
Uniqueness and Linearity Logic Typing rules As programming language

Combining uniqueness and linearity in one type
system

Tanja Muller

January 20, 2025

Uniqueness and Linearity Logic Typing rules As programming language

Papers

▶ Uniqueness Logic
Dana Harrington
TCP 2006

▶ Formalizes uniqueness in a logic, type system and category

▶ Linearity and Uniqueness: An Entente Cordiale
Danielle Marshall, Michael Vollmer, Dominic Orchard
European Symposium on Programming 2022

▶ Combines uniqueness and linearity in a single type
system/programming language

Uniqueness and Linearity Logic Typing rules As programming language

Papers

▶ Uniqueness Logic
Dana Harrington
TCP 2006
▶ Formalizes uniqueness in a logic, type system and category

▶ Linearity and Uniqueness: An Entente Cordiale
Danielle Marshall, Michael Vollmer, Dominic Orchard
European Symposium on Programming 2022

▶ Combines uniqueness and linearity in a single type
system/programming language

Uniqueness and Linearity Logic Typing rules As programming language

Papers

▶ Uniqueness Logic
Dana Harrington
TCP 2006
▶ Formalizes uniqueness in a logic, type system and category

▶ Linearity and Uniqueness: An Entente Cordiale
Danielle Marshall, Michael Vollmer, Dominic Orchard
European Symposium on Programming 2022

▶ Combines uniqueness and linearity in a single type
system/programming language

Uniqueness and Linearity Logic Typing rules As programming language

Papers

▶ Uniqueness Logic
Dana Harrington
TCP 2006
▶ Formalizes uniqueness in a logic, type system and category

▶ Linearity and Uniqueness: An Entente Cordiale
Danielle Marshall, Michael Vollmer, Dominic Orchard
European Symposium on Programming 2022
▶ Combines uniqueness and linearity in a single type

system/programming language

Uniqueness and Linearity Logic Typing rules As programming language

Content

▶ Uniqueness and Linearity
▶ What are these concepts + their use?
▶ How do they relate?

▶ Logic

▶ Compare Harrington’s uniqueness logic with linear logic

▶ Typing rules

▶ Uniqueness and linearity combined in typing rules from
Marshall et al.

▶ As programming language

▶ Implement these typing rules in programming language
▶ Performance

Uniqueness and Linearity Logic Typing rules As programming language

Content

▶ Uniqueness and Linearity
▶ What are these concepts + their use?
▶ How do they relate?

▶ Logic
▶ Compare Harrington’s uniqueness logic with linear logic

▶ Typing rules

▶ Uniqueness and linearity combined in typing rules from
Marshall et al.

▶ As programming language

▶ Implement these typing rules in programming language
▶ Performance

Uniqueness and Linearity Logic Typing rules As programming language

Content

▶ Uniqueness and Linearity
▶ What are these concepts + their use?
▶ How do they relate?

▶ Logic
▶ Compare Harrington’s uniqueness logic with linear logic

▶ Typing rules
▶ Uniqueness and linearity combined in typing rules from

Marshall et al.

▶ As programming language

▶ Implement these typing rules in programming language
▶ Performance

Uniqueness and Linearity Logic Typing rules As programming language

Content

▶ Uniqueness and Linearity
▶ What are these concepts + their use?
▶ How do they relate?

▶ Logic
▶ Compare Harrington’s uniqueness logic with linear logic

▶ Typing rules
▶ Uniqueness and linearity combined in typing rules from

Marshall et al.

▶ As programming language
▶ Implement these typing rules in programming language
▶ Performance

Uniqueness and Linearity Logic Typing rules As programming language

Linearity

▶ A linear variable must be used
exactly once

▶ (Affine: used at most once)

▶ Example: a linear variable cake

▶ “You can’t have your cake and
eat it too”

▶ In Granule, where types are by
default linear:

impossible : Cake -> (Happy, Cake)

impossible cake = (eat cake, have cake)

Uniqueness and Linearity Logic Typing rules As programming language

Linearity

▶ A linear variable must be used
exactly once

▶ (Affine: used at most once)

▶ Example: a linear variable cake

▶ “You can’t have your cake and
eat it too”

▶ In Granule, where types are by
default linear:

impossible : Cake -> (Happy, Cake)

impossible cake = (eat cake, have cake)

Uniqueness and Linearity Logic Typing rules As programming language

Linearity

▶ A linear variable must be used
exactly once

▶ (Affine: used at most once)

▶ Example: a linear variable cake

▶ “You can’t have your cake and
eat it too”

▶ In Granule, where types are by
default linear:

impossible : Cake -> (Happy, Cake)

impossible cake = (eat cake, have cake)

Uniqueness and Linearity Logic Typing rules As programming language

Linearity

▶ A linear variable must be used
exactly once

▶ (Affine: used at most once)

▶ Example: a linear variable cake

▶ “You can’t have your cake and
eat it too”

▶ In Granule, where types are by
default linear:

impossible : Cake -> (Happy, Cake)

impossible cake = (eat cake, have cake)

Uniqueness and Linearity Logic Typing rules As programming language

Linearity

▶ A linear variable must be used
exactly once

▶ (Affine: used at most once)

▶ Example: a linear variable cake

▶ “You can’t have your cake and
eat it too”

▶ In Granule, where types are by
default linear:

impossible : Cake -> (Happy, Cake)

impossible cake = (eat cake, have cake)

Uniqueness and Linearity Logic Typing rules As programming language

Use of linearity

▶ For example useful for file handling

twoChars : (Char, Char) <IO>

twoChars = let

h <- openHandle ReadMode "someFile";

(h, c1) <- readChar h;

(h, c2) <- readChar h;

() <- closeHandle h

in pure (c1, c2)

▶ Must always have only 1 file handle for a certain file

▶ Must always close the file when done with it

▶ Each time, new file handle created after use, and each file
handle is used exactly once

Uniqueness and Linearity Logic Typing rules As programming language

Use of linearity

▶ For example useful for file handling

twoChars : (Char, Char) <IO>

twoChars = let

h <- openHandle ReadMode "someFile";

(h, c1) <- readChar h;

(h, c2) <- readChar h;

() <- closeHandle h

in pure (c1, c2)

▶ Must always have only 1 file handle for a certain file

▶ Must always close the file when done with it

▶ Each time, new file handle created after use, and each file
handle is used exactly once

Uniqueness and Linearity Logic Typing rules As programming language

Use of linearity

▶ For example useful for file handling

twoChars : (Char, Char) <IO>

twoChars = let

h <- openHandle ReadMode "someFile";

(h, c1) <- readChar h;

(h, c2) <- readChar h;

() <- closeHandle h

in pure (c1, c2)

▶ Must always have only 1 file handle for a certain file

▶ Must always close the file when done with it

▶ Each time, new file handle created after use, and each file
handle is used exactly once

Uniqueness and Linearity Logic Typing rules As programming language

Use of linearity

▶ For example useful for file handling

twoChars : (Char, Char) <IO>

twoChars = let

h <- openHandle ReadMode "someFile";

(h, c1) <- readChar h;

(h, c2) <- readChar h;

() <- closeHandle h

in pure (c1, c2)

▶ Must always have only 1 file handle for a certain file

▶ Must always close the file when done with it

▶ Each time, new file handle created after use, and each file
handle is used exactly once

Uniqueness and Linearity Logic Typing rules As programming language

Uniqueness

▶ A unique variable must have at most one reference to it

▶ Different from affine types, which must be used at most once
▶ Subtle difference:

▶ Affine variables may not be copied
▶ There may not exist copies of unique variables

