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You should pick this paper if you like

▶ Rust

▶ Compilers and program transformations

▶ Low-level semantics

▶ Program verification

▶ Formalization in Rocq
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What is the paper about?

A semantics for Rust using which one can prove
compiler optimizations:

▶ Whose correctness relies on Rust’s strong type system

▶ In the presence of unsafe (raw pointers, as used
internally in many libraries)
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Rust 101

Pointer types in Rust:

▶ &mut A – unique and mutable pointer to value of type A

▶ & A – shared and immutable pointer to value of type A

Insight: If you have x : &mut A and y : &mut A (as function arguments), then
x and y are unequal (they do not alias)
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In which way would a compiler optimize the following program?

fn write_both(x: &mut i32, y: &mut i32) -> i32 {

*x = 13;

*y = 20;

*x

}

It can just return 13:

fn write_both(x: &mut i32, y: &mut i32) -> i32 {

*x = 13;

*y = 20;

13 // avoid load from ‘x‘

}

Why is that correct? x and y are both unique pointers, so they cannot alias, i.e.,
x ̸= y, hence writes via y do not affect the value of x

Note: This optimization would not be correct in C/C++
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The challenge
Developing a semantics for Rust that allows one to prove the correctness of
such optimizations is really tricky

A tree structure turns out to be a good fit, hence the title “Tree Borrows”

Challenges:

▶ The semantics matches up with the behaviors expected in real Rust code
▶ Optimizations can be proved correct without getting drown in details

▶ Use of a relational separation logic

▶ Results can be trusted
▶ Implementation of the semantics applied to many real Rust libraries
▶ Theory formalized in Rocq188:12 Neven Villani, Johannes Hostert, Derek Dreyer, and Ralf Jung
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Fig. 2. Modified state machine of permissions for protected references. UB triggers upon reaching E. Transi-
tions are labeled by the events that cause them: (R)ead or (W)rite, each either ↑(foreign) or ↓(local).

Example 14fn read_write(x: *const i32, y: &mut i32) -> i32 {

let val = unsafe { *x };

*y = 20; // Transformation: move write up

val

}

?

x y

caller

read_write

Given all we said so far, this transformation would introduce UB in a program where x and y
alias. The write to y would change its state to Unique, and therefore the subsequent foreign read
through x would not be permitted. We must thus ensure that if a mutable reference is written
to at any point of the function call, then there was no foreign read at any point during the call.
Protectors as explained above already rule out foreign reads after the write (since a foreign read on
a Unique reference is UB), but extra care needs to be taken to ensure there hasn’t been a foreign
read before the write. To do this, we introduce a boolean flag in the Reserved state which records
that a foreign read took place. This flag is called conflicted. A conflicted Reserved reference cannot
become Unique; a local write to such a reference will instead trigger UB.
To ensure that this optimization can also be performed when y is a mutable reference to an

interior mutable type, we change the initial state for protected mutable references to be always
Reserved, no matter whether they point to interior mutable data or not.

The end result is that for any mutable reference that is passed as argument to a function, it is UB
for this reference to encounter both a foreign read and a local write—in any order.

3.2 Implicit Accesses
Given that protectors guarantee that their tags are live for the entirety of the function call, this
should enable optimizations that introduce spurious reads: speculatively reading from a location
that is not guaranteed to be read from in all executions. For example, consider the function below,
in which a shared reference x is accessed n times:

Example 15fn repeat(x: &i32, n: usize, opaque: impl Fn(i32)) {

// let val = *x; // Transformation: insert load

for _ in 0..n {

opaque(*x); // Transformation: replace *x by val

}

}

?

x

caller

repeat

The value of *x is constant for the entirety of the execution of repeat; this is guaranteed by the
protector on x which prevents foreign writes. Thus, we would like to optimize this function to read
the value only once instead of n times. However, if n is 0, then we are inserting a read where none
occurred, and this might trigger UB.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 188. Publication date: June 2025.
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Possible topics for the second paper

▶ Semantics of other languages (C or LLVM)

▶ Verification of the Rust type system (RustBelt)

▶ Compiler verification methods (CompCert or Simuliris)

▶ Comparison to prior Rust semantics (Stacked Borrows)


