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Effectful programs

Effects are everywhere

I/O

State

Failure

Nondeterminism

Concurrency

An Example:

let x = input in

if x == 0
then fail

else put (1/x); output (1/x)
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Semantics for effectful programs

Program semantics

Operational semantics

describe execution of programs e1 → e2 → ...→ en

Features:

(+) Intuitive (-) Not composable
(+) Executable (-) No Equational reasoning

Denotational semantics

describe programs as mathematical objects JeK denotes e

Features:

(+) Composable (-) Need a Mathematical domain
(+) Equational reasoning

Axiomatic Semantics

describing programs with logical rules {P} e {Q}
Features:

(+) Proving general properties (-) Not Executable
(+) Program verification
Usually requires a soundness proof w.r.t a (different) language semantic
model
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First paper

Interaction Trees

Representing Recursive and Impure Programs in Rocq

Xia et al.

2020
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Interaction Trees (1)

ITrees

Vis e1

Vis e2

Ret r’Vis e3

..

Ret r

Vis = visible effect node (Impure)

Ret = return node (Pure)
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Interaction Trees (2)

Example from earlier

Program

let x = input in

if x == 0
then fail

else put (1/x);
output (1/x)

Diagram

Vis Input

if x == 0

Vis Fail

Ret ()

Vis (Put (1/x))

Vis (Output (1/x))

Ret ()

x
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Interaction Trees (3)

Representing diverging computations

Vis e1

Vis e2

Ret r’Vis e3

τ

..

τ

τ

..

Vis = visible effect node (Impure)

Ret = return node (Pure)

Tau = silent step (Progress)
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Induction vs Coinduction (in Rocq)

Induction (Fixpoint)

Finite computation

Destructs inductive data

Must terminate

Syntactic condition:

Recursive calls on a structural
subterm
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Induction vs Coinduction (in Rocq)

Induction (Fixpoint)

Finite computation

Destructs inductive data

Must terminate

Syntactic condition:

Recursive calls on a structural
subterm

Coinduction (CoFixpoint)

(possibly) Infinite computation

Constructs coinductive data

Must be productive

Syntactic condition:

Recursive calls must be guarded
by a constructor
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Interaction Trees (4)

The simplest example: Infinite loop

Program

loop {}

Denotation

CoFixpoint loop := Tau loop

Diagram

τ

τ

τ

..
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Interaction Trees (5)

ITree definition:

CoInductive itree (E: Type → Type) (R: Type) : Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {A: Type} (e : E A) (k : A → itree E R).

Ret r, return a value of type R

Tau t, silent step

Vis e k, execute effect e and continue with continuation k

E = type constructor, parameterized by the return type of the effect
e : E A, here A is the return type of effect E.

Example:

Inductive IO : Type → Type :=
| Input : IO nat

| Output : nat → IO unit.

Interaction Trees 11



Interaction Trees (5)

ITree definition:

CoInductive itree (E: Type → Type) (R: Type) : Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {A: Type} (e : E A) (k : A → itree E R).

Ret r, return a value of type R

Tau t, silent step
diverging computations
Guarding recursive calls, due to coinductive definition

Vis e k, execute effect e and continue with continuation k

E = type constructor, parameterized by the return type of the effect
e : E A, here A is the return type of effect E.

Example:
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Interaction Trees (6)

Program:

let x = input in

if x == 0
then fail

else put (1/x); output (1/x)

Denotation:

Vis Input (fun x ⇒
if x == 0

then Vis Fail (fun _ ⇒ Ret ())
else Vis (Put (1/x)) (fun _ ⇒

Vis (Output (1/x)) (fun _ ⇒ Ret ())))
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Interaction Trees (6)

Program:

let x = input in

if x == 0
then fail

else put (1/x); output (1/x)

Denotation:

trigger e = Vis e (fun x ⇒ Ret x)

Vis Input (fun x ⇒
if x == 0

then trigger Fail

else Vis (Put (1/x)) (fun _ ⇒
trigger (Output (1/x))))
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ITrees are Monads

itree E is a monad for every E.