Uniqueness and Linearity Logic Typing rules As programming language

Uniqueness

▶ A unique variable must have at most one reference to it

▶ Different from affine types, which must be used at most once

▶ Subtle difference:

▶ Affine variables may not be copied
▶ There may not exist copies of unique variables

Uniqueness and Linearity Logic Typing rules As programming language

Uniqueness

▶ A unique variable must have at most one reference to it

▶ Different from affine types, which must be used at most once
▶ Subtle difference:

▶ Affine variables may not be copied
▶ There may not exist copies of unique variables

Uniqueness and Linearity Logic Typing rules As programming language

Example uniqueness

▶ Example: unique variable for a
cinema ticket

▶ A unique ticket can be used at
the cinema

▶ It’s fine if you don’t use the ticket though

▶ You can’t sell a copy of your ticket to someone and still expect
to be able to use it yourself at the cinema (it’s only valid once)

▶ If all types are by default unique:

impossible : Ticket -> (Cash, Ticket)

impossible ticket = (sell ticket, ticket)

Uniqueness and Linearity Logic Typing rules As programming language

Example uniqueness

▶ Example: unique variable for a
cinema ticket

▶ A unique ticket can be used at
the cinema

▶ It’s fine if you don’t use the ticket though

▶ You can’t sell a copy of your ticket to someone and still expect
to be able to use it yourself at the cinema (it’s only valid once)

▶ If all types are by default unique:

impossible : Ticket -> (Cash, Ticket)

impossible ticket = (sell ticket, ticket)

Uniqueness and Linearity Logic Typing rules As programming language

Example uniqueness

▶ Example: unique variable for a
cinema ticket

▶ A unique ticket can be used at
the cinema

▶ It’s fine if you don’t use the ticket though

▶ You can’t sell a copy of your ticket to someone and still expect
to be able to use it yourself at the cinema (it’s only valid once)

▶ If all types are by default unique:

impossible : Ticket -> (Cash, Ticket)

impossible ticket = (sell ticket, ticket)

Uniqueness and Linearity Logic Typing rules As programming language

Example uniqueness

▶ Example: unique variable for a
cinema ticket

▶ A unique ticket can be used at
the cinema

▶ It’s fine if you don’t use the ticket though

▶ You can’t sell a copy of your ticket to someone and still expect
to be able to use it yourself at the cinema (it’s only valid once)

▶ If all types are by default unique:

impossible : Ticket -> (Cash, Ticket)

impossible ticket = (sell ticket, ticket)

Uniqueness and Linearity Logic Typing rules As programming language

Example uniqueness

▶ Example: unique variable for a
cinema ticket

▶ A unique ticket can be used at
the cinema

▶ It’s fine if you don’t use the ticket though

▶ You can’t sell a copy of your ticket to someone and still expect
to be able to use it yourself at the cinema (it’s only valid once)

▶ If all types are by default unique:

impossible : Ticket -> (Cash, Ticket)

impossible ticket = (sell ticket, ticket)

Uniqueness and Linearity Logic Typing rules As programming language

Use of uniqueness

▶ Consider for example mutable arrays

▶ With lazy evaluation the order of actions is not always clear

▶ Example:

a = [1,1,3,4]

f(a, writeArray(a,1,2))

▶ We want to prevent this

Uniqueness and Linearity Logic Typing rules As programming language

Use of uniqueness

▶ Consider for example mutable arrays

▶ With lazy evaluation the order of actions is not always clear

▶ Example:

a = [1,1,3,4]

f(a, writeArray(a,1,2))

▶ We want to prevent this

Uniqueness and Linearity Logic Typing rules As programming language

Use of uniqueness

▶ Consider for example mutable arrays

▶ With lazy evaluation the order of actions is not always clear

▶ Example:

a = [1,1,3,4]

f(a, writeArray(a,1,2))

▶ We want to prevent this

Uniqueness and Linearity Logic Typing rules As programming language

Use of uniqueness

▶ Consider for example mutable arrays

▶ With lazy evaluation the order of actions is not always clear

▶ Example:

a = [1,1,3,4]

f(a, writeArray(a,1,2))

▶ We want to prevent this

Uniqueness and Linearity Logic Typing rules As programming language

Use of uniqueness

▶ To fix this, you get a new array reference from read/write
operations:

a0 = [15,25,30]

a1 = writeArray(a0, 35, 2)

▶ If you know your reference is unique, you can directly update
the array instead of having to copy the whole array

▶ Therefore, only allow at most one reference

Uniqueness and Linearity Logic Typing rules As programming language

Use of uniqueness

▶ To fix this, you get a new array reference from read/write
operations:

a0 = [15,25,30]

a1 = writeArray(a0, 35, 2)

▶ If you know your reference is unique, you can directly update
the array instead of having to copy the whole array

▶ Therefore, only allow at most one reference

Uniqueness and Linearity Logic Typing rules As programming language

Use of uniqueness

▶ To fix this, you get a new array reference from read/write
operations:

a0 = [15,25,30]

a1 = writeArray(a0, 35, 2)

▶ If you know your reference is unique, you can directly update
the array instead of having to copy the whole array

▶ Therefore, only allow at most one reference

Uniqueness and Linearity Logic Typing rules As programming language

Relation between linearity and uniqueness

▶ Uniqueness: constraint about past
▶ Guarantees that the reference has not yet been duplicated

▶ Linearity: constraint about future

▶ Guarantees that it will not be duplicated nor discarded from
here on

▶ Consider the earlier example with mutable arrays

▶ Linearity is too restrictive: discarding arrays is no problem
▶ Linear (or affine) types are not strong enough: could have

previously been a non-linear variable that was duplicated
multiple times before being specialized to linear

Uniqueness and Linearity Logic Typing rules As programming language

Relation between linearity and uniqueness

▶ Uniqueness: constraint about past
▶ Guarantees that the reference has not yet been duplicated

▶ Linearity: constraint about future
▶ Guarantees that it will not be duplicated nor discarded from

here on

▶ Consider the earlier example with mutable arrays

▶ Linearity is too restrictive: discarding arrays is no problem
▶ Linear (or affine) types are not strong enough: could have

previously been a non-linear variable that was duplicated
multiple times before being specialized to linear

Uniqueness and Linearity Logic Typing rules As programming language

Relation between linearity and uniqueness

▶ Uniqueness: constraint about past
▶ Guarantees that the reference has not yet been duplicated

▶ Linearity: constraint about future
▶ Guarantees that it will not be duplicated nor discarded from

here on

▶ Consider the earlier example with mutable arrays

▶ Linearity is too restrictive: discarding arrays is no problem
▶ Linear (or affine) types are not strong enough: could have

previously been a non-linear variable that was duplicated
multiple times before being specialized to linear

Uniqueness and Linearity Logic Typing rules As programming language

Relation between linearity and uniqueness

▶ Uniqueness: constraint about past
▶ Guarantees that the reference has not yet been duplicated

▶ Linearity: constraint about future
▶ Guarantees that it will not be duplicated nor discarded from

here on

▶ Consider the earlier example with mutable arrays
▶ Linearity is too restrictive: discarding arrays is no problem

▶ Linear (or affine) types are not strong enough: could have
previously been a non-linear variable that was duplicated
multiple times before being specialized to linear

Uniqueness and Linearity Logic Typing rules As programming language

Relation between linearity and uniqueness

▶ Uniqueness: constraint about past
▶ Guarantees that the reference has not yet been duplicated

▶ Linearity: constraint about future
▶ Guarantees that it will not be duplicated nor discarded from

here on

▶ Consider the earlier example with mutable arrays
▶ Linearity is too restrictive: discarding arrays is no problem
▶ Linear (or affine) types are not strong enough: could have

previously been a non-linear variable that was duplicated
multiple times before being specialized to linear

