
Program Semantics with Interaction Trees

Ben van Wijngaarden

Radboud University

January 19, 2026

1

The Papers

Paper 1:

Interaction Trees
Representing Recursive and Impure Programs in Rocq

Xia et al.

POPL 2020

Paper 2:

Program Logics à la Carte

Vistrup, Sammler & Jung

POPL 2025

Introduction 2

Effectful programs

Effects are everywhere

I/O

State

Failure

Nondeterminism

Concurrency

An Example:

let x = input in

if x == 0
then fail

else put (1/x); output (1/x)

Introduction 3

Effectful programs

Effects are everywhere

I/O

State

Failure

Nondeterminism

Concurrency

An Example:

let x = input in

if x == 0
then fail

else put (1/x); output (1/x)

Introduction 3

Semantics for effectful programs

Program semantics

Operational semantics

describe execution of programs e1 → e2 → ...→ en

Features:

(+) Intuitive (-) Not composable
(+) Executable (-) No Equational reasoning

Denotational semantics

describe programs as mathematical objects JeK denotes e

Features:

(+) Composable (-) Need a Mathematical domain
(+) Equational reasoning

Axiomatic Semantics

describing programs with logical rules {P} e {Q}
Features:

(+) Proving general properties (-) Not Executable
(+) Program verification
Usually requires a soundness proof w.r.t a (different) language semantic
model

Introduction 4

Semantics for effectful programs

Program semantics

Operational semantics

describe execution of programs e1 → e2 → ...→ en
Features:

(+) Intuitive (-) Not composable
(+) Executable (-) No Equational reasoning

Denotational semantics

describe programs as mathematical objects JeK denotes e

Features:

(+) Composable (-) Need a Mathematical domain
(+) Equational reasoning

Axiomatic Semantics

describing programs with logical rules {P} e {Q}
Features:

(+) Proving general properties (-) Not Executable
(+) Program verification
Usually requires a soundness proof w.r.t a (different) language semantic
model

Introduction 4

Semantics for effectful programs

Program semantics

Operational semantics

describe execution of programs e1 → e2 → ...→ en
Features:

(+) Intuitive (-) Not composable
(+) Executable (-) No Equational reasoning

Denotational semantics

describe programs as mathematical objects JeK denotes e

Features:

(+) Composable (-) Need a Mathematical domain
(+) Equational reasoning

Axiomatic Semantics

describing programs with logical rules {P} e {Q}
Features:

(+) Proving general properties (-) Not Executable
(+) Program verification
Usually requires a soundness proof w.r.t a (different) language semantic
model

Introduction 4

Semantics for effectful programs

Program semantics

Operational semantics

describe execution of programs e1 → e2 → ...→ en
Features:

(+) Intuitive (-) Not composable
(+) Executable (-) No Equational reasoning

Denotational semantics

describe programs as mathematical objects JeK denotes e
Features:

(+) Composable (-) Need a Mathematical domain
(+) Equational reasoning

Axiomatic Semantics

describing programs with logical rules {P} e {Q}
Features:

(+) Proving general properties (-) Not Executable
(+) Program verification
Usually requires a soundness proof w.r.t a (different) language semantic
model

Introduction 4

Semantics for effectful programs

Program semantics

Operational semantics

describe execution of programs e1 → e2 → ...→ en
Features:

(+) Intuitive (-) Not composable
(+) Executable (-) No Equational reasoning

Denotational semantics

describe programs as mathematical objects JeK denotes e
Features:

(+) Composable (-) Need a Mathematical domain
(+) Equational reasoning

Axiomatic Semantics

describing programs with logical rules {P} e {Q}

Features:

(+) Proving general properties (-) Not Executable
(+) Program verification
Usually requires a soundness proof w.r.t a (different) language semantic
model

Introduction 4

Semantics for effectful programs

Program semantics

Operational semantics

describe execution of programs e1 → e2 → ...→ en
Features:

(+) Intuitive (-) Not composable
(+) Executable (-) No Equational reasoning

Denotational semantics

describe programs as mathematical objects JeK denotes e
Features:

(+) Composable (-) Need a Mathematical domain
(+) Equational reasoning

Axiomatic Semantics

describing programs with logical rules {P} e {Q}
Features:

(+) Proving general properties (-) Not Executable
(+) Program verification
Usually requires a soundness proof w.r.t a (different) language semantic
model

Introduction 4

First paper

Interaction Trees

Representing Recursive and Impure Programs in Rocq

Xia et al.

2020

Interaction Trees 5

Interaction Trees (1)

ITrees

Vis e1

Vis e2

Ret r’Vis e3

..

Ret r

Vis = visible effect node (Impure)

Ret = return node (Pure)

Interaction Trees 6

Interaction Trees (2)

Example from earlier

Program

let x = input in

if x == 0
then fail

else put (1/x);
output (1/x)

Diagram

Vis Input

if x == 0

Vis Fail

Ret ()

Vis (Put (1/x))

Vis (Output (1/x))

Ret ()

x

Interaction Trees 7

Interaction Trees (3)

Representing diverging computations

Vis e1

Vis e2

Ret r’Vis e3

τ

..

τ

τ

..

Vis = visible effect node (Impure)

Ret = return node (Pure)

Tau = silent step (Progress)

Interaction Trees 8

Induction vs Coinduction (in Rocq)

Induction (Fixpoint)

Finite computation

Destructs inductive data

Must terminate

Syntactic condition:

Recursive calls on a structural
subterm

Interaction Trees 9

Induction vs Coinduction (in Rocq)

Induction (Fixpoint)

Finite computation

Destructs inductive data

Must terminate

Syntactic condition:

Recursive calls on a structural
subterm

Coinduction (CoFixpoint)

(possibly) Infinite computation

Constructs coinductive data

Must be productive

Syntactic condition:

Recursive calls must be guarded
by a constructor

Interaction Trees 9

Interaction Trees (4)

The simplest example: Infinite loop

Program

loop {}

Denotation

CoFixpoint loop := Tau loop

Diagram

τ

τ

τ

..

Interaction Trees 10

Interaction Trees (5)

ITree definition:

CoInductive itree (E: Type → Type) (R: Type) : Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {A: Type} (e : E A) (k : A → itree E R).

Ret r, return a value of type R

Tau t, silent step

Vis e k, execute effect e and continue with continuation k

E = type constructor, parameterized by the return type of the effect
e : E A, here A is the return type of effect E.

Example:

Inductive IO : Type → Type :=
| Input : IO nat

| Output : nat → IO unit.

Interaction Trees 11

Interaction Trees (5)

ITree definition:

CoInductive itree (E: Type → Type) (R: Type) : Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {A: Type} (e : E A) (k : A → itree E R).