ret : A → itree E A

ret x := Ret x

bind : itree E A → (A → itree E B) → itree E B

x ← t1 ; t2 := (bind t1 (fun x ⇒ t2))

Vis e1

Vis e2

Ret a′

τ

Ret a

+ k : A→ itree E B bind t k−−−−−−→

Vis e1

Vis e2

k a′

τ

k a

Interaction Trees 13



Interaction Trees (6)

Program:

let x = input in

if x == 0
then fail

else put (1/x); output (1/x)

Denotation:

x ← trigger Input ;
if x == 0

then trigger Fail

else _ ← trigger (Put (1/x)) ;
trigger (Output (1/x))

trigger e := Vis e (fun x ⇒ x)
x ← t1 ; t2 := bind t1 (fun x ⇒ t2)

Interaction Trees 14



Interaction Trees (7)

What can we do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning
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by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning

The paper contributes all of the above in a Rocq library
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Interaction Trees (7)

What can we do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence
by equational reasoning on ITrees

Interpreting ITrees
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Equivalence (1)

Vis e1

τ

Vis e2

Vis e3

..

τ

τ

Ret r

τ

τ

..

≈

Vis e1

Vis e2

Vis e3

..

Ret r

τ

τ

..

Interaction Trees – Itree Equivalence 16



Equivalence (2)

Equivalence up to tau: ≈sim

≈sim : itree E A → itree E A → Prop (inductive)

Paramaterized by:

sim : itree E A → itree E A → Prop (coinductive)

a = a’
[EqRet]

Ret a ≈sim Ret a’
∀v , sim (k1v) (k2v)

[EqVis]
Vis e k1 ≈sim Vis e k2

sim t1 t2
[EqTau]

Tau t1 ≈sim Tau t2

t1 ≈sim t2
[EqTauL]

Tau t1 ≈sim t2

t1 ≈sim t2
[EqTauR]

t1 ≈sim Tau t2

t1 ≈sim t2
[simc ]

sim t1 t2
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Equivalence (3)

∀v , sim (k1v) (k2v)
[EqVis]

Vis e k1 ≈sim Vis e k2

Vis e1

τ

Vis e2

τ

Ret r

τ

τ

..

≈

Vis e1

Vis e2

Ret r

τ

τ

..

Interaction Trees – Itree Equivalence 18



Equivalence (4)

t1 ≈sim t2
[EqTauL]

Tau t1 ≈sim t2

Vis e1

τ

Vis e2

τ

Ret r

τ

τ

..

≈

Vis e1

Vis e2

Ret r

τ

τ

..
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Equivalence (5)

Depending on v (left branch):

sim t1 t2
[EqTau]

Tau t1 ≈sim Tau t2

Vis e1

τ

Vis e2

τ

Ret r

τ

τ

..

≈

Vis e1

Vis e2

Ret r

τ

τ

..

Interaction Trees – Itree Equivalence 20



Overview

What we can do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning
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Interpreting ITrees (1)

Interpreting/executing ITrees

Write an interpreter for each effect

Modular: Easy to extend with new effects

ITree without effects: t : itree void A

t ≈sim Ret a
OR: t is an infinte chain of Tau nodes

Interaction Trees – Semantics of Events and Monadic Interpreters 22
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Interpreting ITrees (2): Example

t : itree (stateE + failE + ioE) unit

Vis Input

if x == 0

Vis Fail

Ret ()

Vis (Put (1/x))

Vis (Output (1/x))

Ret ()

x

Ind failE : Type → Type :=
| Fail : failE void.

Ind stateE (S : Type)
: Type → Type :=

| Get : stateE S S

| Put : S → stateE S unit.

Ind ioE : Type → Type :=
| Input : IO nat

| Output : nat → IO unit.