Uniqueness and Linearity Logic Typing rules As programming language

Shared / non-linear variables

▶ Difference in how they relate to unrestricted variables

▶ Relation linear vs non-linear

▶ Linear cannot be turned into non-linear, because then we
can’t guarantee they’ll be used exactly once

▶ Non-linear can be turned into linear, since it doesn’t matter
for linearity what happened to it before

▶ Relation unique vs shared (=non-unique)

▶ Unique can be turned into shared by “forgetting” the
constraint about their past

▶ Shared cannot be turned into unique, since they might have
been duplicated already

Uniqueness and Linearity Logic Typing rules As programming language

Shared / non-linear variables

▶ Difference in how they relate to unrestricted variables
▶ Relation linear vs non-linear

▶ Linear cannot be turned into non-linear, because then we
can’t guarantee they’ll be used exactly once

▶ Non-linear can be turned into linear, since it doesn’t matter
for linearity what happened to it before

▶ Relation unique vs shared (=non-unique)

▶ Unique can be turned into shared by “forgetting” the
constraint about their past

▶ Shared cannot be turned into unique, since they might have
been duplicated already

Uniqueness and Linearity Logic Typing rules As programming language

Shared / non-linear variables

▶ Difference in how they relate to unrestricted variables
▶ Relation linear vs non-linear

▶ Linear cannot be turned into non-linear, because then we
can’t guarantee they’ll be used exactly once

▶ Non-linear can be turned into linear, since it doesn’t matter
for linearity what happened to it before

▶ Relation unique vs shared (=non-unique)

▶ Unique can be turned into shared by “forgetting” the
constraint about their past

▶ Shared cannot be turned into unique, since they might have
been duplicated already

Uniqueness and Linearity Logic Typing rules As programming language

Shared / non-linear variables

▶ Difference in how they relate to unrestricted variables
▶ Relation linear vs non-linear

▶ Linear cannot be turned into non-linear, because then we
can’t guarantee they’ll be used exactly once

▶ Non-linear can be turned into linear, since it doesn’t matter
for linearity what happened to it before

▶ Relation unique vs shared (=non-unique)

▶ Unique can be turned into shared by “forgetting” the
constraint about their past

▶ Shared cannot be turned into unique, since they might have
been duplicated already

Uniqueness and Linearity Logic Typing rules As programming language

Shared / non-linear variables

▶ Difference in how they relate to unrestricted variables
▶ Relation linear vs non-linear

▶ Linear cannot be turned into non-linear, because then we
can’t guarantee they’ll be used exactly once

▶ Non-linear can be turned into linear, since it doesn’t matter
for linearity what happened to it before

▶ Relation unique vs shared (=non-unique)

▶ Unique can be turned into shared by “forgetting” the
constraint about their past

▶ Shared cannot be turned into unique, since they might have
been duplicated already

Uniqueness and Linearity Logic Typing rules As programming language

Shared / non-linear variables

▶ Difference in how they relate to unrestricted variables
▶ Relation linear vs non-linear

▶ Linear cannot be turned into non-linear, because then we
can’t guarantee they’ll be used exactly once

▶ Non-linear can be turned into linear, since it doesn’t matter
for linearity what happened to it before

▶ Relation unique vs shared (=non-unique)
▶ Unique can be turned into shared by “forgetting” the

constraint about their past

▶ Shared cannot be turned into unique, since they might have
been duplicated already

Uniqueness and Linearity Logic Typing rules As programming language

Shared / non-linear variables

▶ Difference in how they relate to unrestricted variables
▶ Relation linear vs non-linear

▶ Linear cannot be turned into non-linear, because then we
can’t guarantee they’ll be used exactly once

▶ Non-linear can be turned into linear, since it doesn’t matter
for linearity what happened to it before

▶ Relation unique vs shared (=non-unique)
▶ Unique can be turned into shared by “forgetting” the

constraint about their past
▶ Shared cannot be turned into unique, since they might have

been duplicated already

Uniqueness and Linearity Logic Typing rules As programming language

Paper: Uniqueness Logic

▶ Uniqueness Logic by Dana Harrington

▶ Goal: formalize/interpret uniqueness in
several ways

▶ Logic
▶ Typing rules
▶ Category

▶ We will discuss some of the rules of this
logic and compare them with linear logic

Uniqueness and Linearity Logic Typing rules As programming language

Paper: Uniqueness Logic

▶ Uniqueness Logic by Dana Harrington
▶ Goal: formalize/interpret uniqueness in

several ways
▶ Logic
▶ Typing rules
▶ Category

▶ We will discuss some of the rules of this
logic and compare them with linear logic

Uniqueness and Linearity Logic Typing rules As programming language

Paper: Uniqueness Logic

▶ Uniqueness Logic by Dana Harrington
▶ Goal: formalize/interpret uniqueness in

several ways
▶ Logic
▶ Typing rules
▶ Category

▶ We will discuss some of the rules of this
logic and compare them with linear logic

Uniqueness and Linearity Logic Typing rules As programming language

Comparison logic - introduction modalities

▶ Non-linear modality ! and shared modality ◦

▶ Left/right introduction rules for both

Γ,P ⊢ Q
!LΓ, !P ⊢ Q

!Γ ⊢ P !R!Γ ⊢ !P
Linear Logic

.

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

Γ ⊢ P ◦R
Γ ⊢ P◦

Uniqueness Logic
.

▶ introduction of ! on the left is unrestricted, while introduction
of ◦ on the right is unrestricted

Uniqueness and Linearity Logic Typing rules As programming language

Comparison logic - introduction modalities

▶ Non-linear modality ! and shared modality ◦
▶ Left/right introduction rules for both

Γ,P ⊢ Q
!LΓ, !P ⊢ Q

!Γ ⊢ P !R!Γ ⊢ !P
Linear Logic

.

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

Γ ⊢ P ◦R
Γ ⊢ P◦

Uniqueness Logic
.

▶ introduction of ! on the left is unrestricted, while introduction
of ◦ on the right is unrestricted

Uniqueness and Linearity Logic Typing rules As programming language

Comparison logic - introduction modalities

▶ Non-linear modality ! and shared modality ◦
▶ Left/right introduction rules for both

Γ,P ⊢ Q
!LΓ, !P ⊢ Q

!Γ ⊢ P !R!Γ ⊢ !P
Linear Logic

.

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

Γ ⊢ P ◦R
Γ ⊢ P◦

Uniqueness Logic
.

▶ introduction of ! on the left is unrestricted, while introduction
of ◦ on the right is unrestricted

Uniqueness and Linearity Logic Typing rules As programming language

Comparison logic - introduction modalities

▶ Non-linear modality ! and shared modality ◦
▶ Left/right introduction rules for both

Γ,P ⊢ Q
!LΓ, !P ⊢ Q

!Γ ⊢ P !R!Γ ⊢ !P
Linear Logic

.

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

Γ ⊢ P ◦R
Γ ⊢ P◦

Uniqueness Logic
.

▶ introduction of ! on the left is unrestricted, while introduction
of ◦ on the right is unrestricted

Uniqueness and Linearity Logic Typing rules As programming language

Comparison logic - introduction modalities

▶ Non-linear modality ! and shared modality ◦
▶ Left/right introduction rules for both

Γ,P ⊢ Q
!LΓ, !P ⊢ Q

!Γ ⊢ P !R!Γ ⊢ !P
Linear Logic

.

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

Γ ⊢ P ◦R
Γ ⊢ P◦

Uniqueness Logic
.

