Possible paper to study during MFoCS seminar

Robbert Krebbers

Radboud University Nijmegen, The Netherlands

5 September 2025



A paper about semantics of Rust

Tree Borrows

Neven Villani, Johannes Hostert, Derek Dreyer, Ralf Jung

In PLDI 2025: ACM SIGPLAN International Conference on Programming Language
Design and Implementation

Recipient of PLDI 2025 Distinguished Paper Award



A paper about semantics of Rust

Tree Borrows

Neven Villani, Johannes Hostert, Derek Dreyer, Ralf Jung

In PLDI 2025: ACM SIGPLAN International Conferende on Programming Language
Design and Implementation

Recipient of PLDI 2025 Distinguished Paper Award

[Advisor to the official Rust language team}




A paper about semantics of Rust

Tree Borrows

Neven Villani, Johannes Hostert, Derek Dreyer, Ralf Jung

In PLDI 2025: ACM SIGPLAN International Conferende on Programming Language
Design and Implementation

Recipient of PLDI 2025 Distinguished Paper Award

[Advisor to the official Rust language team}

{Given to ca. 10% of accepted papers at PLDI}




You should pick this paper if you like

Rust
Compilers and program transformations
Low-level semantics

Program verification

vVvYvyyvyy

Formalization in Rocq




What is the paper about?

A semantics for Rust using which one can prove
compiler optimizations:

> Whose correctness relies on Rust’s strong type system

» In the presence of unsafe (raw pointers, as used
internally in many libraries)




Rust 101

Pointer types in Rust:
» &mut A — unique and mutable pointer to value of type A

> & A — shared and immutable pointer to value of type A



Rust 101

Pointer types in Rust:
» &mut A — unique and mutable pointer to value of type A

> & A — shared and immutable pointer to value of type A

Insight: If you have x : &mut A andy : &mut A (as function arguments), then
x and y are unequal (they do not alias)




In which way would a compiler optimize the following program?

fn write_both(x: &mut i32, y: &mut i32) -> 132 {

*x = 13;
xy = 20;
*X



In which way would a compiler optimize the following program?

fn write_both(x: &mut i32, y: &mut i32) -> i32 {

*x = 13;
xy = 20;
*X

}

It can just return 13:

fn write_both(x: &mut i32, y: &mut i32) -> 132 {

*x = 13;
xy = 20;
13 // avoid load from ‘x°¢

3

Why is that correct? x and y are both unique pointers, so they cannot alias, i.e.,
x # y, hence writes via y do not affect the value of x

Note: This optimization would not be correct in C/C++



The challenge

Developing a semantics for Rust that allows one to prove the correctness of
such optimizations is really tricky

A tree structure turns out to be a good fit, hence the title “Tree Borrows"



The challenge
Developing a semantics for Rust that allows one to prove the correctness of
such optimizations is really tricky
A tree structure turns out to be a good fit, hence the title “Tree Borrows"

Challenges:
» The semantics matches up with the behaviors expected in real Rust code
» Optimizations can be proved correct without getting drown in details
» Use of a relational separation logic
P> Results can be trusted

» Implementation of the semantics applied to many real Rust libraries
» Theory formalized in Rocq

amut T IR RIW 8T RR
&mut Cell<T> ~
m € “—\) Q w Q \,\Q W
Reserved ————— Unique Frozen —— i

] C (aw URIW (1w o

Reserved
(conflicted) ~ IW,TW

IRTRLT



Possible topics for the second paper

» Semantics of other languages (C or LLVM)
» Verification of the Rust type system (RustBelt)
» Compiler verification methods (CompCert or Simuliris)

» Comparison to prior Rust semantics (Stacked Borrows)