Ret r, return a value of type R

Tau t, silent step
diverging computations
Guarding recursive calls, due to coinductive definition

Vis e k, execute effect e and continue with continuation k

E = type constructor, parameterized by the return type of the effect
e : E A, here A is the return type of effect E.

Example:

Inductive IO : Type → Type :=
| Input : IO nat

| Output : nat → IO unit.

Interaction Trees 11

Interaction Trees (5)

ITree definition:

CoInductive itree (E: Type → Type) (R: Type) : Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {A: Type} (e : E A) (k : A → itree E R).

Ret r, return a value of type R

Tau t, silent step

Vis e k, execute effect e and continue with continuation k

E = type constructor, parameterized by the return type of the effect
e : E A, here A is the return type of effect E.

Example:

Inductive IO : Type → Type :=
| Input : IO nat

| Output : nat → IO unit.

Interaction Trees 11

Interaction Trees (5)

ITree definition:

CoInductive itree (E: Type → Type) (R: Type) : Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {A: Type} (e : E A) (k : A → itree E R).

Ret r, return a value of type R

Tau t, silent step

Vis e k, execute effect e and continue with continuation k

E = type constructor, parameterized by the return type of the effect

e : E A, here A is the return type of effect E.

Example:

Inductive IO : Type → Type :=
| Input : IO nat

| Output : nat → IO unit.

Interaction Trees 11

Interaction Trees (5)

ITree definition:

CoInductive itree (E: Type → Type) (R: Type) : Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {A: Type} (e : E A) (k : A → itree E R).

Ret r, return a value of type R

Tau t, silent step

Vis e k, execute effect e and continue with continuation k

E = type constructor, parameterized by the return type of the effect
e : E A, here A is the return type of effect E.

Example:

Inductive IO : Type → Type :=
| Input : IO nat

| Output : nat → IO unit.

Interaction Trees 11

Interaction Trees (5)

ITree definition:

CoInductive itree (E: Type → Type) (R: Type) : Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {A: Type} (e : E A) (k : A → itree E R).

Ret r, return a value of type R

Tau t, silent step

Vis e k, execute effect e and continue with continuation k

E = type constructor, parameterized by the return type of the effect
e : E A, here A is the return type of effect E.

Example:

Inductive IO : Type → Type :=
| Input : IO nat

| Output : nat → IO unit.

Interaction Trees 11

Interaction Trees (6)

Program:

let x = input in

if x == 0
then fail

else put (1/x); output (1/x)

Denotation:

Vis Input (fun x ⇒
if x == 0

then Vis Fail (fun _ ⇒ Ret ())
else Vis (Put (1/x)) (fun _ ⇒

Vis (Output (1/x)) (fun _ ⇒ Ret ())))

Interaction Trees 12

Interaction Trees (6)

Program:

let x = input in

if x == 0
then fail

else put (1/x); output (1/x)

Denotation:

trigger e = Vis e (fun x ⇒ Ret x)

Vis Input (fun x ⇒
if x == 0

then trigger Fail

else Vis (Put (1/x)) (fun _ ⇒
trigger (Output (1/x))))

Interaction Trees 12

ITrees are Monads

itree E is a monad for every E.

ret : A → itree E A

ret x := Ret x

bind : itree E A → (A → itree E B) → itree E B

x ← t1 ; t2 := (bind t1 (fun x ⇒ t2))

Vis e1

Vis e2

Ret a′

τ

Ret a

+ k : A→ itree E B bind t k−−−−−−→

Vis e1

Vis e2

k a′

τ

k a

Interaction Trees 13

Interaction Trees (6)

Program:

let x = input in

if x == 0
then fail

else put (1/x); output (1/x)

Denotation:

x ← trigger Input ;
if x == 0

then trigger Fail

else _ ← trigger (Put (1/x)) ;
trigger (Output (1/x))

trigger e := Vis e (fun x ⇒ x)
x ← t1 ; t2 := bind t1 (fun x ⇒ t2)

Interaction Trees 14

Interaction Trees (7)

What can we do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning

Interaction Trees 15

Interaction Trees (7)

What can we do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning

Interaction Trees 15

Interaction Trees (7)

What can we do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning

Interaction Trees 15

Interaction Trees (7)

What can we do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning

Interaction Trees 15

Interaction Trees (7)

What can we do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning

The paper contributes all of the above in a Rocq library

Interaction Trees 15

Interaction Trees (7)

What can we do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence
by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning

Interaction Trees 15

Equivalence (1)

Vis e1

τ

Vis e2

Vis e3

..

τ

τ

Ret r

τ

τ

..

≈

Vis e1

Vis e2

Vis e3

..

Ret r

τ

τ

..

Interaction Trees – Itree Equivalence 16

Equivalence (2)

Equivalence up to tau: ≈sim

≈sim : itree E A → itree E A → Prop (inductive)

Paramaterized by:

sim : itree E A → itree E A → Prop (coinductive)

a = a’
[EqRet]

Ret a ≈sim Ret a’
∀v , sim (k1v) (k2v)

[EqVis]
Vis e k1 ≈sim Vis e k2

sim t1 t2
[EqTau]

Tau t1 ≈sim Tau t2

t1 ≈sim t2
[EqTauL]

Tau t1 ≈sim t2

t1 ≈sim t2
[EqTauR]

t1 ≈sim Tau t2

t1 ≈sim t2
[simc]

sim t1 t2

Interaction Trees – Itree Equivalence 17

Equivalence (2)

Equivalence up to tau: ≈sim

≈sim : itree E A → itree E A → Prop (inductive)

Paramaterized by:

sim : itree E A → itree E A → Prop (coinductive)

a = a’
[EqRet]

Ret a ≈sim Ret a’
∀v , sim (k1v) (k2v)

[EqVis]
Vis e k1 ≈sim Vis e k2

sim t1 t2
[EqTau]

Tau t1 ≈sim Tau t2

t1 ≈sim t2
[EqTauL]

Tau t1 ≈sim t2

t1 ≈sim t2
[EqTauR]

t1 ≈sim Tau t2

t1 ≈sim t2
[simc]

sim t1 t2

Interaction Trees – Itree Equivalence 17

Equivalence (2)

Equivalence up to tau: ≈sim

≈sim : itree E A → itree E A → Prop (inductive)

Paramaterized by:

sim : itree E A → itree E A → Prop (coinductive)

a = a’
[EqRet]

Ret a ≈sim Ret a’

∀v , sim (k1v) (k2v)
[EqVis]

Vis e k1 ≈sim Vis e k2

sim t1 t2
[EqTau]

Tau t1 ≈sim Tau t2

t1 ≈sim t2
[EqTauL]

Tau t1 ≈sim t2

t1 ≈sim t2
[EqTauR]

t1 ≈sim Tau t2

t1 ≈sim t2
[simc]

sim t1 t2

Interaction Trees – Itree Equivalence 17

Equivalence (2)