▶ introduction of ! on the left is unrestricted, while introduction
of ◦ on the right is unrestricted

Uniqueness and Linearity Logic Typing rules As programming language

Comparison logic - contraction & weakening

▶ Thus, uniqueness and linearity behave dually w.r.t. their
relation with unrestricted values

▶ However, for contraction and weakening, both modalities act
exactly the same way

Γ, !P, !P ⊢ R
!contractionΓ, !P ⊢ R

Γ ⊢ R !weakening
Γ, !P ⊢ R

Linear Logic

Γ,P◦,P◦ ⊢ R ◦contraction
Γ,P◦ ⊢ R

Γ ⊢ R ◦weakening
Γ,P◦ ⊢ R

Uniqueness Logic
▶ So linearity and uniqueness behave identically w.r.t. structural

rules

Uniqueness and Linearity Logic Typing rules As programming language

Comparison logic - contraction & weakening

▶ Thus, uniqueness and linearity behave dually w.r.t. their
relation with unrestricted values

▶ However, for contraction and weakening, both modalities act
exactly the same way

Γ, !P, !P ⊢ R
!contractionΓ, !P ⊢ R

Γ ⊢ R !weakening
Γ, !P ⊢ R

Linear Logic

Γ,P◦,P◦ ⊢ R ◦contraction
Γ,P◦ ⊢ R

Γ ⊢ R ◦weakening
Γ,P◦ ⊢ R

Uniqueness Logic
▶ So linearity and uniqueness behave identically w.r.t. structural

rules

Uniqueness and Linearity Logic Typing rules As programming language

Comparison logic - contraction & weakening

▶ Thus, uniqueness and linearity behave dually w.r.t. their
relation with unrestricted values

▶ However, for contraction and weakening, both modalities act
exactly the same way

Γ, !P, !P ⊢ R
!contractionΓ, !P ⊢ R

Γ ⊢ R !weakening
Γ, !P ⊢ R

Linear Logic

Γ,P◦,P◦ ⊢ R ◦contraction
Γ,P◦ ⊢ R

Γ ⊢ R ◦weakening
Γ,P◦ ⊢ R

Uniqueness Logic
▶ So linearity and uniqueness behave identically w.r.t. structural

rules

Uniqueness and Linearity Logic Typing rules As programming language

Comparison logic - contraction & weakening

▶ Thus, uniqueness and linearity behave dually w.r.t. their
relation with unrestricted values

▶ However, for contraction and weakening, both modalities act
exactly the same way

Γ, !P, !P ⊢ R
!contractionΓ, !P ⊢ R

Γ ⊢ R !weakening
Γ, !P ⊢ R

Linear Logic

Γ,P◦,P◦ ⊢ R ◦contraction
Γ,P◦ ⊢ R

Γ ⊢ R ◦weakening
Γ,P◦ ⊢ R

Uniqueness Logic

▶ So linearity and uniqueness behave identically w.r.t. structural
rules

Uniqueness and Linearity Logic Typing rules As programming language

Comparison logic - contraction & weakening

▶ Thus, uniqueness and linearity behave dually w.r.t. their
relation with unrestricted values

▶ However, for contraction and weakening, both modalities act
exactly the same way

Γ, !P, !P ⊢ R
!contractionΓ, !P ⊢ R

Γ ⊢ R !weakening
Γ, !P ⊢ R

Linear Logic

Γ,P◦,P◦ ⊢ R ◦contraction
Γ,P◦ ⊢ R

Γ ⊢ R ◦weakening
Γ,P◦ ⊢ R

Uniqueness Logic
▶ So linearity and uniqueness behave identically w.r.t. structural

rules

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules

▶ Harrington also made typing rules based on this

▶ Closely related to the logic, through the Curry-Howard
isomorphism
▶ Types correspond to formulas in the logic

▶ Example (weakening rule):

Γ ⊢ R
Γ,P◦ ⊢ R

→ u : Γ ⊢ t : R
u : Γ, x : P◦ ⊢ t : R

▶ Later, these typing rules are used by other researchers
▶ Uniqueness Typing for Resource Management in

Message-Passing Concurrency (Hennessey et al.)
▶ Linearity and Uniqueness: An Entente Cordiale (Marshall et

al.)

https://doi.org/10.4204/EPTCS.22.3
https://doi.org/10.4204/EPTCS.22.3

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules

▶ Harrington also made typing rules based on this
▶ Closely related to the logic, through the Curry-Howard

isomorphism
▶ Types correspond to formulas in the logic

▶ Example (weakening rule):

Γ ⊢ R
Γ,P◦ ⊢ R

→ u : Γ ⊢ t : R
u : Γ, x : P◦ ⊢ t : R

▶ Later, these typing rules are used by other researchers
▶ Uniqueness Typing for Resource Management in

Message-Passing Concurrency (Hennessey et al.)
▶ Linearity and Uniqueness: An Entente Cordiale (Marshall et

al.)

https://doi.org/10.4204/EPTCS.22.3
https://doi.org/10.4204/EPTCS.22.3

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules

▶ Harrington also made typing rules based on this
▶ Closely related to the logic, through the Curry-Howard

isomorphism
▶ Types correspond to formulas in the logic

▶ Example (weakening rule):

Γ ⊢ R
Γ,P◦ ⊢ R

→ u : Γ ⊢ t : R
u : Γ, x : P◦ ⊢ t : R

▶ Later, these typing rules are used by other researchers
▶ Uniqueness Typing for Resource Management in

Message-Passing Concurrency (Hennessey et al.)
▶ Linearity and Uniqueness: An Entente Cordiale (Marshall et

al.)

https://doi.org/10.4204/EPTCS.22.3
https://doi.org/10.4204/EPTCS.22.3

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules

▶ Harrington also made typing rules based on this
▶ Closely related to the logic, through the Curry-Howard

isomorphism
▶ Types correspond to formulas in the logic

▶ Example (weakening rule):

Γ ⊢ R
Γ,P◦ ⊢ R

→ u : Γ ⊢ t : R
u : Γ, x : P◦ ⊢ t : R

▶ Later, these typing rules are used by other researchers

▶ Uniqueness Typing for Resource Management in
Message-Passing Concurrency (Hennessey et al.)

▶ Linearity and Uniqueness: An Entente Cordiale (Marshall et
al.)

https://doi.org/10.4204/EPTCS.22.3
https://doi.org/10.4204/EPTCS.22.3

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules

▶ Harrington also made typing rules based on this
▶ Closely related to the logic, through the Curry-Howard

isomorphism
▶ Types correspond to formulas in the logic

▶ Example (weakening rule):

Γ ⊢ R
Γ,P◦ ⊢ R

→ u : Γ ⊢ t : R
u : Γ, x : P◦ ⊢ t : R

▶ Later, these typing rules are used by other researchers
▶ Uniqueness Typing for Resource Management in

Message-Passing Concurrency (Hennessey et al.)

