MFoCS Seminar "A Completeness Theorem for Probabilistic Regular Expressions" Różowski, Silva LICS 2024

Lukas Mulder

September 12, 2025

Regular expressions

Regular expressions $e, f \in RE$ are a way to mathematically capture programs using

- actions $a, b, c, \ldots \in \Sigma$
- sequential composition $e \cdot f$
- non-deterministic choice e + f
- looping e*

Regular expressions

Regular expressions $e, f \in RE$ are a way to mathematically capture programs using

- actions $a, b, c, \ldots \in \Sigma$
- sequential composition $e \cdot f$
- non-deterministic choice e + f
- looping e*

Every regular expression e has an associated regular language $\llbracket e \rrbracket \subseteq \Sigma^*$ consisting of all possible outcomes of running the program captured by e.

Regular expressions

Regular expressions $e, f \in RE$ are a way to mathematically capture programs using

- actions $a, b, c, \ldots \in \Sigma$
- sequential composition $e \cdot f$
- non-deterministic choice e + f
- looping e*

Every regular expression e has an associated regular language $[e] \subseteq \Sigma^*$ consisting of all possible outcomes of running the program captured by e.

Example

Let
$$e = (a + b) \cdot c \cdot (a + b)$$
, then $\llbracket e \rrbracket = \{aca, acb, bca, bcb\}$

Axioms for regular expressions

Theorem (Soundness & Completeness)

There exists a set of axioms A such that $e =_A f \iff \llbracket e \rrbracket = \llbracket f \rrbracket$.

Axioms for regular expressions

Theorem (Soundness & Completeness)

There exists a set of axioms A such that $e =_A f \iff \llbracket e \rrbracket = \llbracket f \rrbracket$.

Examples of axioms

$$e + e = e$$
 $(e \cdot f) \cdot g = e \cdot (f \cdot g)$
 $e \cdot (f + g) = e \cdot f + e \cdot g$

Probabilistic regular expressions

Probabilistic regular expressions $e, f \in PRE$ are a way to mathematically capture **probabilistc** programs using

- actions $a, b, c, \ldots \in \Sigma$
- sequential composition $e \cdot f$
- **probabilistic** choice $e +_{\mathbf{p}} f$
- **probabilistic** looping $e^{[p]}$

Probabilistic regular expressions

Probabilistic regular expressions $e, f \in PRE$ are a way to mathematically capture **probabilistc** programs using

- actions $a, b, c, \ldots \in \Sigma$
- sequential composition $e \cdot f$
- **probabilistic** choice $e +_{\mathbf{p}} f$
- probabilistic looping $e^{[p]}$

Every probabilistic regular expression e has an associated probabilistic regular language $\llbracket e \rrbracket \colon \Sigma^* \to [0,1]$ consisting of all possible outcomes of running the program captured by e.

Probabilistic regular expressions

Probabilistic regular expressions $e, f \in PRE$ are a way to mathematically capture **probabilistc** programs using

- actions $a, b, c, \ldots \in \Sigma$
- sequential composition $e \cdot f$
- **probabilistic** choice $e +_{\mathbf{p}} f$
- probabilistic looping $e^{[p]}$

Every probabilistic regular expression e has an associated probabilistic regular language $\llbracket e \rrbracket \colon \Sigma^* \to [0,1]$ consisting of all possible outcomes of running the program captured by e.

Example

$$e = (a +_{\frac{1}{2}} b) \cdot c \cdot (a +_{\frac{1}{2}} b), \text{ then } \llbracket e \rrbracket = \{(aca, \frac{1}{4}), (acb, \frac{1}{4}), (bca, \frac{1}{4}), (bcb, \frac{1}{4})\}$$

Whats in the paper?

A Completeness Theorem for Probabilistic Regular Expressions - Różowski, Silva

Whats in the paper?

A Completeness Theorem for Probabilistic Regular Expressions - Różowski, Silva

- Probabilistic regular expressions (PRE),
- ullet Probabilistic regular languages $(\Sigma^* o [0,1])$,
- Probabilistic automata/transition systems,
- Axiomatisation of PRE,
- Proof of Soundness and Completeness using Coalgebra.