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Effectful programs

Effects are everywhere
e 1/0

State

Failure

Nondeterminism

Concurrency
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Effectful programs

Effects are everywhere
e 1/0
o State
o Failure
@ Nondeterminism
e Concurrency

An Example:

let x = input in
if x ==
then fail
else put (1/x); output (1/x)
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Semantics for effectful programs

Program semantics
@ Operational semantics
e describe execution of programs €1 — & — ... = €y
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Semantics for effectful programs

Program semantics
@ Operational semantics

e describe execution of programs €1 — & — ... = €y
o Features:

o (+) Intuitive

o (+) Executable

@ Denotational semantics

-) Not composable
-) No Equational reasoning

—_~

o describe programs as mathematical objects [e] denotes e
o Features:
o (+) Composable (-) Need a Mathematical domain

o (+) Equational reasoning

@ Axiomatic Semantics

o describing programs with logical rules {P} e {Q}
o Features:
@ (4) Proving general properties (-) Not Executable

o (+) Program verification
e Usually requires a soundness proof w.r.t a (different) language semantic
model

Introduction 4



Interaction Trees

Representing Recursive and Impure Programs in Rocq

Xia et al.
2020
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Interaction Trees (1)

[Trees

@ Vis = visible effect node (Impure)

@ Ret = return node (Pure)
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Interaction Trees (2)

Example from earlier

Program Diagram

let x = input in Vis Input
if x ==
then fail
else put (1/x);
output (1/x)

Vis Fail

[Vis (Put (1/x))j
|

[Vis (Output (1/X))J

Ret ()
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Interaction Trees (3)

Representing diverging computations

@ Vis = visible effect node (Impure)
@ Ret = return node (Pure)
e Tau = silent step (Progress)
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Induction vs Coinduction (in Rocq)

Induction (Fixpoint)

@ Finite computation
@ Destructs inductive data

@ Must terminate

Syntactic condition:

@ Recursive calls on a structural
subterm
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Induction vs Coinduction (in Rocq)

Induction (Fixpoint) Coinduction (CoFixpoint)
o Finite computation @ (possibly) Infinite computation
@ Destructs inductive data @ Constructs coinductive data
@ Must terminate @ Must be productive
Syntactic condition: Syntactic condition:
@ Recursive calls on a structural @ Recursive calls must be guarded
subterm by a constructor

Interaction Trees 9



Interaction Trees (4)

The simplest example: Infinite loop
Program

loop {}

Denotation

CoFixpoint loop := Tau loop

Interaction Trees

Diagram




Interaction Trees (5)

[ Tree definition:

CoInductive itree (E: Type — Type) (R: Type) : Type :=
| Ret (r: R)
| Tau (t: itree ER)
| Vis {A: Type} (e : EA) (k: A — itree ER).
@ Ret r, return a value of type R

@ Tau t, silent step
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Interaction Trees

I Tree definition:

CoInductive itree (E: Type — Type) (R: Type) : Type :
| Ret (zr: R)

| Tau (t: itree ER)
| Vis {A: Type} (e : EA) (k: A — itree ER).

@ Ret r, return a value of type R
@ Tau t, silent step
e diverging computations
e Guarding recursive calls, due to coinductive definition
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Interaction Trees

[ Tree definition:

CoInductive itree (E: Type — Type) (R: Type) : Type :=
| Ret (r: R)
| Tau (t: itree ER)
| Vis {A: Type} (e : EA) (k: A — itree ER).
@ Ret r, return a value of type R
@ Tau t, silent step

@ Vis e k, execute effect e and continue with continuation k
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Interaction Trees

[ Tree definition:

CoInductive itree (E: Type — Type) (R: Type) : Type :=
| Ret (r: R)

| Tau (t: itree ER)

| Vis {A: Type} (e : EA) (k: A — itree ER).