Equivalence up to tau: ≈sim

≈sim : itree E A → itree E A → Prop (inductive)

Paramaterized by:

sim : itree E A → itree E A → Prop (coinductive)

a = a’
[EqRet]

Ret a ≈sim Ret a’
∀v , sim (k1v) (k2v)

[EqVis]
Vis e k1 ≈sim Vis e k2

sim t1 t2
[EqTau]

Tau t1 ≈sim Tau t2

t1 ≈sim t2
[EqTauL]

Tau t1 ≈sim t2

t1 ≈sim t2
[EqTauR]

t1 ≈sim Tau t2

t1 ≈sim t2
[simc]

sim t1 t2

Interaction Trees – Itree Equivalence 17

Equivalence (2)

Equivalence up to tau: ≈sim

≈sim : itree E A → itree E A → Prop (inductive)

Paramaterized by:

sim : itree E A → itree E A → Prop (coinductive)

a = a’
[EqRet]

Ret a ≈sim Ret a’
∀v , sim (k1v) (k2v)

[EqVis]
Vis e k1 ≈sim Vis e k2

sim t1 t2
[EqTau]

Tau t1 ≈sim Tau t2

t1 ≈sim t2
[EqTauL]

Tau t1 ≈sim t2

t1 ≈sim t2
[EqTauR]

t1 ≈sim Tau t2

t1 ≈sim t2
[simc]

sim t1 t2

Interaction Trees – Itree Equivalence 17

Equivalence (2)

Equivalence up to tau: ≈sim

≈sim : itree E A → itree E A → Prop (inductive)

Paramaterized by:

sim : itree E A → itree E A → Prop (coinductive)

a = a’
[EqRet]

Ret a ≈sim Ret a’
∀v , sim (k1v) (k2v)

[EqVis]
Vis e k1 ≈sim Vis e k2

sim t1 t2
[EqTau]

Tau t1 ≈sim Tau t2

t1 ≈sim t2
[EqTauL]

Tau t1 ≈sim t2

t1 ≈sim t2
[EqTauR]

t1 ≈sim Tau t2

t1 ≈sim t2
[simc]

sim t1 t2

Interaction Trees – Itree Equivalence 17

Equivalence (3)

∀v , sim (k1v) (k2v)
[EqVis]

Vis e k1 ≈sim Vis e k2

Vis e1

τ

Vis e2

τ

Ret r

τ

τ

..

≈

Vis e1

Vis e2

Ret r

τ

τ

..

Interaction Trees – Itree Equivalence 18

Equivalence (4)

t1 ≈sim t2
[EqTauL]

Tau t1 ≈sim t2

Vis e1

τ

Vis e2

τ

Ret r

τ

τ

..

≈

Vis e1

Vis e2

Ret r

τ

τ

..

Interaction Trees – Itree Equivalence 19

Equivalence (5)

Depending on v (left branch):

sim t1 t2
[EqTau]

Tau t1 ≈sim Tau t2

Vis e1

τ

Vis e2

τ

Ret r

τ

τ

..

≈

Vis e1

Vis e2

Ret r

τ

τ

..

Interaction Trees – Itree Equivalence 20

Overview

What we can do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning

Interaction Trees – Itree Equivalence 21

Overview

What we can do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees
by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning

Interaction Trees – Itree Equivalence 21

Interpreting ITrees (1)

Interpreting/executing ITrees

Write an interpreter for each effect

Modular: Easy to extend with new effects

ITree without effects: t : itree void A

t ≈sim Ret a
OR: t is an infinte chain of Tau nodes

Interaction Trees – Semantics of Events and Monadic Interpreters 22

Interpreting ITrees (1)

Interpreting/executing ITrees

Write an interpreter for each effect

Modular: Easy to extend with new effects

ITree without effects: t : itree void A

t ≈sim Ret a
OR: t is an infinte chain of Tau nodes

Interaction Trees – Semantics of Events and Monadic Interpreters 22

Interpreting ITrees (1)

Interpreting/executing ITrees

Write an interpreter for each effect

Modular: Easy to extend with new effects

ITree without effects: t : itree void A

t ≈sim Ret a
OR: t is an infinte chain of Tau nodes

Interaction Trees – Semantics of Events and Monadic Interpreters 22

Interpreting ITrees (1)

Interpreting/executing ITrees

Write an interpreter for each effect

Modular: Easy to extend with new effects

itree (stateE + failE + ioE) A

itree (stateE + ioE) A1

itree ioE A2

itree void A3

interp failE

interp stateE

interp ioE

ITree without effects: t : itree void A
t ≈sim Ret a
OR: t is an infinte chain of Tau nodes

Interaction Trees – Semantics of Events and Monadic Interpreters 22

Interpreting ITrees (1)

Interpreting/executing ITrees

Write an interpreter for each effect

Modular: Easy to extend with new effects

itree (stateE + failE + ioE) A

itree (stateE + ioE) A1

itree ioE A2

itree void A3

interp failE

interp stateE

interp ioE

ITree without effects: t : itree void A
t ≈sim Ret a
OR: t is an infinte chain of Tau nodes

Interaction Trees – Semantics of Events and Monadic Interpreters 22

Interpreting ITrees (2): Example

t : itree (stateE + failE + ioE) unit

Vis Input

if x == 0

Vis Fail

Ret ()

Vis (Put (1/x))

Vis (Output (1/x))

Ret ()

x

Ind failE : Type → Type :=
| Fail : failE void.

Ind stateE (S : Type)
: Type → Type :=

| Get : stateE S S

| Put : S → stateE S unit.

Ind ioE : Type → Type :=
| Input : IO nat

| Output : nat → IO unit.

Interaction Trees – Semantics of Events and Monadic Interpreters 23

Interpreting ITrees (3): Example

Interpreting failure

t

itree (stateE + failE + ioE) unit

Vis Input

if x == 0

Vis Fail

Ret ()

Vis (Put (1/x))

Vis (Output (1/x))

Ret ()

x

t’ = interp_failE t

itree (stateE + ioE) (option unit)

Interaction Trees – Semantics of Events and Monadic Interpreters 24

Interpreting ITrees (3): Example

Interpreting failure

t

itree (stateE + failE + ioE) unit

Vis Input

if x == 0

Vis Fail

Ret ()

Vis (Put (1/x))

Vis (Output (1/x))

Ret ()

x

t’ = interp_failE t

itree (stateE + ioE) (option unit)

Vis Input

if x == 0

Ret NoneVis (Put (1/x))

Vis (Output (1/x))

Ret (Some ())

x

Interaction Trees – Semantics of Events and Monadic Interpreters 24

Interpreting ITrees (4): Example

CoFixpoint interp_failE : itree (failE + E) A → itree E (option A) := ..

