
Reasoning about Probabilistic Programs using
Coalgebra

Codrin Iftode

Radboud University

January 20, 2026

1 / 66

Goal

Goal: reason about probabilistic imperative programs

Main paper, by Różowski and Silva, 2023 [1]: reason about simple
probabilistic programs, generically

Second paper, by Rutten, 2000 [2]: ‘generically’

2 / 66

Goal

Goal: reason about probabilistic imperative programs

Main paper, by Różowski and Silva, 2023 [1]: reason about simple
probabilistic programs, generically

Second paper, by Rutten, 2000 [2]: ‘generically’

3 / 66

Goal

Goal: reason about probabilistic imperative programs

Main paper, by Różowski and Silva, 2023 [1]: reason about simple
probabilistic programs, generically

Second paper, by Rutten, 2000 [2]: ‘generically’

4 / 66

Context

A language is a function A∗ → B.

ϵ a aa aaa . . .
false true true true . . .

A language is regular if recognised by either:

Regular Expression (RE): a ; (a∗)

xyKleene’s Theorem

Deterministic Finite Automaton (DFA):

q0 q1
a

a

5 / 66

Context

A language is a function A∗ → B.

ϵ a aa aaa . . .
false true true true . . .

A language is regular if recognised by either:

Regular Expression (RE): a ; (a∗)

xyKleene’s Theorem

Deterministic Finite Automaton (DFA):

q0 q1
a

a

6 / 66

Context

A language is a function A∗ → B.

ϵ a aa aaa . . .
false true true true . . .

A language is regular if recognised by either:

Regular Expression (RE): a ; (a∗)

xyKleene’s Theorem

Deterministic Finite Automaton (DFA):

q0 q1
a

a

7 / 66

Context

A language is a function A∗ → B.

ϵ a aa aaa . . .
false true true true . . .

A language is regular if recognised by either:

Regular Expression (RE): a ; (a∗)xyKleene’s Theorem

Deterministic Finite Automaton (DFA):

q0 q1
a

a

8 / 66

Context (2)

Is a ; a∗ the same as a∗ ; a?
We want a reasoning system, i.e. an equivalence relation ≡ with:

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

See e.g. Salomaa [3].

9 / 66

Probablistic Languages

A probabilistic language is a function A∗ → [0, 1].

ϵ a aa aaa . . .
0 1

2
1
4

1
8 . . .

‘Probabilistic’ Regular Expression (PRE)?

xyProbabilistic Kleene’s Theorem?

Generative Probabilistic Transition System (GPTS):

q0 q1 ✓
a|12

a|12

1

10 / 66

Probablistic Languages

A probabilistic language is a function A∗ → [0, 1].

ϵ a aa aaa . . .
0 1

2
1
4

1
8 . . .

‘Probabilistic’ Regular Expression (PRE)?

xyProbabilistic Kleene’s Theorem?

Generative Probabilistic Transition System (GPTS):

q0 q1 ✓
a|12

a|12

1

11 / 66

Probablistic Languages

A probabilistic language is a function A∗ → [0, 1].

ϵ a aa aaa . . .
0 1

2
1
4

1
8 . . .

‘Probabilistic’ Regular Expression (PRE)?

xyProbabilistic Kleene’s Theorem?

Generative Probabilistic Transition System (GPTS):

q0 q1 ✓
a|12

a|12

1

12 / 66

Probablistic Languages

A probabilistic language is a function A∗ → [0, 1].

ϵ a aa aaa . . .
0 1

2
1
4

1
8 . . .

‘Probabilistic’ Regular Expression (PRE)?xyProbabilistic Kleene’s Theorem?

Generative Probabilistic Transition System (GPTS):

q0 q1 ✓
a|12

a|12

1

13 / 66

Probablistic Languages

A probabilistic language is a function A∗ → [0, 1].

ϵ a aa aaa . . .
0 1

2
1
4

1
8 . . .

Probabilistic Regular Expression (PRE)xyProbabilistic Kleene’s Theorem

Generative Probabilistic Transition System (GPTS):

q0 q1 ✓
a|12

a|12

1

14 / 66

Soundness and Completeness

Do we have a reasoning system?

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

15 / 66

Soundness and Completeness

We have a reasoning system!