@ Ret r, return a value of type R

@ Tau t, silent step

@ Vis e k, execute effect e and continue with continuation k

e E = type constructor, parameterized by the return type of the effect
o e: E A here A is the return type of effect E.
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Interaction Trees (

I Tree definition:

CoInductive itree (E: Type — Type) (R: Type) : Type :=
| Ret (r: R)

| Tau (t: itree ER)

| Vis {A: Type} (e : EA) (k: A — itree ER).

@ Ret r, return a value of type R
@ Tau t, silent step

@ Vis e k, execute effect e and continue with continuation k

e E = type constructor, parameterized by the return type of the effect
o e: E A here A is the return type of effect E.

o Example:

Inductive I0 : Type — Type =
| Input : I0 nat
| Output : nat — IO unit.
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Interaction Trees (6)

Program:
let x = input in
if x ==
then fail

else put (1/x); output (1/x)

Denotation:

Vis Input (fun x =
if x ==
then Vis Fail (fun _ = Ret ())
else Vis (Put (1/x)) (fun _ =
Vis (Output (1/x)) (fun _ = Ret ())))
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Interaction Trees (6)

Program:
let x = input in
if x ==
then fail

else put (1/x); output (1/x)

Denotation:

trigger e = Vis e (fun x = Ret x)

Vis Input (fun x =
if x ==
then trigger Fail
else Vis (Put (1/x)) (fun _ =
trigger (Output (1/x))))
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| Trees are Monads

itree E is a monad for every E.
@ ret: A — itreeEA
e ret x := Ret x
@ bind : itree EA — (A — itree EB) — itree EB
o x + t1;t2:= (bind t1 (fun x = t2))

+  (k:A—itree EB] _bind tk
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Interaction Trees (6)

Program:
let x = input in
if x ==
then fail

else put (1/x); output (1/x)

Denotation:

X ¢ trigger Input ;
if x ==
then trigger Fail
else _ + trigger (Put (1/x));

trigger (Output (1/x))

trigger e := Vis e (fun x = x)
X ¢ tl;t2:=bind t1 (fun x = t2)

Interaction Trees 14



Interaction Trees (7)

What can we do with |Trees
@ Representing programs using | Trees

o Effectful programs
e Diverging programs
e Recursive programs
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Interaction Trees (7)

What can we do with [Trees

@ Representing programs using | Trees
o Effectful programs
e Diverging programs
e Recursive programs

@ Program Equivalence
e by equational reasoning on ITrees

@ Interpreting I Trees
o by writing interpreters for effects

@ |Tree Building Blocks
o Combinators to make denotation easier
e Equations on combinators for equational reasoning

The paper contributes all of the above in a Rocq library
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Interaction Trees (7)

What can we do with |Trees
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Equivalence (1)
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Equivalence (2)

Equivalence up to tau: ~gjm
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Equivalence (2)

Equivalence up to tau: ~gjm

Rlim : itree E A — itree E A — Prop (inductive)
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Equivalence (2)

Equivalence up to tau: ~gjm

Rlim : itree E A — itree E A — Prop (inductive)

@ Paramaterized by:

sim: itree E A — itree E A — Prop (coinductive)

a—a
Ret a ~¢m Ret a

[EqRet]
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Equivalence (2)

Equivalence up to tau: ~gjm

Rlim : itree E A — itree E A — Prop (inductive)

@ Paramaterized by:

sim: itree E A — itree E A — Prop (coinductive)

a=a (EqRet] Vv, sim (kiv) (kav)
Ret a ~im Ret a Vis e k1 =gim Vis e ko

[EqVis]

sim t; t
Tau t; ~gm Tau B

[EqTau]
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Equivalence (2)
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sim: itree E A — itree E A — Prop (coinductive)
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Ret a ~¢m Ret a Vis e k1 ~im Vis e ko
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Tau t1 ~gm Tau t Tau t; Rgim t2
t1 ~sim t2 [EqTauR]
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Equivalence (2)

Equivalence up to tau: ~gjm

Rlim : itree E A — itree E A — Prop (inductive)