Interaction Trees – Semantics of Events and Monadic Interpreters 25

Interpreting ITrees (4): Example

CoFixpoint interp_failE (t : itree (failE + E) A) : itree E (option A) :=
match t with

| Ret r ⇒ Ret (Some r)
| Tau t ⇒ Tau (interp_failE t)
| Vis Fail k ⇒ Ret None

| Vis e k ⇒ Vis e (fun x ⇒ interp_failE (k x))
end.

Interaction Trees – Semantics of Events and Monadic Interpreters 25

Overview

What we can do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks

Combinators to make denotation easier
Equations on combinators for equational reasoning

Interaction Trees – Semantics of Events and Monadic Interpreters 26

Overview

What we can do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence

by equational reasoning on ITrees

Interpreting ITrees

by writing interpreters for effects

ITree Building Blocks
Combinators to make denotation easier
Equations on combinators for equational reasoning

Interaction Trees – Semantics of Events and Monadic Interpreters 26

Denoting a simple language: λZ (1)

We define a pure lambda calculus: λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

Denotation

Interaction Trees – Building blocks 27

Denoting a simple language: λZ (1)

We define a pure lambda calculus: λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

Denotation

JvK := Ret v

Je1 + e2K := v1 ← Je1K; v2 ← Je2K; z2 ← to int v2; z1 ← to int v1;

Ret (z1 + z2)

Je1(e2)K := v1 ← Je1K; v2 ← Je2K; (x , e)← to lam v1; Je[v2/x]K
Jif e1 then e2 else e3K := v1 ← Je1K; z1 ← to int v1; if z1 ̸= 0 then Je2K else Je3K

to int v := match v with z ⇒ Ret z | ⇒ fail end

to lam v := match v with λx . e ⇒ Ret (x , e) | ⇒ fail end

Interaction Trees – Building blocks 27

Denoting a simple language: λZ (1)

We define a pure lambda calculus: λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

Denotation

JvK := Ret v

Je1 + e2K := v1 ← Je1K; v2 ← Je2K; z2 ← to int v2; z1 ← to int v1;

Ret (z1 + z2)

Je1(e2)K := v1 ← Je1K; v2 ← Je2K; (x , e)← to lam v1; Je[v2/x]K

Jif e1 then e2 else e3K := v1 ← Je1K; z1 ← to int v1; if z1 ̸= 0 then Je2K else Je3K
to int v := match v with z ⇒ Ret z | ⇒ fail end

to lam v := match v with λx . e ⇒ Ret (x , e) | ⇒ fail end

Interaction Trees – Building blocks 27

Denoting a simple language: λZ (1)

We define a pure lambda calculus: λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

Denotation

JvK := Ret v

Je1 + e2K := v1 ← Je1K; v2 ← Je2K; z2 ← to int v2; z1 ← to int v1;

Ret (z1 + z2)

Je1(e2)K := v1 ← Je1K; v2 ← Je2K; (x , e)← to lam v1; Je[v2/x]K
Jif e1 then e2 else e3K := v1 ← Je1K; z1 ← to int v1; if z1 ̸= 0 then Je2K else Je3K

to int v := match v with z ⇒ Ret z | ⇒ fail end

to lam v := match v with λx . e ⇒ Ret (x , e) | ⇒ fail end

Interaction Trees – Building blocks 27

Denoting a simple language: λZ (1)

We define a pure lambda calculus: λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

Denotation

JvK := Ret v

Je1 + e2K := v1 ← Je1K; v2 ← Je2K; z2 ← to int v2; z1 ← to int v1;

Ret (z1 + z2)

Je1(e2)K := v1 ← Je1K; v2 ← Je2K; (x , e)← to lam v1; Je[v2/x]K
Jif e1 then e2 else e3K := v1 ← Je1K; z1 ← to int v1; if z1 ̸= 0 then Je2K else Je3K

to int v := match v with z ⇒ Ret z | ⇒ fail end

to lam v := match v with λx . e ⇒ Ret (x , e) | ⇒ fail end

Interaction Trees – Building blocks 27

Denoting a simple language: λZ (1)

We define a pure lambda calculus: λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

Denotation

JvK := Ret v

Je1 + e2K := v1 ← Je1K; v2 ← Je2K; z2 ← to int v2; z1 ← to int v1;

Ret (z1 + z2)

Je1(e2)K := v1 ← Je1K; v2 ← Je2K; (x , e)← to lam v1; Je[v2/x]K
Jif e1 then e2 else e3K := v1 ← Je1K; z1 ← to int v1; if z1 ̸= 0 then Je2K else Je3K

to int v := match v with z ⇒ Ret z | ⇒ fail end

to lam v := match v with λx . e ⇒ Ret (x , e) | ⇒ fail end

Note that we already use an effect (fail := trigger Fail) in the denotation

Interaction Trees – Building blocks 27

Denoting a simple language: λZ (2)

Denoting λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

What about while?

Jwhile e1 do e2K := v1 ← Je1K; z1 ← to int v1;

if z1 ̸= 0

then ← Je2K; Tau (Jwhile e1 do e2K)
else Ret ()

Interaction Trees – Building blocks 28

Denoting a simple language: λZ (2)

Denoting λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

What about while?

Jwhile e1 do e2K := v1 ← Je1K; z1 ← to int v1;

if z1 ̸= 0

then ← Je2K; Tau (Jwhile e1 do e2K)
else Ret ()

Interaction Trees – Building blocks 28

Denoting a simple language: λZ (2)

Denoting λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

What about while?

Jwhile e1 do e2K := v1 ← Je1K; z1 ← to int v1;

if z1 ̸= 0

then ← Je2K; Tau (Jwhile e1 do e2K)
else Ret ()

Interaction Trees – Building blocks 28

Denoting a simple language: λZ (2)

Denoting λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

| while e1 do e2

What about while?

Jwhile e1 do e2K := v1 ← Je1K; z1 ← to int v1;

if z1 ̸= 0

then ← Je2K; Tau (Jwhile e1 do e2K)
else Ret ()

Note that this denotation is corecursive

Interaction Trees – Building blocks 28

Building blocks (1): iter

iter : (A→ itree E (A+ B))

body

→ (A→ itree E B)

...