Interaction Trees – Semantics of Events and Monadic Interpreters 23



Interpreting ITrees (3): Example

Interpreting failure

t

itree (stateE + failE + ioE) unit

Vis Input

if x == 0

Vis Fail

Ret ()

Vis (Put (1/x))

Vis (Output (1/x))

Ret ()

x

t’ = interp_failE t

itree (stateE + ioE) (option unit)

Interaction Trees – Semantics of Events and Monadic Interpreters 24



Interpreting ITrees (3): Example

Interpreting failure

t

itree (stateE + failE + ioE) unit

Vis Input

if x == 0

Vis Fail

Ret ()

Vis (Put (1/x))

Vis (Output (1/x))

Ret ()

x

t’ = interp_failE t

itree (stateE + ioE) (option unit)

Vis Input

if x == 0

Ret NoneVis (Put (1/x))

Vis (Output (1/x))

Ret (Some ())

x

Interaction Trees – Semantics of Events and Monadic Interpreters 24



Interpreting ITrees (4): Example

CoFixpoint interp_failE : itree (failE + E) A → itree E (option A) := ..

Interaction Trees – Semantics of Events and Monadic Interpreters 25



Interpreting ITrees (4): Example

CoFixpoint interp_failE (t : itree (failE + E) A) : itree E (option A) :=
match t with

| Ret r ⇒ Ret (Some r)
| Tau t ⇒ Tau (interp_failE t)
| Vis Fail k ⇒ Ret None

| Vis e k ⇒ Vis e (fun x ⇒ interp_failE (k x))
end.

Interaction Trees – Semantics of Events and Monadic Interpreters 25



Overview

What we can do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning
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Denoting a simple language: λZ (1)

We define a pure lambda calculus: λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

Denotation

Interaction Trees – Building blocks 27



Denoting a simple language: λZ (1)

We define a pure lambda calculus: λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

Denotation

JvK := Ret v

Je1 + e2K := v1 ← Je1K; v2 ← Je2K; z2 ← to int v2; z1 ← to int v1;

Ret (z1 + z2)

Je1(e2)K := v1 ← Je1K; v2 ← Je2K; (x , e)← to lam v1; Je[v2/x ]K
Jif e1 then e2 else e3K := v1 ← Je1K; z1 ← to int v1; if z1 ̸= 0 then Je2K else Je3K

to int v := match v with z ⇒ Ret z | ⇒ fail end

to lam v := match v with λx . e ⇒ Ret (x , e) | ⇒ fail end
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Je1 + e2K := v1 ← Je1K; v2 ← Je2K; z2 ← to int v2; z1 ← to int v1;

Ret (z1 + z2)

Je1(e2)K := v1 ← Je1K; v2 ← Je2K; (x , e)← to lam v1; Je[v2/x ]K

Jif e1 then e2 else e3K := v1 ← Je1K; z1 ← to int v1; if z1 ̸= 0 then Je2K else Je3K
to int v := match v with z ⇒ Ret z | ⇒ fail end

to lam v := match v with λx . e ⇒ Ret (x , e) | ⇒ fail end
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to int v := match v with z ⇒ Ret z | ⇒ fail end

to lam v := match v with λx . e ⇒ Ret (x , e) | ⇒ fail end

Note that we already use an effect (fail := trigger Fail) in the denotation
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Denoting a simple language: λZ (2)

Denoting λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

What about while?

Jwhile e1 do e2K := v1 ← Je1K; z1 ← to int v1;

if z1 ̸= 0

then ← Je2K; Tau (Jwhile e1 do e2K)
else Ret ()
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Denoting λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

What about while?

Jwhile e1 do e2K := v1 ← Je1K; z1 ← to int v1;

if z1 ̸= 0

then ← Je2K; Tau (Jwhile e1 do e2K)
else Ret ()

Note that this denotation is corecursive
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Building blocks (1): iter

iter : (A→ itree E (A+ B))

body

→ (A→ itree E B)

...

