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),

then there is a value to which they both reduce
▶ Uniqueness: if a term reduces to a unique value, then any

unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!



Uniqueness and Linearity Logic Typing rules As programming language

Implementation

▶ Implemented in Granule: linearly typed language

▶ Operations for arrays: new, read, write, delete
▶ Write operation updates unique array destructively in place

▶ Allowed because we have uniqueness guarantee

▶ Compared performance with/without unique arrays



Uniqueness and Linearity Logic Typing rules As programming language

Implementation

▶ Implemented in Granule: linearly typed language

▶ Operations for arrays: new, read, write, delete

▶ Write operation updates unique array destructively in place

▶ Allowed because we have uniqueness guarantee

▶ Compared performance with/without unique arrays



Uniqueness and Linearity Logic Typing rules As programming language

Implementation

▶ Implemented in Granule: linearly typed language

▶ Operations for arrays: new, read, write, delete
▶ Write operation updates unique array destructively in place

▶ Allowed because we have uniqueness guarantee

▶ Compared performance with/without unique arrays



Uniqueness and Linearity Logic Typing rules As programming language

Implementation

▶ Implemented in Granule: linearly typed language

▶ Operations for arrays: new, read, write, delete
▶ Write operation updates unique array destructively in place

▶ Allowed because we have uniqueness guarantee

▶ Compared performance with/without unique arrays



Uniqueness and Linearity Logic Typing rules As programming language

Implementation

▶ Implemented in Granule: linearly typed language

▶ Operations for arrays: new, read, write, delete
▶ Write operation updates unique array destructively in place

▶ Allowed because we have uniqueness guarantee

▶ Compared performance with/without unique arrays



Uniqueness and Linearity Logic Typing rules As programming language

Performance

▶ Benchmark iteration: allocate list of 1000 arrays, populate
arrays with values, traverse list to sum them up



Uniqueness and Linearity Logic Typing rules As programming language

Questions?



Counterexample uniqueness theorem

▶ Uniqueness: if a term reduces to a unique value, then any
unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Consider following heap + (well-typed) term

∅ ⊢ ∗(let !x = &(newArray 5) in x) : ∗(Array A)

▶ Reduces to
a 7→ω arr, x 7→ω a ⊢ ∗a

▶ ω means that array reference a is not unique



Mistake in proof

▶ Proof of uniqueness theorem is by induction over typing rules

▶ Problem is with necessitation rule

∅ ⊢ t : A
nec

[Γ] ⊢ ∗t : ∗A
▶ IH: “For a well-typed term Γ ⊢ t1 : ∗B . . . ”

▶ In the proof, they apply results of IH for ∅ ⊢ t : A from nec

▶ A is not necessarily a unique type ∗B for some B
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