Ret (inl a’)

Tau (iter body a’)

Ret (inr b)

Ret b
body

iter body a

Interaction Trees – Building blocks 29

Denoting a simple language: λZ (3)

Back to while

Jwhile e1 do e2K := iter (λ .

v1 ← Je1K; z1 ← to int v1;

if z1 ̸= 0

then ← Je2K; Ret (inl ())
else Ret (inr ())

)

Interaction Trees – Building blocks 30

Denoting a simple language: λZ (3)

Back to while

Jwhile e1 do e2K := iter (λ .

v1 ← Je1K; z1 ← to int v1;

if z1 ̸= 0

then ← Je2K; Ret (inl ())
else Ret (inr ())

)

Now the corecursion is hidden away

Interaction Trees – Building blocks 30

Building blocks (2): iter

Use cases of iter

iter makes denoting loops easy

iter makes reasoning about loops easier

Examples of proven equations for iter

Interaction Trees – Building blocks 31

Building blocks (2): iter

Use cases of iter

iter makes denoting loops easy

iter makes reasoning about loops easier

Examples of proven equations for iter

Interaction Trees – Building blocks 31

Building blocks (2): iter

Use cases of iter

iter makes denoting loops easy

iter makes reasoning about loops easier

Examples of proven equations for iter

Interaction Trees – Building blocks 31

Building blocks (2): iter

Use cases of iter

iter makes denoting loops easy

iter makes reasoning about loops easier

Examples of proven equations for iter

(* helpers *)

≫ : (A → itree E B) → (B → itree E C) → (A → itree E C)
case_ : (A → itee E C) → (B → itree E C) → ((A + B) → itree E C)
bimap : (A → itree E C) → (B → itree E D) → ((A + B) → itree E (C + D))
...

(* Loop unfolding *)

iter f ≈ f ≫ case_ (iter f) id_
(* iter f then g = iter f with g in last iteration*)

iter f ≫ g ≈ iter (f ≫ bimap id_ g)
...

Interaction Trees – Building blocks 31

Building blocks (3): mrec

The mrec combinator

mrec is defined using iter

iteration on effects/itrees instead of values

Allows for easy encoding of recursion in effects

Supports equational reasoning

Interaction Trees – Building blocks 32

Overview

What we can do with ITrees

Representing programs using ITrees

Effectful programs
Diverging programs
Recursive programs

Program Equivalence
by equational reasoning on ITrees

Interpreting ITrees
by writing interpreters for effects

ITree Building Blocks
Combinators to make denotation easier
Equations on combinators for equational reasoning

Interaction Trees – Building blocks 33

Second paper

Program Logics à la Carte
Vistrup, Sammler & Jung

2025

Program logics 34

Program logics (1)

ITree interpretation and small step semantics are ’execution’ models

Given some input, what is the result

Reasoning about programs

Example:
Given: if x < y then r = x else r = y
Property: for all x and y, r is always the minimum of x and y

Program logics

Example: Hoare logic ({P} e {Q})
Program verification: We can verify properties for all inputs

Program logics 35

Program logics (1)

ITree interpretation and small step semantics are ’execution’ models

Given some input, what is the result

Reasoning about programs

Example:
Given: if x < y then r = x else r = y
Property: for all x and y, r is always the minimum of x and y

Program logics

Example: Hoare logic ({P} e {Q})
Program verification: We can verify properties for all inputs

Program logics 35

Program logics (1)

ITree interpretation and small step semantics are ’execution’ models

Given some input, what is the result

Reasoning about programs

Example:
Given: if x < y then r = x else r = y
Property: for all x and y, r is always the minimum of x and y

Program logics

Example: Hoare logic ({P} e {Q})
Program verification: We can verify properties for all inputs

Program logics 35

Program logics (3)

Hoare logic vs Seperation logic

The paper uses the Iris seperation logic framework
Hoare logic

Hoare triple: {P} e {Q}
precondition, program, postcondition

Seperation logic

Extension of Hoare logic
Seperating conjunction: ∗ (treat as conjunction)
Seperating implication/magic wand: −∗ (treat as implication)
Weakest precondition: wp e {Q}
Relation to Hoare triple: {P} e {Q} := P −∗ wp e {Q}

Program logics 36

Program logics (3)

Hoare logic vs Seperation logic

The paper uses the Iris seperation logic framework
Hoare logic

Hoare triple: {P} e {Q}
precondition, program, postcondition

Seperation logic

Extension of Hoare logic
Seperating conjunction: ∗ (treat as conjunction)
Seperating implication/magic wand: −∗ (treat as implication)
Weakest precondition: wp e {Q}
Relation to Hoare triple: {P} e {Q} := P −∗ wp e {Q}

Program logics 36

Program logics (3)

To define a program logic you need:

Language semantics
Typically a small step semantic model
Example rule:

JbK(s) = false ⟨p2, s⟩ → s ′
[If-False]

⟨if b then p1 else p2, s⟩ → s ′

Program logic rules
Example rule:

{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}
[If]

{P} if b then C1 else C2 {Q}
Soundness proof

Can’t proof anything false w.r.t the language semantics
Example theorem:

Theorem (Soundness of Hoare Logic)

If {P} p {Q} is derivable, then for every state s such that P(s) and every s ′ such
that ⟨p, s⟩ → s ′, we have Q(s ′).

Program logics 37

Program logics (3)

To define a program logic you need:
Language semantics

Typically a small step semantic model
Example rule:

JbK(s) = false ⟨p2, s⟩ → s ′
[If-False]

⟨if b then p1 else p2, s⟩ → s ′

Program logic rules
Example rule:

{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}
[If]

{P} if b then C1 else C2 {Q}
Soundness proof

Can’t proof anything false w.r.t the language semantics
Example theorem:

Theorem (Soundness of Hoare Logic)

If {P} p {Q} is derivable, then for every state s such that P(s) and every s ′ such
that ⟨p, s⟩ → s ′, we have Q(s ′).

Program logics 37

Program logics (3)

To define a program logic you need:
Language semantics

Typically a small step semantic model
Example rule:

JbK(s) = false ⟨p2, s⟩ → s ′
[If-False]

⟨if b then p1 else p2, s⟩ → s ′

Program logic rules
Example rule:

{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}
[If]

{P} if b then C1 else C2 {Q}

Soundness proof
Can’t proof anything false w.r.t the language semantics
Example theorem:

Theorem (Soundness of Hoare Logic)

If {P} p {Q} is derivable, then for every state s such that P(s) and every s ′ such
that ⟨p, s⟩ → s ′, we have Q(s ′).

Program logics 37

Program logics (3)

To define a program logic you need:
Language semantics

Typically a small step semantic model
Example rule:

JbK(s) = false ⟨p2, s⟩ → s ′
[If-False]

⟨if b then p1 else p2, s⟩ → s ′

Program logic rules
Example rule:

{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}
[If]

{P} if b then C1 else C2 {Q}
Soundness proof

Can’t proof anything false w.r.t the language semantics
Example theorem:

Theorem (Soundness of Hoare Logic)

If {P} p {Q} is derivable, then for every state s such that P(s) and every s ′ such
that ⟨p, s⟩ → s ′, we have Q(s ′).