Ret (inl a’)

Tau (iter body a’)

Ret (inr b)

Ret b
body

iter body a
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Denoting a simple language: λZ (3)

Back to while

Jwhile e1 do e2K := iter (λ .

v1 ← Je1K; z1 ← to int v1;

if z1 ̸= 0

then ← Je2K; Ret (inl ())
else Ret (inr ())

)
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Denoting a simple language: λZ (3)

Back to while

Jwhile e1 do e2K := iter (λ .

v1 ← Je1K; z1 ← to int v1;

if z1 ̸= 0

then ← Je2K; Ret (inl ())
else Ret (inr ())

)

Now the corecursion is hidden away
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Building blocks (2): iter

Use cases of iter

iter makes denoting loops easy

iter makes reasoning about loops easier

Examples of proven equations for iter
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Building blocks (2): iter

Use cases of iter

iter makes denoting loops easy

iter makes reasoning about loops easier

Examples of proven equations for iter

(* helpers *)

≫ : (A → itree E B) → (B → itree E C) → (A → itree E C)
case_ : (A → itee E C) → (B → itree E C) → ((A + B) → itree E C)
bimap : (A → itree E C) → (B → itree E D) → ((A + B) → itree E (C + D))
...

(* Loop unfolding *)

iter f ≈ f ≫ case_ (iter f) id_
(* iter f then g = iter f with g in last iteration*)

iter f ≫ g ≈ iter (f ≫ bimap id_ g)
...
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Building blocks (3): mrec

The mrec combinator

mrec is defined using iter

iteration on effects/itrees instead of values

Allows for easy encoding of recursion in effects

Supports equational reasoning
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Overview

What we can do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence
by equational reasoning on ITrees

Interpreting ITrees
by writing interpreters for effects

ITree Building Blocks
Combinators to make denotation easier
Equations on combinators for equational reasoning
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Program logics (1)

ITree interpretation and small step semantics are ’execution’ models

Given some input, what is the result

Reasoning about programs

Example:
Given: if x < y then r = x else r = y
Property: for all x and y, r is always the minimum of x and y

Program logics

Example: Hoare logic ({P} e {Q})
Program verification: We can verify properties for all inputs
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Program logics (3)

Hoare logic vs Seperation logic

The paper uses the Iris seperation logic framework
Hoare logic

Hoare triple: {P} e {Q}
precondition, program, postcondition

Seperation logic

Extension of Hoare logic
Seperating conjunction: ∗ (treat as conjunction)
Seperating implication/magic wand: −∗ (treat as implication)
Weakest precondition: wp e {Q}
Relation to Hoare triple: {P} e {Q} := P −∗ wp e {Q}
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Program logics (3)

To define a program logic you need:

Language semantics
Typically a small step semantic model
Example rule:

JbK(s) = false ⟨p2, s⟩ → s ′
[If-False]

⟨if b then p1 else p2, s⟩ → s ′

Program logic rules
Example rule:

{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}
[If]

{P} if b then C1 else C2 {Q}
Soundness proof

Can’t proof anything false w.r.t the language semantics
Example theorem:

Theorem (Soundness of Hoare Logic)

If {P} p {Q} is derivable, then for every state s such that P(s) and every s ′ such
that ⟨p, s⟩ → s ′, we have Q(s ′).
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Program logics (4)

This approach is not ideal:

For every new language

New language semantics
New program logic rules
New soundness proof

Adding language feature

Same story

Non-modularity is the problem

Idea: use ITrees as underlying language semantics
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Program logics à la carte

What the paper contributes

A new way to define program logics for itrees

A Rocq implementation of program logic fragments for

safe and unsafe program termination (failure)
state
non-determinism (demonic & angelic)
concurrency

Soundness proofs of these fragments

w.r.t itree interpretation

A port of two existing program logics

HeapLang (imperative programs with effects)
Islaris (machine code programs)
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Program logics à la carte

For this presentation

A new way to define program logics for itrees

crash/failure program logic fragment

Building a program logic for λZ

Program Logics a la Carte 40



A program logic for: λZ

We define a pure lambda calculus: λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

Denotation

JvK := Ret v

Je1 + e2K := v1 ← Je1K; v2 ← Je2K; z2 ← to int v2; z1 ← to int v1;

Ret (z1 + z2)