@ Paramaterized by:

sim: itree E A — itree E A — Prop (coinductive)

3= [EqRe vv,sim (kav) Uev) (o g
Ret a ~¢m Ret a Vis e k1 ~im Vis e ko
] t1 ~op T
sim t; to [EqTau] 1 ~sim 12 [EqTaul]
Tau t1 ~gm Tau t Tau t; Rgim t2
t1 ~sim t2 [EqTauR] t1_ Rlsim 12 fsime]
t1 Rsim Tau to sim t1 to
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Equivalence (3)

Vv, sim (kyv) (kav)

EqVi
Vis e k1 ~gim Vis e ko [Eavi]

Q
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Equivalence (4)

t1 ~sim B2
Tau t1 ~gim

[EqTaul]

Q
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Equivalence (

Depending on v (left branch):

sim t; tp
Tau t; ~gm Tau B

[EqTau]

Q

Interaction Trees — Itree Equivalence 20



Overview

What we can do with |Trees
@ Representing programs using | Trees
o Effectful programs
e Diverging programs
e Recursive programs
@ Program Equivalence
e by equational reasoning on ITrees
@ Interpreting I Trees
o by writing interpreters for effects
o |Tree Building Blocks

o Combinators to make denotation easier
e Equations on combinators for equational reasoning

Interaction Trees — Itree Equivalence 21



Overview

What we can do with |Trees
@ Representing programs using | Trees
o Effectful programs
e Diverging programs
e Recursive programs
@ Program Equivalence
e by equational reasoning on ITrees
o Interpreting ITrees
o by writing interpreters for effects
o |Tree Building Blocks

o Combinators to make denotation easier
e Equations on combinators for equational reasoning

Interaction Trees — Itree Equivalence 21



Interpreting I Trees (1)

Interpreting/executing | Trees

Interaction Trees — Semantics of Events and Monadic Interpreters 22
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Interpreting I Trees (1)

Interpreting/executing I Trees
@ Write an interpreter for each effect

@ Modular: Easy to extend with new effects

(itree (stateE -+ failE + ioE) A)

| interp_failE
[itree (stateE + ioE) Alj
interp_stateE
itree ioE A;
interp_ioE

itree void As
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Interpreting I Trees (1)

Interpreting/executing I Trees
@ Write an interpreter for each effect

@ Modular: Easy to extend with new effects

(itree (stateE -+ failE + ioE) A)

| interp_failE
[itree (stateE + ioE) Alj
interp_stateE
itree ioE A;
interp_ioE

itree void As

@ |Tree without effects: t : itree void A
o t ~gmn Ret a
e OR: t is an infinte chain of Tau nodes

Interaction Trees — Semantics of Events and Monadic Interpreters



Interpreting ITrees (2): Example

t : itree (stateE + failE + ioE) unit

Vis Input

[Vis (Put (1/X))]
|
[Vis (Output (1/x))}

Ret ()

Interaction Trees — Semantics of Events and Monadic Interpreters

Ind failE : Type — Type :=
| Fail : failE void.

Ind stateE (S : Type)
: Type — Type :=
| Get : stateE S S
| Put: S — stateE S unit.

Ind ioE : Type — Type :=
| Input : IO nat
| Output : nat — IO unit.



Interpreting ITrees (3): Example

Interpreting failure

t
itree (stateE + failE + ioE) unit

Vis Input

1

t
itree (stateE + ioE) (option unit)

= interp_failE t

Vis Fail

(Vis (Pu"c (1/x))]

[Vis (Output (1/X))J

Ret ()

Interaction Trees — Semantics of Events and Monadic Interpreters 24



Interpreting ITrees (3): Example

Interpreting failure
t t' = interp_failE t
itree (stateE + failE + ioE) unit itree (stateE + ioE) (option unit)

Vis Input Vis Input

[Vis (Put (1/x))} Vis Fail [Vis (Put (l/x))j w}
| |
[Vis (Output (1/X))} [Vis (Output (l/x))}
Ret () Ret (Some ())

Interaction Trees — Semantics of Events and Monadic Interpreters 24



Interpreting I Trees (4): Example

CoFixpoint interp_failE : itree (failE + E) A — itree E (option A) := ..