Program logics 37

Program logics (4)

This approach is not ideal:

For every new language

New language semantics
New program logic rules
New soundness proof

Adding language feature

Same story

Non-modularity is the problem

Idea: use ITrees as underlying language semantics

Program logics 38

Program logics à la carte

What the paper contributes

A new way to define program logics for itrees

A Rocq implementation of program logic fragments for

safe and unsafe program termination (failure)
state
non-determinism (demonic & angelic)
concurrency

Soundness proofs of these fragments

w.r.t itree interpretation

A port of two existing program logics

HeapLang (imperative programs with effects)
Islaris (machine code programs)

Program Logics a la Carte 39

Program logics à la carte

What the paper contributes

A new way to define program logics for itrees

A Rocq implementation of program logic fragments for

safe and unsafe program termination (failure)
state
non-determinism (demonic & angelic)
concurrency

Soundness proofs of these fragments

w.r.t itree interpretation

A port of two existing program logics

HeapLang (imperative programs with effects)
Islaris (machine code programs)

Program Logics a la Carte 39

Program logics à la carte

What the paper contributes

A new way to define program logics for itrees

A Rocq implementation of program logic fragments for

safe and unsafe program termination (failure)
state
non-determinism (demonic & angelic)
concurrency

Soundness proofs of these fragments

w.r.t itree interpretation

A port of two existing program logics

HeapLang (imperative programs with effects)
Islaris (machine code programs)

Program Logics a la Carte 39

Program logics à la carte

What the paper contributes

A new way to define program logics for itrees

A Rocq implementation of program logic fragments for

safe and unsafe program termination (failure)
state
non-determinism (demonic & angelic)
concurrency

Soundness proofs of these fragments

w.r.t itree interpretation

A port of two existing program logics

HeapLang (imperative programs with effects)
Islaris (machine code programs)

Program Logics a la Carte 39

Program logics à la carte

What the paper contributes

A new way to define program logics for itrees

A Rocq implementation of program logic fragments for

safe and unsafe program termination (failure)
state
non-determinism (demonic & angelic)
concurrency

Soundness proofs of these fragments

w.r.t itree interpretation

A port of two existing program logics

HeapLang (imperative programs with effects)
Islaris (machine code programs)

Program Logics a la Carte 39

Program logics à la carte

For this presentation

A new way to define program logics for itrees

crash/failure program logic fragment

Building a program logic for λZ

Program Logics a la Carte 40

A program logic for: λZ

We define a pure lambda calculus: λZ

Syntax of λZ

v ∈ Val := z | λx .e (z ∈ Z)
e ∈ Expr := v | x | e1+̂e2 | e1(e2) | if e1 then e2 else e3

Denotation

JvK := Ret v

Je1 + e2K := v1 ← Je1K; v2 ← Je2K; z2 ← to int v2; z1 ← to int v1;

Ret (z1 + z2)

Je1(e2)K := v1 ← Je1K; v2 ← Je2K; (x , e)← to lam v1; Je[v2/x]K
Jif e1 then e2 else e3K := v1 ← Je1K; z1 ← to int v1; if z1 ̸= 0 then Je2K else Je3K

to int v := match v with z ⇒ Ret z | ⇒ fail end

to lam v := match v with λx . e ⇒ Ret (x , e) | ⇒ fail; end

Note that we already use an effect (fail := trigger Fail) in the denotation

Program Logics a la Carte – Building a program logic 41

Basic Rules

Program logic rules: wp e {Φ}

∀r . Φ(r) ⊢ Ψ(r) wp e {Φ}
[WpConsequence]

wp e {Ψ}
Φ(v)

[WpVal]
wp v {Φ}

wp e1 {v1. wp v1 +̂ e2 {Φ}}
[WpBindPlusL]

wp e1 +̂ e2 {Φ}
Φ(z1 + z2)

[WpPlus]
wp z1 +̂ z2 {Φ}

z ̸= 0 wp e1 {Φ}
[WpIfTrue]

wp if z then e1 else e2 {Φ}
...

Program Logics a la Carte – Building a program logic 42

Basic Rules

Program logic rules: wp e {Φ}

∀r . Φ(r) ⊢ Ψ(r) wp e {Φ}
[WpConsequence]

wp e {Ψ}

Φ(v)
[WpVal]

wp v {Φ}

wp e1 {v1. wp v1 +̂ e2 {Φ}}
[WpBindPlusL]

wp e1 +̂ e2 {Φ}
Φ(z1 + z2)

[WpPlus]
wp z1 +̂ z2 {Φ}

z ̸= 0 wp e1 {Φ}
[WpIfTrue]

wp if z then e1 else e2 {Φ}
...

Program Logics a la Carte – Building a program logic 42

Basic Rules

Program logic rules: wp e {Φ}

∀r . Φ(r) ⊢ Ψ(r) wp e {Φ}
[WpConsequence]

wp e {Ψ}
Φ(v)

[WpVal]
wp v {Φ}

wp e1 {v1. wp v1 +̂ e2 {Φ}}
[WpBindPlusL]

wp e1 +̂ e2 {Φ}
Φ(z1 + z2)

[WpPlus]
wp z1 +̂ z2 {Φ}

z ̸= 0 wp e1 {Φ}
[WpIfTrue]

wp if z then e1 else e2 {Φ}
...

Program Logics a la Carte – Building a program logic 42

Basic Rules

Program logic rules: wp e {Φ}

∀r . Φ(r) ⊢ Ψ(r) wp e {Φ}
[WpConsequence]

wp e {Ψ}
Φ(v)

[WpVal]
wp v {Φ}

wp e1 {v1. wp v1 +̂ e2 {Φ}}
[WpBindPlusL]

wp e1 +̂ e2 {Φ}

Φ(z1 + z2)
[WpPlus]

wp z1 +̂ z2 {Φ}

z ̸= 0 wp e1 {Φ}
[WpIfTrue]

wp if z then e1 else e2 {Φ}
...

Program Logics a la Carte – Building a program logic 42

Basic Rules

Program logic rules: wp e {Φ}

∀r . Φ(r) ⊢ Ψ(r) wp e {Φ}
[WpConsequence]

wp e {Ψ}
Φ(v)

[WpVal]
wp v {Φ}

wp e1 {v1. wp v1 +̂ e2 {Φ}}
[WpBindPlusL]

wp e1 +̂ e2 {Φ}
Φ(z1 + z2)

[WpPlus]
wp z1 +̂ z2 {Φ}

z ̸= 0 wp e1 {Φ}
[WpIfTrue]

wp if z then e1 else e2 {Φ}
...

Program Logics a la Carte – Building a program logic 42

Basic Rules

Program logic rules: wp e {Φ}

∀r . Φ(r) ⊢ Ψ(r) wp e {Φ}
[WpConsequence]

wp e {Ψ}
Φ(v)

[WpVal]
wp v {Φ}

wp e1 {v1. wp v1 +̂ e2 {Φ}}
[WpBindPlusL]

wp e1 +̂ e2 {Φ}
Φ(z1 + z2)

[WpPlus]
wp z1 +̂ z2 {Φ}

z ̸= 0 wp e1 {Φ}
[WpIfTrue]

wp if z then e1 else e2 {Φ}
...