▶ Linearity and Uniqueness: An Entente Cordiale (Marshall et
al.)

https://doi.org/10.4204/EPTCS.22.3
https://doi.org/10.4204/EPTCS.22.3

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules

▶ Harrington also made typing rules based on this
▶ Closely related to the logic, through the Curry-Howard

isomorphism
▶ Types correspond to formulas in the logic

▶ Example (weakening rule):

Γ ⊢ R
Γ,P◦ ⊢ R

→ u : Γ ⊢ t : R
u : Γ, x : P◦ ⊢ t : R

▶ Later, these typing rules are used by other researchers
▶ Uniqueness Typing for Resource Management in

Message-Passing Concurrency (Hennessey et al.)
▶ Linearity and Uniqueness: An Entente Cordiale (Marshall et

al.)

https://doi.org/10.4204/EPTCS.22.3
https://doi.org/10.4204/EPTCS.22.3

Uniqueness and Linearity Logic Typing rules As programming language

Paper: Linearity and Uniqueness

▶ Linearity and Uniqueness: An Entente Cordiale
by Danielle Marshall, Michael Vollmer and Dominic Orchard

▶ Goal: combine uniqueness and linearity in one system /
programming language

▶ Because it’s faster, better performance

▶ With the guarantees from linearity/uniqueness, you don’t have
to account for when a value is non-linear/shared

▶ You don’t have to copy an array to edit it if you know it’s
unique, then you can edit in-place

▶ They create a type system containing both unique and linear
types (partly based on typing rules from Harrington)

Uniqueness and Linearity Logic Typing rules As programming language

Paper: Linearity and Uniqueness

▶ Linearity and Uniqueness: An Entente Cordiale
by Danielle Marshall, Michael Vollmer and Dominic Orchard

▶ Goal: combine uniqueness and linearity in one system /
programming language

▶ Because it’s faster, better performance

▶ With the guarantees from linearity/uniqueness, you don’t have
to account for when a value is non-linear/shared

▶ You don’t have to copy an array to edit it if you know it’s
unique, then you can edit in-place

▶ They create a type system containing both unique and linear
types (partly based on typing rules from Harrington)

Uniqueness and Linearity Logic Typing rules As programming language

Paper: Linearity and Uniqueness

▶ Linearity and Uniqueness: An Entente Cordiale
by Danielle Marshall, Michael Vollmer and Dominic Orchard

▶ Goal: combine uniqueness and linearity in one system /
programming language

▶ Because it’s faster, better performance

▶ With the guarantees from linearity/uniqueness, you don’t have
to account for when a value is non-linear/shared

▶ You don’t have to copy an array to edit it if you know it’s
unique, then you can edit in-place

▶ They create a type system containing both unique and linear
types (partly based on typing rules from Harrington)

Uniqueness and Linearity Logic Typing rules As programming language

Paper: Linearity and Uniqueness

▶ Linearity and Uniqueness: An Entente Cordiale
by Danielle Marshall, Michael Vollmer and Dominic Orchard

▶ Goal: combine uniqueness and linearity in one system /
programming language

▶ Because it’s faster, better performance
▶ With the guarantees from linearity/uniqueness, you don’t have

to account for when a value is non-linear/shared

▶ You don’t have to copy an array to edit it if you know it’s
unique, then you can edit in-place

▶ They create a type system containing both unique and linear
types (partly based on typing rules from Harrington)

Uniqueness and Linearity Logic Typing rules As programming language

Paper: Linearity and Uniqueness

▶ Linearity and Uniqueness: An Entente Cordiale
by Danielle Marshall, Michael Vollmer and Dominic Orchard

▶ Goal: combine uniqueness and linearity in one system /
programming language

▶ Because it’s faster, better performance
▶ With the guarantees from linearity/uniqueness, you don’t have

to account for when a value is non-linear/shared
▶ You don’t have to copy an array to edit it if you know it’s

unique, then you can edit in-place

▶ They create a type system containing both unique and linear
types (partly based on typing rules from Harrington)

Uniqueness and Linearity Logic Typing rules As programming language

Paper: Linearity and Uniqueness

▶ Linearity and Uniqueness: An Entente Cordiale
by Danielle Marshall, Michael Vollmer and Dominic Orchard

▶ Goal: combine uniqueness and linearity in one system /
programming language

▶ Because it’s faster, better performance
▶ With the guarantees from linearity/uniqueness, you don’t have

to account for when a value is non-linear/shared
▶ You don’t have to copy an array to edit it if you know it’s

unique, then you can edit in-place

▶ They create a type system containing both unique and linear
types (partly based on typing rules from Harrington)

Uniqueness and Linearity Logic Typing rules As programming language

Base system

▶ They use lazy evaluation

▶ The base system is linearly typed

▶ Already the default in the used programming language, Granule
▶ Avoids problems; for example if a product (t1, t2) of two linear

values would be unique by default, then it can be converted to
an unrestricted value and can then be duplicated

Uniqueness and Linearity Logic Typing rules As programming language

Base system

▶ They use lazy evaluation
▶ The base system is linearly typed

▶ Already the default in the used programming language, Granule
▶ Avoids problems; for example if a product (t1, t2) of two linear

values would be unique by default, then it can be converted to
an unrestricted value and can then be duplicated

Uniqueness and Linearity Logic Typing rules As programming language

Base system

▶ They use lazy evaluation
▶ The base system is linearly typed

▶ Already the default in the used programming language, Granule

▶ Avoids problems; for example if a product (t1, t2) of two linear
values would be unique by default, then it can be converted to
an unrestricted value and can then be duplicated

Uniqueness and Linearity Logic Typing rules As programming language

Base system

▶ They use lazy evaluation
▶ The base system is linearly typed

▶ Already the default in the used programming language, Granule
▶ Avoids problems; for example if a product (t1, t2) of two linear

values would be unique by default, then it can be converted to
an unrestricted value and can then be duplicated

Uniqueness and Linearity Logic Typing rules As programming language

Modalities

▶ They have a uniqueness modality ∗

▶ They treat non-linearity and non-uniqueness as the same
state: both are unrestricted

▶ Therefore, they have a single unrestricted modality !

▶ Progression: unique → unrestricted → linear

Uniqueness and Linearity Logic Typing rules As programming language

Modalities

▶ They have a uniqueness modality ∗
▶ They treat non-linearity and non-uniqueness as the same

state: both are unrestricted

▶ Therefore, they have a single unrestricted modality !

▶ Progression: unique → unrestricted → linear

Uniqueness and Linearity Logic Typing rules As programming language

Modalities

▶ They have a uniqueness modality ∗
▶ They treat non-linearity and non-uniqueness as the same

state: both are unrestricted

▶ Therefore, they have a single unrestricted modality !

▶ Progression: unique → unrestricted → linear

Uniqueness and Linearity Logic Typing rules As programming language

Modalities

▶ They have a uniqueness modality ∗
▶ They treat non-linearity and non-uniqueness as the same

state: both are unrestricted

▶ Therefore, they have a single unrestricted modality !

▶ Progression: unique → unrestricted → linear

Uniqueness and Linearity Logic Typing rules As programming language

Syntax

▶ Terms, usually denoted by t. For example:

▶ lambda terms: x , λx .t, t1 t2
▶ unrestricted terms !t, unique terms ∗t, borrowed terms &t
▶ products (t1, t2)
▶ unit, which can be seen as the empty product
▶ some constructs like: copy t1 as x in t2, let !x = t1 in t2

▶ Types
A,B ::= A⊸ B | A⊗ B | 1 | !A | ∗A

▶ Typing contexts

Γ ::= ∅ | Γ, x : A | Γ, x : [A]

▶ Typing judgements Γ ⊢ t : A

Uniqueness and Linearity Logic Typing rules As programming language

Syntax

▶ Terms, usually denoted by t. For example:
▶ lambda terms: x , λx .t, t1 t2

▶ unrestricted terms !t, unique terms ∗t, borrowed terms &t
▶ products (t1, t2)
▶ unit, which can be seen as the empty product
▶ some constructs like: copy t1 as x in t2, let !x = t1 in t2

▶ Types
A,B ::= A⊸ B | A⊗ B | 1 | !A | ∗A

▶ Typing contexts

Γ ::= ∅ | Γ, x : A | Γ, x : [A]

▶ Typing judgements Γ ⊢ t : A

Uniqueness and Linearity Logic Typing rules As programming language

Syntax

▶ Terms, usually denoted by t. For example:
▶ lambda terms: x , λx .t, t1 t2
▶ unrestricted terms !t, unique terms ∗t, borrowed terms &t