Je1(e2)K := v1 ← Je1K; v2 ← Je2K; (x , e)← to lam v1; Je[v2/x ]K
Jif e1 then e2 else e3K := v1 ← Je1K; z1 ← to int v1; if z1 ̸= 0 then Je2K else Je3K

to int v := match v with z ⇒ Ret z | ⇒ fail end

to lam v := match v with λx . e ⇒ Ret (x , e) | ⇒ fail; end

Note that we already use an effect (fail := trigger Fail) in the denotation

Program Logics a la Carte – Building a program logic 41



Basic Rules

Program logic rules: wp e {Φ}

∀r . Φ(r) ⊢ Ψ(r) wp e {Φ}
[WpConsequence]

wp e {Ψ}
Φ(v)

[WpVal]
wp v {Φ}

wp e1 {v1. wp v1 +̂ e2 {Φ}}
[WpBindPlusL]

wp e1 +̂ e2 {Φ}
Φ(z1 + z2)

[WpPlus]
wp z1 +̂ z2 {Φ}

z ̸= 0 wp e1 {Φ}
[WpIfTrue]

wp if z then e1 else e2 {Φ}
...
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Reusable Rules (1)

Defining rules like this is standard

We can do better:

Idea: Define rules for arbitrary ITrees

Weakest precondition for ITrees: wpiH t {Φ}
t : itree E R
H is a logical effect handler for every event in E

For λZ we get

wp e {Φ} := wpiLangHZ
JeK {Φ}

Our language effects LangEZ := FailE
Our logical effect handler LangHZ := FailH (to be defined)
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Reusable Rules (2)

Program logic rules: wpiH t {Φ}

∀r . Φ(r) ⊢ Ψ(r) wpiH t {Φ}
[WpiConsequence]

wpiH t {Ψ}

Φ(r)
[WpiRet]

wpiH Ret(r) {Φ}

t1 ≈ t2
[WpiEutt]

wpiH t1 {Φ} ⊣⊢ wpiH t2 {Φ}

wpiH t {x . wpiH k(x) {Φ}}
[WpiBind]

wpiH x ← t; k(x) {Φ}

The previous rules follow from these rules.
These rules are generic and can be used to define other (pure)
language specific rules
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wpiH t {x . wpiH k(x) {Φ}}
[WpiBind]

wpiH x ← t; k(x) {Φ}

The previous rules follow from these rules.
These rules are generic and can be used to define other (pure)
language specific rules
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Weakest precondition for ITrees (1)

The wpiH definition:

wpiH t {Φ} :=


Φ(r) if t = Ret r

wpiH t ′ {Φ} if t = Tau t ′

HA(ϵ, (λa. wpiH (k a) {Φ})) if t = VisA ϵ k
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Weakest precondition for ITrees (2)

wpi (VisA ϵ k)︸ ︷︷ ︸
itree

{Φ} := HA(ϵ, (λa. wpi (k a) {Φ})
logical continuation

)

logical effect handler

Weakest precondition of effects are defered to logical effect handlers:
HA(ϵ,Ψ)

HA(ϵ,Ψ) describes the ’verification’ condition of executing the effect ϵ

The cannonical form: HA(ϵ,Ψ) = P ∗ (∀a : A.Q a −∗ Ψ a)

P, precondition for the effect ϵ
Q, postcondition for the effect ϵ
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Effect: Failure (1)

Back to λZ

λZ up to now

wp e {Φ} := wpiLangHZ
JeK {Φ}

LangEZ := FailE
LangHZ := FailH (to be defined)
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Effect: Failure (2)

FailH

wpi(Vis∅ Fail k){Φ} := FailH∅(Fail, (λa. wpi (k a) {Φ}))

What are P and Q?

Precondition: we never want our program to fail
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FailH

wpi(Vis∅ Fail k){Φ} := FailH∅(Fail, (λa. wpi (k a) {Φ}))
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Effect: Failure (2)

FailH
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Effect: Failure (3)

Back to λZ

λZ up to now

wp e {Φ} := wpiLangHZ
JeK {Φ}

LangEZ := FailE
LangHZ := FailH

We can easily add fragments

Extend language
Give ITree denotation
Give wp and wpi rules
Give logical effect handlers

Many fragments are already implemented
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Summary

In this presentation

Interaction trees

Denotation of programs
Program Equivalence
Interpretation
Combinators

Program logics

Program logic for ITrees
Failure program logic fragment
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