Program Logics a la Carte – Building a program logic 42

Reusable Rules (1)

Defining rules like this is standard

We can do better:

Idea: Define rules for arbitrary ITrees

Weakest precondition for ITrees: wpiH t {Φ}
t : itree E R
H is a logical effect handler for every event in E

For λZ we get

wp e {Φ} := wpiLangHZ
JeK {Φ}

Our language effects LangEZ := FailE
Our logical effect handler LangHZ := FailH (to be defined)

Program Logics a la Carte – Building a program logic 43

Reusable Rules (1)

Defining rules like this is standard

We can do better:

Idea: Define rules for arbitrary ITrees

Weakest precondition for ITrees: wpiH t {Φ}
t : itree E R
H is a logical effect handler for every event in E

For λZ we get

wp e {Φ} := wpiLangHZ
JeK {Φ}

Our language effects LangEZ := FailE
Our logical effect handler LangHZ := FailH (to be defined)

Program Logics a la Carte – Building a program logic 43

Reusable Rules (1)

Defining rules like this is standard

We can do better:

Idea: Define rules for arbitrary ITrees
Weakest precondition for ITrees: wpiH t {Φ}

t : itree E R
H is a logical effect handler for every event in E

For λZ we get

wp e {Φ} := wpiLangHZ
JeK {Φ}

Our language effects LangEZ := FailE
Our logical effect handler LangHZ := FailH (to be defined)

Program Logics a la Carte – Building a program logic 43

Reusable Rules (1)

Defining rules like this is standard

We can do better:

Idea: Define rules for arbitrary ITrees
Weakest precondition for ITrees: wpiH t {Φ}

t : itree E R
H is a logical effect handler for every event in E

For λZ we get

wp e {Φ} := wpiLangHZ
JeK {Φ}

Our language effects LangEZ := FailE
Our logical effect handler LangHZ := FailH (to be defined)

Program Logics a la Carte – Building a program logic 43

Reusable Rules (1)

Defining rules like this is standard

We can do better:

Idea: Define rules for arbitrary ITrees
Weakest precondition for ITrees: wpiH t {Φ}

t : itree E R
H is a logical effect handler for every event in E

For λZ we get

wp e {Φ} := wpiLangHZ
JeK {Φ}

Our language effects LangEZ := FailE

Our logical effect handler LangHZ := FailH (to be defined)

Program Logics a la Carte – Building a program logic 43

Reusable Rules (1)

Defining rules like this is standard

We can do better:

Idea: Define rules for arbitrary ITrees
Weakest precondition for ITrees: wpiH t {Φ}

t : itree E R
H is a logical effect handler for every event in E

For λZ we get

wp e {Φ} := wpiLangHZ
JeK {Φ}

Our language effects LangEZ := FailE
Our logical effect handler LangHZ := FailH (to be defined)

Program Logics a la Carte – Building a program logic 43

Reusable Rules (2)

Program logic rules: wpiH t {Φ}

∀r . Φ(r) ⊢ Ψ(r) wpiH t {Φ}
[WpiConsequence]

wpiH t {Ψ}

Φ(r)
[WpiRet]

wpiH Ret(r) {Φ}

t1 ≈ t2
[WpiEutt]

wpiH t1 {Φ} ⊣⊢ wpiH t2 {Φ}

wpiH t {x . wpiH k(x) {Φ}}
[WpiBind]

wpiH x ← t; k(x) {Φ}

The previous rules follow from these rules.
These rules are generic and can be used to define other (pure)
language specific rules

Program Logics a la Carte – Building a program logic 44

Reusable Rules (2)

Program logic rules: wpiH t {Φ}

∀r . Φ(r) ⊢ Ψ(r) wpiH t {Φ}
[WpiConsequence]

wpiH t {Ψ}

Φ(r)
[WpiRet]

wpiH Ret(r) {Φ}

t1 ≈ t2
[WpiEutt]

wpiH t1 {Φ} ⊣⊢ wpiH t2 {Φ}

wpiH t {x . wpiH k(x) {Φ}}
[WpiBind]

wpiH x ← t; k(x) {Φ}

The previous rules follow from these rules.
These rules are generic and can be used to define other (pure)
language specific rules

Program Logics a la Carte – Building a program logic 44

Reusable Rules (2)

Program logic rules: wpiH t {Φ}

∀r . Φ(r) ⊢ Ψ(r) wpiH t {Φ}
[WpiConsequence]

wpiH t {Ψ}

Φ(r)
[WpiRet]

wpiH Ret(r) {Φ}

t1 ≈ t2
[WpiEutt]

wpiH t1 {Φ} ⊣⊢ wpiH t2 {Φ}

wpiH t {x . wpiH k(x) {Φ}}
[WpiBind]

wpiH x ← t; k(x) {Φ}

The previous rules follow from these rules.
These rules are generic and can be used to define other (pure)
language specific rules

Program Logics a la Carte – Building a program logic 44

Reusable Rules (2)

Program logic rules: wpiH t {Φ}

∀r . Φ(r) ⊢ Ψ(r) wpiH t {Φ}
[WpiConsequence]

wpiH t {Ψ}

Φ(r)
[WpiRet]

wpiH Ret(r) {Φ}

t1 ≈ t2
[WpiEutt]

wpiH t1 {Φ} ⊣⊢ wpiH t2 {Φ}

wpiH t {x . wpiH k(x) {Φ}}
[WpiBind]

wpiH x ← t; k(x) {Φ}

The previous rules follow from these rules.
These rules are generic and can be used to define other (pure)
language specific rules

Program Logics a la Carte – Building a program logic 44

Reusable Rules (2)

Program logic rules: wpiH t {Φ}

∀r . Φ(r) ⊢ Ψ(r) wpiH t {Φ}
[WpiConsequence]

wpiH t {Ψ}

Φ(r)
[WpiRet]

wpiH Ret(r) {Φ}

t1 ≈ t2
[WpiEutt]

wpiH t1 {Φ} ⊣⊢ wpiH t2 {Φ}

wpiH t {x . wpiH k(x) {Φ}}
[WpiBind]

wpiH x ← t; k(x) {Φ}

The previous rules follow from these rules.
These rules are generic and can be used to define other (pure)
language specific rules

Program Logics a la Carte – Building a program logic 44

Reusable Rules (2)