▶ products (t1, t2)
▶ unit, which can be seen as the empty product
▶ some constructs like: copy t1 as x in t2, let !x = t1 in t2

▶ Types
A,B ::= A⊸ B | A⊗ B | 1 | !A | ∗A

▶ Typing contexts

Γ ::= ∅ | Γ, x : A | Γ, x : [A]

▶ Typing judgements Γ ⊢ t : A

Uniqueness and Linearity Logic Typing rules As programming language

Syntax

▶ Terms, usually denoted by t. For example:
▶ lambda terms: x , λx .t, t1 t2
▶ unrestricted terms !t, unique terms ∗t, borrowed terms &t
▶ products (t1, t2)

▶ unit, which can be seen as the empty product
▶ some constructs like: copy t1 as x in t2, let !x = t1 in t2

▶ Types
A,B ::= A⊸ B | A⊗ B | 1 | !A | ∗A

▶ Typing contexts

Γ ::= ∅ | Γ, x : A | Γ, x : [A]

▶ Typing judgements Γ ⊢ t : A

Uniqueness and Linearity Logic Typing rules As programming language

Syntax

▶ Terms, usually denoted by t. For example:
▶ lambda terms: x , λx .t, t1 t2
▶ unrestricted terms !t, unique terms ∗t, borrowed terms &t
▶ products (t1, t2)
▶ unit, which can be seen as the empty product

▶ some constructs like: copy t1 as x in t2, let !x = t1 in t2

▶ Types
A,B ::= A⊸ B | A⊗ B | 1 | !A | ∗A

▶ Typing contexts

Γ ::= ∅ | Γ, x : A | Γ, x : [A]

▶ Typing judgements Γ ⊢ t : A

Uniqueness and Linearity Logic Typing rules As programming language

Syntax

▶ Terms, usually denoted by t. For example:
▶ lambda terms: x , λx .t, t1 t2
▶ unrestricted terms !t, unique terms ∗t, borrowed terms &t
▶ products (t1, t2)
▶ unit, which can be seen as the empty product
▶ some constructs like: copy t1 as x in t2, let !x = t1 in t2

▶ Types
A,B ::= A⊸ B | A⊗ B | 1 | !A | ∗A

▶ Typing contexts

Γ ::= ∅ | Γ, x : A | Γ, x : [A]

▶ Typing judgements Γ ⊢ t : A

Uniqueness and Linearity Logic Typing rules As programming language

Syntax

▶ Terms, usually denoted by t. For example:
▶ lambda terms: x , λx .t, t1 t2
▶ unrestricted terms !t, unique terms ∗t, borrowed terms &t
▶ products (t1, t2)
▶ unit, which can be seen as the empty product
▶ some constructs like: copy t1 as x in t2, let !x = t1 in t2

▶ Types
A,B ::= A⊸ B | A⊗ B | 1 | !A | ∗A

▶ Typing contexts

Γ ::= ∅ | Γ, x : A | Γ, x : [A]

▶ Typing judgements Γ ⊢ t : A

Uniqueness and Linearity Logic Typing rules As programming language

Syntax

▶ Terms, usually denoted by t. For example:
▶ lambda terms: x , λx .t, t1 t2
▶ unrestricted terms !t, unique terms ∗t, borrowed terms &t
▶ products (t1, t2)
▶ unit, which can be seen as the empty product
▶ some constructs like: copy t1 as x in t2, let !x = t1 in t2

▶ Types
A,B ::= A⊸ B | A⊗ B | 1 | !A | ∗A

▶ Typing contexts

Γ ::= ∅ | Γ, x : A | Γ, x : [A]

▶ Typing judgements Γ ⊢ t : A

Uniqueness and Linearity Logic Typing rules As programming language

Syntax

▶ Terms, usually denoted by t. For example:
▶ lambda terms: x , λx .t, t1 t2
▶ unrestricted terms !t, unique terms ∗t, borrowed terms &t
▶ products (t1, t2)
▶ unit, which can be seen as the empty product
▶ some constructs like: copy t1 as x in t2, let !x = t1 in t2

▶ Types
A,B ::= A⊸ B | A⊗ B | 1 | !A | ∗A

▶ Typing contexts

Γ ::= ∅ | Γ, x : A | Γ, x : [A]

▶ Typing judgements Γ ⊢ t : A

Uniqueness and Linearity Logic Typing rules As programming language

Typing contexts

▶ Non-linear assignments in a typing context are denoted by
x : [A]

▶ These variables can be used multiple times

▶ Note: different from x : !A, which we’ll see more clearly in the
typing rules

▶ We write [Γ] to mark a context as containing only non-linear
assignments (which includes the empty context)

Definition 1
Context addition Γ1 + Γ2 is the union of two contexts as long as
every variable x that occurs in both contexts is assigned the same
non-linear type in both contexts (x : [A]).

Uniqueness and Linearity Logic Typing rules As programming language

Typing contexts

▶ Non-linear assignments in a typing context are denoted by
x : [A]

▶ These variables can be used multiple times

▶ Note: different from x : !A, which we’ll see more clearly in the
typing rules

▶ We write [Γ] to mark a context as containing only non-linear
assignments (which includes the empty context)

Definition 1
Context addition Γ1 + Γ2 is the union of two contexts as long as
every variable x that occurs in both contexts is assigned the same
non-linear type in both contexts (x : [A]).

Uniqueness and Linearity Logic Typing rules As programming language

Typing contexts

▶ Non-linear assignments in a typing context are denoted by
x : [A]

▶ These variables can be used multiple times

▶ Note: different from x : !A, which we’ll see more clearly in the
typing rules

▶ We write [Γ] to mark a context as containing only non-linear
assignments (which includes the empty context)

Definition 1
Context addition Γ1 + Γ2 is the union of two contexts as long as
every variable x that occurs in both contexts is assigned the same
non-linear type in both contexts (x : [A]).

Uniqueness and Linearity Logic Typing rules As programming language

Typing contexts

▶ Non-linear assignments in a typing context are denoted by
x : [A]

▶ These variables can be used multiple times

▶ Note: different from x : !A, which we’ll see more clearly in the
typing rules

▶ We write [Γ] to mark a context as containing only non-linear
assignments (which includes the empty context)

Definition 1
Context addition Γ1 + Γ2 is the union of two contexts as long as
every variable x that occurs in both contexts is assigned the same
non-linear type in both contexts (x : [A]).

Uniqueness and Linearity Logic Typing rules As programming language

Typing contexts

▶ Non-linear assignments in a typing context are denoted by
x : [A]

▶ These variables can be used multiple times

▶ Note: different from x : !A, which we’ll see more clearly in the
typing rules

▶ We write [Γ] to mark a context as containing only non-linear
assignments (which includes the empty context)

Definition 1
Context addition Γ1 + Γ2 is the union of two contexts as long as
every variable x that occurs in both contexts is assigned the same
non-linear type in both contexts (x : [A]).