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

16 / 66

Structure

1. Coalgebra

2. Probabilistic Regular Expressions

3. Language equivalence

4. Soundness

5. Completeness

17 / 66

Coalgebras

An F -coalgebra is a function S
β−→ F (S).

Intuition: S is a set of states, β encodes transitions.

18 / 66

Coalgebras

Determinstic:

q0 q1

S
β−→ S

β(q0) = q1

19 / 66

Coalgebras

DFA:

q0 q1
a

S
β−→ B× (A ⇒ S)

β(q0) = (false, a 7→ q1)
β(q1) = (true, 7→ q1)

20 / 66

Coalgebras

GPTS:

q0

q1

✓

a|14

1
2

S
β−→ ((1 + A× S) ⇒ [0, 1])

β(q0)(a, q1) =
1
4

β(q0)(✓) = 1
2

21 / 66

Coalgebras

GPTS:

q0

q1

✓

a|14

1
2

S
β−→ D(1 + A× S)

β(q0)(a, q1) =
1
4

β(q0)(✓) = 1
2

where DX is the set of maps f : X → [0, 1] with
∑

x∈X f (x) ≤ 1.

22 / 66

Coalgebra Homomorphism

A coalgebra homomorphism from β : S → FS to γ : R → FR is a
map f : S → R such that the square commutes:

S R

FS FR

f

β γ

Ff

Intuition: f preserves ‘transition structure’.

q0 q1 ⇒ f (q0) f (q1)

23 / 66

Coalgebra Homomorphism

A coalgebra homomorphism from β : S → FS to γ : R → FR is a
map f : S → R such that the square commutes:

S R

FS FR

f

β γ

Ff

Intuition: f preserves ‘transition structure’.

q0 q1 ⇒ f (q0) f (q1)

24 / 66

Probabilistic Regular Expressions (PRE)

For an alphabet A, and p ∈ [0, 1], define

e, f ∈ Exp ::= 0 | 1 | a ∈ A | e ⊕p f | e ; f | e [p]

a⊕ 1
3
b

a ; a[
1
2
]

25 / 66

Progress

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

26 / 66

Operational Semantics of PREs

Defining J−K : Exp → (A∗ ⇒ [0, 1]) directly is hard.

First define operational semantics ∂ : Exp → D(1 + A× Exp).

27 / 66

Operational Semantics of PREs

Defining J−K : Exp → (A∗ ⇒ [0, 1]) directly is hard.

First define operational semantics ∂ : Exp → D(1 + A× Exp).

28 / 66

Operational Semantics of PREs

Defining J−K : Exp → (A∗ ⇒ [0, 1]) directly is hard.

First define operational semantics ∂ : Exp → D(1 + A× Exp).

a⊕ 1
3
b

29 / 66

Operational Semantics of PREs

Defining J−K : Exp → (A∗ ⇒ [0, 1]) directly is hard.

First define operational semantics ∂ : Exp → D(1 + A× Exp).

a⊕ 1
3
b

1

1

a|13

b|23

30 / 66

Operational Semantics of PREs

Defining J−K : Exp → (A∗ ⇒ [0, 1]) directly is hard.

First define operational semantics ∂ : Exp → D(1 + A× Exp).

a⊕ 1
3
b

1

1

✓

✓

a|13

b|23

1

1

31 / 66

Operational gives Denotational

Recall: JeK assigns a probability to each word a1a2 . . . an.

e e1 . . . en ✓
a1|p1 a2|p2 an|pn pt

32 / 66

Semantics via Final Coalgebra

A coalgebra ω : Ω → FΩ is final if for any coalgebra β : S → FS
there is a unique homomorphism †β : S → Ω.

S Ω

FS FΩ

†β

β ω

F (†β)

A∗ ⇒ [0, 1] is not the final coalgebra for functor D(1 + A× (−)).

Reason: GPTS is nondeterministic.

Solution: determinisation [4].

33 / 66

Semantics via Final Coalgebra

S Ω

FS

†β

β

A∗ ⇒ [0, 1] is not the final coalgebra for functor D(1 + A× (−)).

Reason: GPTS is nondeterministic.

Solution: determinisation [4].

34 / 66

Semantics via Final Coalgebra

S A∗ ⇒ B

B× (A ⇒ S)

J−K

β

A∗ ⇒ [0, 1] is not the final coalgebra for functor D(1 + A× (−)).

Reason: GPTS is nondeterministic.

Solution: determinisation [4].