Program logic rules: wpiH t {Φ}

∀r . Φ(r) ⊢ Ψ(r) wpiH t {Φ}
[WpiConsequence]

wpiH t {Ψ}

Φ(r)
[WpiRet]

wpiH Ret(r) {Φ}

t1 ≈ t2
[WpiEutt]

wpiH t1 {Φ} ⊣⊢ wpiH t2 {Φ}

wpiH t {x . wpiH k(x) {Φ}}
[WpiBind]

wpiH x ← t; k(x) {Φ}

The previous rules follow from these rules.
These rules are generic and can be used to define other (pure)
language specific rules

Program Logics a la Carte – Building a program logic 44

Weakest precondition for ITrees (1)

The wpiH definition:

wpiH t {Φ} :=


Φ(r) if t = Ret r

wpiH t ′ {Φ} if t = Tau t ′

HA(ϵ, (λa. wpiH (k a) {Φ})) if t = VisA ϵ k

Program Logics a la Carte – Building a program logic 45

Weakest precondition for ITrees (1)

The wpiH definition:

wpiH t {Φ} :=


Φ(r) if t = Ret r

wpiH t ′ {Φ} if t = Tau t ′

HA(ϵ, (λa. wpiH (k a) {Φ})) if t = VisA ϵ k

Program Logics a la Carte – Building a program logic 45

Weakest precondition for ITrees (2)

wpi (VisA ϵ k)︸ ︷︷ ︸
itree

{Φ} := HA(ϵ, (λa. wpi (k a) {Φ})
logical continuation

)

logical effect handler

Weakest precondition of effects are defered to logical effect handlers:
HA(ϵ,Ψ)

HA(ϵ,Ψ) describes the ’verification’ condition of executing the effect ϵ

The cannonical form: HA(ϵ,Ψ) = P ∗ (∀a : A.Q a −∗ Ψ a)

P, precondition for the effect ϵ
Q, postcondition for the effect ϵ

Program Logics a la Carte – Building a program logic 46

Weakest precondition for ITrees (2)

wpi (VisA ϵ k)︸ ︷︷ ︸
itree

{Φ} := HA(ϵ, (λa. wpi (k a) {Φ})
logical continuation

)

logical effect handler

Weakest precondition of effects are defered to logical effect handlers:
HA(ϵ,Ψ)

HA(ϵ,Ψ) describes the ’verification’ condition of executing the effect ϵ

The cannonical form: HA(ϵ,Ψ) = P ∗ (∀a : A.Q a −∗ Ψ a)

P, precondition for the effect ϵ
Q, postcondition for the effect ϵ

Program Logics a la Carte – Building a program logic 46

Weakest precondition for ITrees (2)

wpi (VisA ϵ k)︸ ︷︷ ︸
itree

{Φ} := HA(ϵ, (λa. wpi (k a) {Φ})
logical continuation

)

logical effect handler

Weakest precondition of effects are defered to logical effect handlers:
HA(ϵ,Ψ)

HA(ϵ,Ψ) describes the ’verification’ condition of executing the effect ϵ

The cannonical form: HA(ϵ,Ψ) = P ∗ (∀a : A.Q a −∗ Ψ a)

P, precondition for the effect ϵ
Q, postcondition for the effect ϵ

Program Logics a la Carte – Building a program logic 46

Effect: Failure (1)

Back to λZ

λZ up to now

wp e {Φ} := wpiLangHZ
JeK {Φ}

LangEZ := FailE
LangHZ := FailH (to be defined)

Program Logics a la Carte – Building a program logic 47

Effect: Failure (2)

FailH

wpi(Vis∅ Fail k){Φ} := FailH∅(Fail, (λa. wpi (k a) {Φ}))

What are P and Q?

Precondition: we never want our program to fail

Program Logics a la Carte – Building a program logic 48

Effect: Failure (2)

FailH

wpi(Vis∅ Fail k){Φ} := FailH∅(Fail, (λa. wpi (k a) {Φ}))

Cannonical form:

FailH∅(Fail,Ψ) = P ∗ (∀a : A.Q a −∗ Ψ a)

What are P and Q?

Precondition: we never want our program to fail

Program Logics a la Carte – Building a program logic 48

Effect: Failure (2)

FailH

wpi(Vis∅ Fail k){Φ} := FailH∅(Fail, (λa. wpi (k a) {Φ}))

Cannonical form:

FailH∅(Fail,Ψ) = P ∗ (∀a : A.Q a −∗ Ψ a)

What are P and Q?

Precondition: we never want our program to fail

Program Logics a la Carte – Building a program logic 48

Effect: Failure (2)

FailH

wpi(Vis∅ Fail k){Φ} := FailH∅(Fail, (λa. wpi (k a) {Φ}))

Cannonical form:

FailH∅(Fail,Ψ) = ⊥ ∗ (∀a : A.Q a −∗ Ψ a)

What are P and Q?

Precondition: we never want our program to fail

Program Logics a la Carte – Building a program logic 48

Effect: Failure (2)

FailH

wpi(Vis∅ Fail k){Φ} := FailH∅(Fail, (λa. wpi (k a) {Φ}))

Cannonical form:
FailH∅(Fail,Ψ) = ⊥

What are P and Q?

Precondition: we never want our program to fail

Program Logics a la Carte – Building a program logic 48

Effect: Failure (3)

Back to λZ

λZ up to now

wp e {Φ} := wpiLangHZ
JeK {Φ}

LangEZ := FailE
LangHZ := FailH

We can easily add fragments

Extend language
Give ITree denotation
Give wp and wpi rules
Give logical effect handlers

Many fragments are already implemented

Program Logics a la Carte – Building a program logic 49

Effect: Failure (3)

Back to λZ

λZ up to now

wp e {Φ} := wpiLangHZ
JeK {Φ}

LangEZ := FailE
LangHZ := FailH

We can easily add fragments

Extend language
Give ITree denotation
Give wp and wpi rules
Give logical effect handlers

Many fragments are already implemented

Program Logics a la Carte – Building a program logic 49

Effect: Failure (3)

Back to λZ

λZ up to now

wp e {Φ} := wpiLangHZ
JeK {Φ}

LangEZ := FailE
LangHZ := FailH

We can easily add fragments

Extend language
Give ITree denotation
Give wp and wpi rules
Give logical effect handlers

Many fragments are already implemented

Program Logics a la Carte – Building a program logic 49

Summary

In this presentation

Interaction trees

Denotation of programs
Program Equivalence
Interpretation
Combinators

Program logics

Program logic for ITrees
Failure program logic fragment

Program Logics a la Carte – Building a program logic 50

Summary

In this presentation

Interaction trees

Denotation of programs
Program Equivalence
Interpretation
Combinators

Program logics

Program logic for ITrees
Failure program logic fragment

Program Logics a la Carte – Building a program logic 50

	Introduction
	Interaction Trees
	Itree Equivalence
	Semantics of Events and Monadic Interpreters
	Building blocks

	Program logics
	Program Logics a la Carte
	Building a program logic