Interaction Trees — Semantics of Events and Monadic Interpreters 25



Interpreting I Trees (4): Example

CoFixpoint interp_failE (t : itree (failE + E) A) : itree E (option A) :=
match t with
| Ret r = Ret (Some r)
| Taut = Tau (interp_failE t)
| Vis Fail k = Ret None
| Vise k = Vis e (fun x = interp_failE (k x))
end.

Interaction Trees — Semantics of Events and Monadic Interpreters 25



Overview

What we can do with |Trees
@ Representing programs using | Trees
o Effectful programs
e Diverging programs
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Denoting a simple language: A7 (1)

We define a pure lambda calculus: Az

@ Syntax of Az

veVal:=z | x.e(z€Z)
e € Expr:=v|x|ete |e(e)]|if e then e else e3

| while e; do e
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[v] := Ret v
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Denoting a simple language: A7 (1)

We define a pure lambda calculus: Az

@ Syntax of \z

veVal:=z | x.e(z€Z)
e € Expr:=v|x|ete |e(e)]|if e then e else e3

| while e; do e
@ Denotation

[v] := Ret v
[er + e] :=wv < [ea]; v2 < [e2]; z2 + toint vp; z1  to_int vi;
Ret (z1 + z2)
[el(€)] := w1 + [ea]; v + [e]; (x,e) < to_lam v1; [e[v2/x]]
[if e1 then e else e3] := vi + [e1]; z1 < to-int vq; if z1 # 0 then [e;] else [es]
to_int v := match v with z = Ret z | _ = fail end
to_lam v := match v with Ax. e = Ret (x,e) | - = fail end
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Denoting a simple language: A7 (1)

We define a pure lambda calculus: Az
@ Syntax of Az

veVal:=z | x.e(zeZ)
e € Expr:=v|x|ete | e(e)]if e then e else e3
| while e; do e

@ Denotation

[v] := Ret v
[er + e] :=wvi + [ei]; v + [e2]; z2 < to.int vo; z1 + to_int vi;
Ret (z1 + z2)
[er(e)] := w1 + [ea]; v2 < [e2]; (x,€) + tolam vi; [e[v2/X]]
[if e1 then e else e3] := v < [e1]; z1 < toint vi; if z1 # O then [e:] else [e3]
to_int v := match v with z = Ret z | _=> fail end
to_lam v := match v with Ax. e = Ret (x,e) | _ = fail end

Note that we already use an effect (fail := trigger Fail) in the denotation
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Denoting a simple language: A7 (2)

Denoting Az
@ Syntax of Az

veVal:=z | x.e(z€Z)
e € Expr:=v|x|ete |e(e)]|if e then e else e3

| while e; do e
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Denoting a simple language: A7 (2)

Denoting Az
@ Syntax of Az

veVal:=z | x.e(z€Z)
e € Expr:=v|x|ete |e(e)]|if e then e else e3

| while e; do e

@ What about while?
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Denoting a simple language: A7 (2)

Denoting Az
@ Syntax of Az

veVal:=z | x.e(z€Z)
e € Expr:=v|x|ete |e(e)]|if e then e else e3

| while e; do e

@ What about while?
[while e; do e] := vy < [e1]; z1 + to.int vy;
if Z1 # 0

then _ « [e2]; Tau ([while e; do e3])
else Ret ()
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Denoting a simple language: A7 (2)

Denoting Az
@ Syntax of A\

veVal:=z|xe(z€Z)
e € Expr:=v|x|ete |e(e)]if e then e else e3
| while e; do e

@ What about while?