35 / 66

Semantics via Final Coalgebra

Exp A∗ ⇒ [0, 1]

D(1 + A× Exp)

J−K?

∂

A∗ ⇒ [0, 1] is not the final coalgebra for functor D(1 + A× (−)).

Reason: GPTS is nondeterministic.

Solution: determinisation [4].

36 / 66

Semantics via Final Coalgebra

Exp ������
A∗ ⇒ [0, 1]

D(1 + A× Exp)

��J−K

∂

A∗ ⇒ [0, 1] is not the final coalgebra for functor D(1 + A× (−)).

Reason: GPTS is nondeterministic.

Solution: determinisation [4].

37 / 66

Semantics via Final Coalgebra

Exp ������
A∗ ⇒ [0, 1]

D(1 + A× Exp)

��J−K

∂

A∗ ⇒ [0, 1] is not the final coalgebra for functor D(1 + A× (−)).

Reason: GPTS is nondeterministic.

Solution: determinisation [4].

38 / 66

Determinisation

Exp

D(1 + A× Exp)

[0, 1]× (A ⇒ DExp)

∂

39 / 66

Determinisation

Exp DExp

D(1 + A× Exp)

[0, 1]× (A ⇒ DExp)

ηExp

∂

γ

40 / 66

Determinisation

Exp DExp A∗ ⇒ [0, 1]

D(1 + A× Exp)

[0, 1]× (A ⇒ DExp)

ηExp

∂

†γ

γ

41 / 66

Determinisation

Exp DExp A∗ ⇒ [0, 1]
ηExp

J−K

†γ

See [5] for a proof.

42 / 66

Progress

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

43 / 66

Language Equivalence

Probabilistic Choice Sequencing
e ≡ e ⊕p e 1; e ≡ e
e ⊕p f ≡ f ⊕1−p e e; (f ; g) ≡ (e; f); g
· · · · · ·

Distributivity
(e ⊕p f); g ≡ (e; g)⊕p (f ; g)

Loops Fixpoint rule

e; e [p] ⊕p 1 ≡ e[p]
g ≡ e; g ⊕p f E (e) = 0

g ≡ e[p]; f
· · · · · ·

44 / 66

Soundness and Completeness

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

Suppose we could write J−K as the composition:

Exp Exp/ ≡ A∗ ⇒ [0, 1]
[−] †d

45 / 66

Soundness and Completeness

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

Suppose we could write J−K as the composition:

Exp Exp/ ≡ A∗ ⇒ [0, 1]
[−] †d

46 / 66

Soundness and Completeness

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

Suppose we could write J−K as the composition:

Exp Exp/ ≡ A∗ ⇒ [0, 1]
[−] †d

Then, soundness:

e ≡ f

⇒ [e] = [f]

⇒ †d([e]) = †d([f])
⇒ JeK = Jf K

47 / 66

Soundness and Completeness

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

Suppose we could write J−K as the composition:

Exp Exp/ ≡ A∗ ⇒ [0, 1]
[−] †d

Also completeness, if †d is injective:

e ≡ f

⇐ [e] = [f]

⇐ †d([e]) = †d([f])
⇐ JeK = Jf K

48 / 66

Soundness

For soundness, remains to show two maps are equal:

Exp/ ≡

Exp A∗ ⇒ [0, 1]

DExp

†d
[−]

J−K

ηExp
†γ

49 / 66

Soundness Idea

We know †γ is the unique homomorphism DExp → (A∗ ⇒ [0, 1]).
So if we build a coalgebra homomorphism:

DExp . . . A∗ ⇒ [0, 1]

it must be equal to †γ.

50 / 66

Soundness Idea

We build such a coalgebra homomorphism:

DExp DExp/≡0 Exp/≡0 Exp/≡ A∗ ⇒ [0, 1]
D[−]≡0 α0 [−]≡ †d

≡0 is the same as ≡, but without two axioms.

51 / 66

Can we quotient coalgebras?

Does the quotient Exp/≡0 have a coalgebra structure?

Yes, since ≡0 is a bisimulation equivalence (Lemma 6.1 [1]).

52 / 66

Can we quotient coalgebras?

Does the quotient Exp/≡0 have a coalgebra structure?

Yes, since ≡0 is a bisimulation equivalence (Lemma 6.1 [1]).