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: λ-calculus

▶ The usual λ-calculus is typed by these three typing rules

var
[Γ], x : A ⊢ x : A

Γ, x : A ⊢ t : B
abs

Γ ⊢ λx .t : A⊸ B

Γ1 ⊢ t1 : A⊸ B Γ2 ⊢ t2 : A app
Γ1 + Γ2 ⊢ t1t2 : B

▶ For variables, abstraction and application

▶ Note that for var, the rest of the typing context has to be
non-linear while the variable itself is linear

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: λ-calculus

▶ The usual λ-calculus is typed by these three typing rules

var
[Γ], x : A ⊢ x : A

Γ, x : A ⊢ t : B
abs

Γ ⊢ λx .t : A⊸ B

Γ1 ⊢ t1 : A⊸ B Γ2 ⊢ t2 : A app
Γ1 + Γ2 ⊢ t1t2 : B

▶ For variables, abstraction and application

▶ Note that for var, the rest of the typing context has to be
non-linear while the variable itself is linear

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: λ-calculus

▶ The usual λ-calculus is typed by these three typing rules

var
[Γ], x : A ⊢ x : A

Γ, x : A ⊢ t : B
abs

Γ ⊢ λx .t : A⊸ B

Γ1 ⊢ t1 : A⊸ B Γ2 ⊢ t2 : A app
Γ1 + Γ2 ⊢ t1t2 : B

▶ For variables, abstraction and application

▶ Note that for var, the rest of the typing context has to be
non-linear while the variable itself is linear

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: λ-calculus

▶ The usual λ-calculus is typed by these three typing rules

var
[Γ], x : A ⊢ x : A

Γ, x : A ⊢ t : B
abs

Γ ⊢ λx .t : A⊸ B

Γ1 ⊢ t1 : A⊸ B Γ2 ⊢ t2 : A app
Γ1 + Γ2 ⊢ t1t2 : B

▶ For variables, abstraction and application

▶ Note that for var, the rest of the typing context has to be
non-linear while the variable itself is linear

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: λ-calculus

▶ The usual λ-calculus is typed by these three typing rules

var
[Γ], x : A ⊢ x : A

Γ, x : A ⊢ t : B
abs

Γ ⊢ λx .t : A⊸ B

Γ1 ⊢ t1 : A⊸ B Γ2 ⊢ t2 : A app
Γ1 + Γ2 ⊢ t1t2 : B

▶ For variables, abstraction and application

▶ Note that for var, the rest of the typing context has to be
non-linear while the variable itself is linear

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: λ-calculus

▶ The usual λ-calculus is typed by these three typing rules

var
[Γ], x : A ⊢ x : A

Γ, x : A ⊢ t : B
abs

Γ ⊢ λx .t : A⊸ B

Γ1 ⊢ t1 : A⊸ B Γ2 ⊢ t2 : A app
Γ1 + Γ2 ⊢ t1t2 : B

▶ For variables, abstraction and application

▶ Note that for var, the rest of the typing context has to be
non-linear while the variable itself is linear

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: non-linear modality

▶ Introduction rule / promotion

[Γ] ⊢ t : A
!I

[Γ] ⊢ !t : !A

!Γ ⊢ P !R!Γ ⊢ !P
▶ Elimination rule

Γ1 ⊢ t1 : !A Γ2, x : [A] ⊢ t2 : B
!EΓ1 + Γ2 ⊢ let !x = t1 in t2 : B

▶ Dereliction rule: non-linear variables can be used linearly

Γ, x : A ⊢ t : B
der

Γ, x : [A] ⊢ t : B

Γ,P ⊢ Q
!LΓ, !P ⊢ Q

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: non-linear modality

▶ Introduction rule / promotion

[Γ] ⊢ t : A
!I

[Γ] ⊢ !t : !A
!Γ ⊢ P !R!Γ ⊢ !P

▶ Elimination rule

Γ1 ⊢ t1 : !A Γ2, x : [A] ⊢ t2 : B
!EΓ1 + Γ2 ⊢ let !x = t1 in t2 : B

▶ Dereliction rule: non-linear variables can be used linearly

Γ, x : A ⊢ t : B
der

Γ, x : [A] ⊢ t : B

Γ,P ⊢ Q
!LΓ, !P ⊢ Q

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: non-linear modality

▶ Introduction rule / promotion

[Γ] ⊢ t : A
!I

[Γ] ⊢ !t : !A
!Γ ⊢ P !R!Γ ⊢ !P

▶ Elimination rule

Γ1 ⊢ t1 : !A Γ2, x : [A] ⊢ t2 : B
!EΓ1 + Γ2 ⊢ let !x = t1 in t2 : B

▶ Dereliction rule: non-linear variables can be used linearly

Γ, x : A ⊢ t : B
der

Γ, x : [A] ⊢ t : B

Γ,P ⊢ Q
!LΓ, !P ⊢ Q

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: non-linear modality

▶ Introduction rule / promotion

[Γ] ⊢ t : A
!I

[Γ] ⊢ !t : !A
!Γ ⊢ P !R!Γ ⊢ !P

▶ Elimination rule

Γ1 ⊢ t1 : !A Γ2, x : [A] ⊢ t2 : B
!EΓ1 + Γ2 ⊢ let !x = t1 in t2 : B

▶ Dereliction rule: non-linear variables can be used linearly

Γ, x : A ⊢ t : B
der

Γ, x : [A] ⊢ t : B

Γ,P ⊢ Q
!LΓ, !P ⊢ Q

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: non-linear modality

▶ Introduction rule / promotion

[Γ] ⊢ t : A
!I

[Γ] ⊢ !t : !A
!Γ ⊢ P !R!Γ ⊢ !P

▶ Elimination rule

Γ1 ⊢ t1 : !A Γ2, x : [A] ⊢ t2 : B
!EΓ1 + Γ2 ⊢ let !x = t1 in t2 : B

▶ Dereliction rule: non-linear variables can be used linearly

Γ, x : A ⊢ t : B
der

Γ, x : [A] ⊢ t : B

Γ,P ⊢ Q
!LΓ, !P ⊢ Q

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: uniqueness modality

▶ Borrowing: “forget” uniqueness guarantee

Γ ⊢ t : ∗A borrow
Γ ⊢ &t : !A

Γ ⊢ P ◦R
Γ ⊢ P◦

▶ Copying: make new variable with same value as non-linear
term

Γ1 ⊢ t1 : !A Γ2, x : ∗A ⊢ t2 : !B
copy

Γ1 + Γ2 ⊢ copy t1 as x in t2 : !B

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

▶ Necessitation: values without dependencies can be assumed
unique

∅ ⊢ t : A
nec

[Γ] ⊢ ∗t : ∗A

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: uniqueness modality

▶ Borrowing: “forget” uniqueness guarantee

Γ ⊢ t : ∗A borrow
Γ ⊢ &t : !A

Γ ⊢ P ◦R
Γ ⊢ P◦

▶ Copying: make new variable with same value as non-linear
term

Γ1 ⊢ t1 : !A Γ2, x : ∗A ⊢ t2 : !B
copy

Γ1 + Γ2 ⊢ copy t1 as x in t2 : !B

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

▶ Necessitation: values without dependencies can be assumed
unique

∅ ⊢ t : A
nec

[Γ] ⊢ ∗t : ∗A

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: uniqueness modality

▶ Borrowing: “forget” uniqueness guarantee

Γ ⊢ t : ∗A borrow
Γ ⊢ &t : !A

Γ ⊢ P ◦R
Γ ⊢ P◦

▶ Copying: make new variable with same value as non-linear
term

Γ1 ⊢ t1 : !A Γ2, x : ∗A ⊢ t2 : !B
copy

Γ1 + Γ2 ⊢ copy t1 as x in t2 : !B

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

▶ Necessitation: values without dependencies can be assumed
unique

∅ ⊢ t : A
nec

[Γ] ⊢ ∗t : ∗A

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: uniqueness modality

▶ Borrowing: “forget” uniqueness guarantee

Γ ⊢ t : ∗A borrow
Γ ⊢ &t : !A

Γ ⊢ P ◦R
Γ ⊢ P◦

▶ Copying: make new variable with same value as non-linear
term

Γ1 ⊢ t1 : !A Γ2, x : ∗A ⊢ t2 : !B
copy

Γ1 + Γ2 ⊢ copy t1 as x in t2 : !B

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

▶ Necessitation: values without dependencies can be assumed
unique

∅ ⊢ t : A
nec

[Γ] ⊢ ∗t : ∗A

Uniqueness and Linearity Logic Typing rules As programming language

Typing rules: uniqueness modality

▶ Borrowing: “forget” uniqueness guarantee

Γ ⊢ t : ∗A borrow
Γ ⊢ &t : !A

Γ ⊢ P ◦R
Γ ⊢ P◦

▶ Copying: make new variable with same value as non-linear
term

Γ1 ⊢ t1 : !A Γ2, x : ∗A ⊢ t2 : !B
copy

Γ1 + Γ2 ⊢ copy t1 as x in t2 : !B

Γ,P ⊢ Q◦
◦L

Γ,P◦ ⊢ Q◦

▶ Necessitation: values without dependencies can be assumed
unique

∅ ⊢ t : A
nec

[Γ] ⊢ ∗t : ∗A

Uniqueness and Linearity Logic Typing rules As programming language

From typing rules to programming language

▶ As application of these typing rules, we want to implement
them into a programming language