[while e; do &3] := vi < [e1]; z1 < to.int vy;
ifz1#0
then _ « [e2]; Tau ([while e; do e3])
else Ret ()

Note that this denotation is corecursive
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Building blocks (1): iter

iter : (A — itree E (A+ B)) — (A — itree E B)

body

14 body
'{Tau (iter body a')]

iter body a

Interaction Trees — Building blocks



Denoting a simple language: A7 (3)

Back to while

[while e; do ey] := iter (A-.
vi < [e1]; z1 « to.int vq;
if 27 #0
then _ < [e2]; Ret (inl ())
else Ret (inr ())
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Denoting a simple language: A7 (3)

Back to while

[while e; do e] := iter (A_.
vi < [e1]; z1 + toint vy;
if z1#0
then _ < [e2]; Ret (inl ())
else Ret (inr ())

)

Now the corecursion is hidden away
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Building blocks (2): iter

Use cases of iter
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@ iter makes denoting loops easy
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Building blocks (2): iter

Use cases of iter
@ iter makes denoting loops easy
@ iter makes reasoning about loops easier
@ Examples of proven equations for iter
(* helpers *)
>>: (A — itree EB) —» (B — itree EC) — (A — itree E C)

case_: (A — itee EC) = (B — itree EC) = ((A + B) — itree E C)
bimap : (A — itree EC) — (B — itree ED) — ((A + B) — itree E (C + D))

(* Loop unfolding *)

iter f ~ f >> case_ (iter f) id_

(* iter f then g = iter f with g in last iterationx)
iter £ 3> g~ iter (f >> bimap id_ g)

Interaction Trees — Building blocks 31



Building blocks (3): mrec

The mrec combinator
@ mrec is defined using iter
@ iteration on effects/itrees instead of values
@ Allows for easy encoding of recursion in effects

@ Supports equational reasoning

Interaction Trees — Building blocks



Overview

What we can do with |Trees
@ Representing programs using | Trees

o Effectful programs
o Diverging programs
e Recursive programs

@ Program Equivalence

e by equational reasoning on ITrees
o Interpreting ITrees

o by writing interpreters for effects
o ITree Building Blocks

o Combinators to make denotation easier
e Equations on combinators for equational reasoning
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Second paper

Program Logics a la Carte

Vistrup, Sammler & Jung
2025
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Program logics (1)

@ |Tree interpretation and small step semantics are 'execution’ models
e Given some input, what is the result
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Program logics (1)

@ |Tree interpretation and small step semantics are 'execution’ models
e Given some input, what is the result
@ Reasoning about programs

e Example:
Given: if x <ythenr =xelse r =y
Property: for all x and y, r is always the minimum of x and y

@ Program logics

o Example: Hoare logic ({P} e {Q})
e Program verification: We can verify properties for all inputs
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Program logics (3)

Hoare logic vs Seperation logic

@ The paper uses the Iris seperation logic framework
e Hoare logic
o Hoare triple: {P} e {Q}
@ precondition, program, postcondition
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Program logics (3)

Hoare logic vs Seperation logic
@ The paper uses the Iris seperation logic framework
e Hoare logic
o Hoare triple: {P} e {Q}
@ precondition, program, postcondition
e Seperation logic

o Extension of Hoare logic

Seperating conjunction: * (treat as conjunction)

Seperating implication/magic wand: — (treat as implication)
Weakest precondition: wp e {Q}

Relation to Hoare triple: {P} e {Q} := P -« wp e {Q}
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Program logics (3)

To define a program logic you need:
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Program logics (3)

To define a program logic you need:
@ Language semantics
e Typically a small step semantic model
e Example rule:
[b](s) = false (p2,s) = &

/

If-Fal
(if b then p; else p2,s) — s [1FFelse]
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@ Language semantics
e Typically a small step semantic model
e Example rule:
[b](s) = false (p2,s) = &

/

If-Fal
(if b then p; else p2,s) — s [1FFelse]

