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The Titles of Two Papers

For MFoCS seminar, I offer the following papers:

1. “Type Theory with Explicit Universe Polymorphism” by
Bezem, Coquand, Dybjer, Escardó

2. “Constructive set theory” by Myhill
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Type Theory with Explicit Universe Polymorphism

Short Summary:

▶ This paper is related to type theory (see the course Type
Theory and Coq)

▶ In type theory, we want universe types: this allows us to
quantify over types

▶ For instance: prove that for all types A we have a function
A → A

▶ Incorrect approach: add a type U that contains all types

▶ By Girard’s paradox: this is inconsistent: ∀(A : U),A

▶ So we add many universes: U0 : U1 : U2 : U3 : . . .

▶ But: how do we prove statements for every universe? We
need universe polymorphism

▶ This paper discusses several ways to add universe
polymorphism to type theory
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Constructive set theory

Short Summary:

▶ Typical question about foundations: develop formal systems
to encode mathematics/computer science

▶ There are many different systems: Zermelo-Fraenkel set
theory, type theory, higher-order predicate logic, . . .

▶ This paper: constructive set theory (CST aka CZF)

▶ Goal: encode “Foundations of constructive analysis” by
Bishop

▶ In this book, a large amount of analysis got developed in
constructive foundations

▶ This paper introduces the axioms of CZF (more subtle than
just taking ZF and removing LEM)

▶ It also studies the existence property for a weaker form of
CZF: if you can prove ∃(a ∈ A), φ(a), then we can construct
such an a s.t. φ(a)
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