▶ Then we can compare performance of a language with both
unique and linear types

▶ However, then we first need to define operational semantics

Uniqueness and Linearity Logic Typing rules As programming language

From typing rules to programming language

▶ As application of these typing rules, we want to implement
them into a programming language

▶ Then we can compare performance of a language with both
unique and linear types

▶ However, then we first need to define operational semantics

Uniqueness and Linearity Logic Typing rules As programming language

From typing rules to programming language

▶ As application of these typing rules, we want to implement
them into a programming language

▶ Then we can compare performance of a language with both
unique and linear types

▶ However, then we first need to define operational semantics

Uniqueness and Linearity Logic Typing rules As programming language

Heap model

▶ The paper made an operational heap model

▶ Steps like:
H, x 7→1 t ⊢ x ⇝ H ⊢ t

▶ Also include arrays and operations on them

▶ As a use case for uniqueness

Uniqueness and Linearity Logic Typing rules As programming language

Heap model

▶ The paper made an operational heap model

▶ Steps like:
H, x 7→1 t ⊢ x ⇝ H ⊢ t

▶ Also include arrays and operations on them

▶ As a use case for uniqueness

Uniqueness and Linearity Logic Typing rules As programming language

Heap model

▶ The paper made an operational heap model

▶ Steps like:
H, x 7→1 t ⊢ x ⇝ H ⊢ t

▶ Also include arrays and operations on them
▶ As a use case for uniqueness

Uniqueness and Linearity Logic Typing rules As programming language

Metatheory

▶ In the paper, a couple theorems are proven about the model

▶ Conservation: after reduction step, term still has same type in
a typing context compatible with the heap

▶ Progress: if well-typed term is not a value, another reduction
step is possible

▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),
then there is a value to which they both reduce

▶ Uniqueness: if a term reduces to a unique value, then any
unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!

Uniqueness and Linearity Logic Typing rules As programming language

Metatheory

▶ In the paper, a couple theorems are proven about the model
▶ Conservation: after reduction step, term still has same type in

a typing context compatible with the heap

▶ Progress: if well-typed term is not a value, another reduction
step is possible

▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),
then there is a value to which they both reduce

▶ Uniqueness: if a term reduces to a unique value, then any
unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!

Uniqueness and Linearity Logic Typing rules As programming language

Metatheory

▶ In the paper, a couple theorems are proven about the model
▶ Conservation: after reduction step, term still has same type in

a typing context compatible with the heap
▶ Progress: if well-typed term is not a value, another reduction

step is possible

▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),
then there is a value to which they both reduce

▶ Uniqueness: if a term reduces to a unique value, then any
unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!

Uniqueness and Linearity Logic Typing rules As programming language

Metatheory

▶ In the paper, a couple theorems are proven about the model
▶ Conservation: after reduction step, term still has same type in

a typing context compatible with the heap
▶ Progress: if well-typed term is not a value, another reduction

step is possible
▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),

then there is a value to which they both reduce

▶ Uniqueness: if a term reduces to a unique value, then any
unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!

Uniqueness and Linearity Logic Typing rules As programming language

Metatheory

▶ In the paper, a couple theorems are proven about the model
▶ Conservation: after reduction step, term still has same type in

a typing context compatible with the heap
▶ Progress: if well-typed term is not a value, another reduction

step is possible
▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),

then there is a value to which they both reduce
▶ Uniqueness: if a term reduces to a unique value, then any

unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!

Uniqueness and Linearity Logic Typing rules As programming language

Metatheory

▶ In the paper, a couple theorems are proven about the model
▶ Conservation: after reduction step, term still has same type in

a typing context compatible with the heap
▶ Progress: if well-typed term is not a value, another reduction

step is possible
▶ Soundness: if two well-typed terms are equivalent (t1 ≡ t2),

then there is a value to which they both reduce
▶ Uniqueness: if a term reduces to a unique value, then any

unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Uniqueness theorem is incorrect!

Uniqueness and Linearity Logic Typing rules As programming language

Implementation

▶ Implemented in Granule: linearly typed language

▶ Operations for arrays: new, read, write, delete
▶ Write operation updates unique array destructively in place

▶ Allowed because we have uniqueness guarantee

▶ Compared performance with/without unique arrays

Uniqueness and Linearity Logic Typing rules As programming language

Implementation

▶ Implemented in Granule: linearly typed language

▶ Operations for arrays: new, read, write, delete

▶ Write operation updates unique array destructively in place

▶ Allowed because we have uniqueness guarantee

▶ Compared performance with/without unique arrays

Uniqueness and Linearity Logic Typing rules As programming language

Implementation

▶ Implemented in Granule: linearly typed language

▶ Operations for arrays: new, read, write, delete
▶ Write operation updates unique array destructively in place

▶ Allowed because we have uniqueness guarantee

▶ Compared performance with/without unique arrays

Uniqueness and Linearity Logic Typing rules As programming language

Implementation

▶ Implemented in Granule: linearly typed language

▶ Operations for arrays: new, read, write, delete
▶ Write operation updates unique array destructively in place

▶ Allowed because we have uniqueness guarantee

▶ Compared performance with/without unique arrays

Uniqueness and Linearity Logic Typing rules As programming language

Implementation

▶ Implemented in Granule: linearly typed language

▶ Operations for arrays: new, read, write, delete
▶ Write operation updates unique array destructively in place

▶ Allowed because we have uniqueness guarantee

▶ Compared performance with/without unique arrays

Uniqueness and Linearity Logic Typing rules As programming language

Performance

▶ Benchmark iteration: allocate list of 1000 arrays, populate
arrays with values, traverse list to sum them up

Uniqueness and Linearity Logic Typing rules As programming language

Questions?

Counterexample uniqueness theorem

▶ Uniqueness: if a term reduces to a unique value, then any
unique array references from the incoming heap or new array
references that occur in that value are still unique

▶ Consider following heap + (well-typed) term

∅ ⊢ ∗(let !x = &(newArray 5) in x) : ∗(Array A)

▶ Reduces to
a 7→ω arr, x 7→ω a ⊢ ∗a

▶ ω means that array reference a is not unique

Mistake in proof

▶ Proof of uniqueness theorem is by induction over typing rules

▶ Problem is with necessitation rule

∅ ⊢ t : A
nec

[Γ] ⊢ ∗t : ∗A
▶ IH: “For a well-typed term Γ ⊢ t1 : ∗B . . . ”

▶ In the proof, they apply results of IH for ∅ ⊢ t : A from nec

▶ A is not necessarily a unique type ∗B for some B

	Uniqueness and Linearity
	Logic
	Typing rules
	As programming language
	Appendix