@ Program logic rules
o Example rule:
{PAb} G {Q} {PA=b} G {Q}
{P} if b then C; else G, {Q}
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Program logics (3)

To define a program logic you need:
@ Language semantics
e Typically a small step semantic model
e Example rule:
[b](s) = false (p2,s) = &

/

If-Fal
(if b then p; else pp,s) — s [iFFalse]

@ Program logic rules
o Example rule:
{PAb} G {Q} {PA=b} G {Q}
{P} if b then C; else G, {Q}

[

@ Soundness proof
e Can't proof anything false w.r.t the language semantics
o Example theorem:

Theorem (Soundness of Hoare Logic)

If{P} p {Q} is derivable, then for every state s such that P(s) and every s’ such
that (p,s) — s’, we have Q(s').
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Program logics (4)

This approach is not ideal:
@ For every new language

o New language semantics
e New program logic rules
e New soundness proof

o Adding language feature

e Same story
@ Non-modularity is the problem

o Idea: use ITrees as underlying language semantics
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What the paper contributes
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@ A Rocq implementation of program logic fragments for

safe and unsafe program termination (failure)
state

non-determinism (demonic & angelic)
concurrency

@ Soundness proofs of these fragments
e w.r.t itree interpretation
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Program logics a la carte

What the paper contributes

@ A new way to define program logics for itrees

@ A Rocq implementation of program logic fragments for
safe and unsafe program termination (failure)

state

non-determinism (demonic & angelic)

concurrency

@ Soundness proofs of these fragments
e w.r.t itree interpretation

A port of two existing program logics

o Heaplang (imperative programs with effects)
o Islaris (machine code programs)
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Program logics a la carte

For this presentation
@ A new way to define program logics for itrees
@ crash/failure program logic fragment

@ Building a program logic for Az
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A program logic for: Az

We define a pure lambda calculus: Az

@ Syntax of Az

veVal:i=z | x.e(z€Z)
e € Expr:=v|x|ete |e(e)]|if e then e else e3

@ Denotation

[v] := Ret v
[er + e] :=wvi < [a]; v2 + [e2]; z2 < to.int vo; z1 + toint vi;
Ret (z1 + z2)
[er(e)] := w1 + [ea]; v2 < [e2]; (x,€) + tolam vi; [e[v2/X]]
[if e1 then e else e3] := vi < [e1]; z1 < to.int vi; if z1 # O then [e;] else [es]
to_int v := match v with z = Ret z | _=>fail end
to_lam v := match v with Ax. e = Ret (x,e) | _ = fail;end

Note that we already use an effect (fail := trigger Fail) in the denotation
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Basic Rules

Program logic rules: wp e {®}
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Basic Rules

Program logic rules: wp e {®}

Vr. ®(r) FW(r) wp e {®}

wp e {\U} [WpConsequence]
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Basic Rules

Program logic rules: wp e {®}

Vr. ®(r) EV(r) wp e {®} [WpConsequence] & [WpVal]

wp e {V} wp v {®}
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Basic Rules

Program logic rules: wp e {®}

Vr. ®(r) EV(r) wp e {®} [WpConsequence] & [WpVal]

wp e {V} wp v {®}

wp e {vi.wp v1 + e {®}}
wp e; + e {®}

[WpBindPlusL]
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Basic Rules

Program logic rules: wp e {®}

Vr. ®(r) EV(r) wp e {®} [WpConsequence] & [WpVal]

wp e {V} wp v {®}

wp e {vi.wp v1 + e {®}} WoBindPlusL] ®(z1 + )

wp e + e {®} wp z1 + 2 {®}

[WpPlus]
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Basic Rules

Program logic rules: wp e {®}

Vr. ®(r) EV(r) wp e {®} [WpConsequence] & [WpVal]

wp e {V} wp v {®}

wp e {vi.wp v1 + e {®}} WoBindPlusL] ®(z1 + )

wp e + e {®} wp z1 + 2 {®}

[WpPlus]

z#0 wp e {®}
wp if z then e; else e, {®}

[WplfTrue]
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Reusable Rules (1)

@ Defining rules like this is standard
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Reusable Rules (1)

@ Defining rules like this is standard
@ We can do better:
o Idea: Define rules for arbitrary ITrees
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Reusable Rules (1)

@ Defining rules like this is standard
@ We can do better:

o Idea: Define rules for arbitrary ITrees
o Weakest precondition for ITrees: wpi, t {®}

o t:itreeER
o H is a logical effect handler for every event in E
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Reusable Rules (1)

@ Defining rules like this is standard
@ We can do better:

o Idea: Define rules for arbitrary ITrees
o Weakest precondition for ITrees: wpi, t {®}
o t:itree ER
o H is a logical effect handler for every event in E
o For Az we get

@ wp e {CD} = WpiLangHZ [[eﬂ {¢}
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Reusable Rules (1)

@ Defining rules like this is standard
@ We can do better:
o Idea: Define rules for arbitrary ITrees
o Weakest precondition for ITrees: wpi, t {®}
o t:itree ER
o H is a logical effect handler for every event in E
o For Az we get

@ wp e {CD} = WpiLangHZ [[eﬂ {¢}
e Our language effects LangE, := FailE
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Reusable Rules (1)

@ Defining rules like this is standard
@ We can do better:

o Idea: Define rules for arbitrary ITrees
o Weakest precondition for ITrees: wpi, t {®}
o t:itree ER

o H is a logical effect handler for every event in E
o For Az we get
@ wp e {CD} = WpiLangHZ [[eﬂ {¢}
e Our language effects LangE, := FailE
o Our logical effect handler LangH , := FailH (to be defined)
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Reusable Rules (2)

Program logic rules: wpiy t {®}
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Reusable Rules (2)

Program logic rules: wpiy t {®}

Vr. ®(r) = W(r) wpiy t {®}
wpiy t {V}

[WpiConsequence]
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Reusable Rules (2)

Program logic rules: wpiy t {®}

Vr. ®(r) = W(r) wpiy t {®}
wpiy t {V}
&(r)
wpiy Ret(r) {$}

[WpiConsequence]

[WhpiRet]
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Reusable Rules (2)

Program logic rules: wpiy t {®}

Vr. ®(r) = W(r) wpiy t {®}

[WpiConsequence]

wpiy t {V}
®(r) .
- [WpiRet]
wpiy Ret(r) {$}
b~ [WpiEutt]

wpiy t1 {®} 4 wpiy t {P}
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Reusable Rules (2)

Program logic rules: wpiy t {®}

Vr. ¢(r) - \IJ(r) WpiH t {(D} [WpiConsequence]

wpiy t {V}
®(r) .
- [WpiRet]
wpiy Ret(r) {$}
b~ [WhpiEutt]

wpiy t1 {®} 4 wpiy t {P}

wpiy t {x. wpiy k(x) {®}}

wpiy x < t; k(x) {®} Weiind]
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Reusable Rules (2)

Program logic rules: wpiy t {®}

Yr. ®(r) - W(r) wpiy t {®}
wpiy t {V}
o(r)
wpiy Ret(r) {$}
t1 =~ b

wpiy t1 {®} 4 wpiy t {P}

wpiy t {x. wpiy k(x) {®}}
wpiy x < t; k(x) {$}

[WpiConsequence]

[WhpiRet]

[WpiEutt]

[WpiBind]

@ The previous rules follow from these rules.
@ These rules are generic and can be used to define other (pure)
language specific rules
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Weakest precondition for ITrees (1)

The wpiy definition:

d(r) if t =Ret r
wpiy t {®} = (wpiy t’ {®} if t =Tau t/
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Weakest precondition for ITrees (1)

The wpiy definition:

d(r) if t =Ret r
wpiy t {®} = (wpiy t’ {®} if t =Taut/
Ha(e, (Aa. wpiy (k a) {®})) if t =Visae k
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Weakest precondition for ITrees (2)

wpi (Visa € k){®} := Ha(e, (Aa. wpi (k a) {P}))
S —— 1 1

itree logical continuation
L ]

logical effect handler

@ Weakest precondition of effects are defered to logical effect handlers:
HA(€7 W)
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Weakest precondition for ITrees (2)

wpi (Visa € k){®} := Ha(e, (Aa. wpi (k a) {P}))
S —— 1 1

itree logical continuation
L ]

logical effect handler

@ Weakest precondition of effects are defered to logical effect handlers:
HA(€7 W)

@ Ha(e, V) describes the 'verification’ condition of executing the effect €
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Weakest precondition for ITrees (2)

wpi (Visa € k){®} := Ha(e, (Aa. wpi (k a) {P}))
S —— 1 1

itree logical continuation
L ]

logical effect handler

@ Weakest precondition of effects are defered to logical effect handlers:
HA(E, W)

@ Ha(e, V) describes the 'verification’ condition of executing the effect €

@ The cannonical form: Ha(e, V) = Px(Va: A.Q a « V a)

e P, precondition for the effect €
e Q, postcondition for the effect €
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Effect: Failure (1)

Back to Az
@ \z up to now

@ wp € {¢} = WpiLangHz [[eﬂ {d)}
o LangE; := FailE
e LangH; := FailH (to be defined)
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Effect: Failure (2)

FailH

wpi(Visy Fail k){®} := FailHg(Fail, (Aa. wpi (k a) {$}))

Program Logics a la Carte — Building a program logic 48



Effect: Failure (2)

FailH

wpi(Visy Fail k){®} := FailHy(Fail, (Aa. wpi (k a) {$}))

Cannonical form:

FailHp(Fail, W) = P (Va: A.Q a =« V¥ a)

@ What are P and Q7
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Effect: Failure (2)

FailH

wpi(Visy Fail k){®} := FailHy(Fail, (Aa. wpi (k a) {$}))

Cannonical form:

FailHp(Fail, W) = P (Va: A.Q a =« V¥ a)

@ What are P and Q7

@ Precondition: we never want our program to fail
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Effect: Failure (2)

FailH

wpi(Visy Fail k){®} := FailHy(Fail, (Aa. wpi (k a) {$}))

Cannonical form:

FailHg(Fail, W) = L (Va: A.Q a =« V a)

@ What are P and Q7

@ Precondition: we never want our program to fail
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Effect: Failure (2)

FailH

wpi(Visy Fail k){®} := FailHy(Fail, (Aa. wpi (k a) {®}))

Cannonical form:
FailHg(Fail, W) = L

@ What are P and Q?

@ Precondition: we never want our program to fail
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Effect: Failure (3)

Back to Az
@ \z up to now

e wp e {(b} = WpiLangHZ [[eﬂ {(D}
o LangE; := FailE
e LangH, := FailH
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Effect: Failure (3)

Back to A7
@ )\z up to now
e wp e {(b} = WpiLangHZ [[eﬂ {(D}
o LangE; := FailE
e LangH, := FailH
@ We can easily add fragments
Extend language
Give ITree denotation
Give wp and wpi rules
Give logical effect handlers
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Effect: Failure (3)

Back to A7
@ )\z up to now
e wp e {(b} = WpiLangHZ [[eﬂ {(D}
o LangE; := FailE
e LangH, := FailH
@ We can easily add fragments
Extend language
e Give |Tree denotation
e Give wp and wpi rules
o Give logical effect handlers

@ Many fragments are already implemented
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Summary

In this presentation

@ Interaction trees
Denotation of programs
Program Equivalence

"]
o Interpretation
e Combinators
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In this presentation
@ Interaction trees
e Denotation of programs
e Program Equivalence
o Interpretation
e Combinators
@ Program logics

e Program logic for ITrees
o Failure program logic fragment
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