53 / 66

GPTS Bisimulation Equivalence Example

e f

e ′ e ′′ f ′

✓ ✓ ✓

a | 1
3 a | 1

3 a | 2
3

1
4

1
4

1
4

54 / 66

GPTS Bisimulation Equivalence Anti-Example

e f

e ′ e ′′ f ′

✓ ✓ ✓

a | 1
3 a | 1

3 a | 2
3

1
4

1
4

1
4

55 / 66

Quotienting with a Bisimulation Equivalence
Proposition 5.8 [2]: The quotient of a coalgebra with a
bisimulation equivalence is a coalgebra.

S S/R

FS

[−]R

βS

Exp Exp/≡0

D(1 + A× Exp) D(1 + A× Exp/≡0)

[−]≡0

∂ β

F [−]≡0

[e] [e ′]
a|p

iff p =
∑

e
a|q−−→f≡0e′

q

[e] ✓
p

iff e
p
=⇒ ✓

56 / 66

Quotienting with a Bisimulation Equivalence
Proposition 5.8 [2]: The quotient of a coalgebra with a
bisimulation equivalence is a coalgebra.

S S/R

FS F (S/R)

[−]R

βS β

F [−]R

Exp Exp/≡0

D(1 + A× Exp) D(1 + A× Exp/≡0)

[−]≡0

∂ β

F [−]≡0

[e] [e ′]
a|p

iff p =
∑

e
a|q−−→f≡0e′

q

[e] ✓
p

iff e
p
=⇒ ✓

57 / 66

Quotienting with a Bisimulation Equivalence

Proposition 5.8 [2]: The quotient of a coalgebra with a
bisimulation equivalence is a coalgebra.

Exp Exp/≡0

D(1 + A× Exp) D(1 + A× Exp/≡0)

[−]≡0

∂ β

F [−]≡0

[e] [e ′]
a|p

iff p =
∑

e
a|q−−→f≡0e′

q

[e] ✓
p

iff e
p
=⇒ ✓

58 / 66

Quotienting with a Bisimulation Equivalence

Proposition 5.8 [2]: The quotient of a coalgebra with a
bisimulation equivalence is a coalgebra.

Exp Exp/≡0

D(1 + A× Exp) D(1 + A× Exp/≡0)

[−]≡0

∂ β

F [−]≡0

[e] [e ′]
a|p

iff p =
∑

e
a|q−−→f≡0e′

q

[e] ✓
p

iff e
p
=⇒ ✓

59 / 66

Quotienting with a Bisimulation Equivalence

Proposition 5.8 [2]: The quotient of a coalgebra with a
bisimulation equivalence is a coalgebra.

Exp Exp/≡0

D(1 + A× Exp) D(1 + A× Exp/≡0)

[−]≡0

∂ β

F [−]≡0

[e] [e ′]
a|p

iff p =
∑

e
a|q−−→f≡0e′

q

[e] ✓
p

iff e
p
=⇒ ✓

60 / 66

Completeness

We want †d : Exp/≡ → (A∗ ⇒ [0, 1]) to be injective:

e ≡ f

⇐ [e] = [f]

⇐ †d([e]) = †d([f])
⇐ JeK = Jf K

61 / 66

Completeness Overview

Exp/≡ also has algebra structure DExp/≡ α−→ Exp/≡.

We can lift functor [0, 1]× (A ⇒ −) to D-algebras, and restrict it
to a functor Ĝ whose coalgebras, when determinised, correspond
to GPTS.

Exp/≡ is the rational fixpoint of Ĝ ; here, a subcoalgebra of its
final coalgebra ΩĜ :

Exp/≡ ↪→ ΩĜ ↪→ (A∗ ⇒ [0, 1])

=

Exp/≡ †d−→ (A∗ ⇒ [0, 1])

62 / 66

Completeness Overview

Exp/≡ also has algebra structure DExp/≡ α−→ Exp/≡.

We can lift functor [0, 1]× (A ⇒ −) to D-algebras, and restrict it
to a functor Ĝ whose coalgebras, when determinised, correspond
to GPTS.

Exp/≡ is the rational fixpoint of Ĝ ; here, a subcoalgebra of its
final coalgebra ΩĜ :

Exp/≡ ↪→ ΩĜ ↪→ (A∗ ⇒ [0, 1])

=

Exp/≡ †d−→ (A∗ ⇒ [0, 1])

63 / 66

Completeness Overview

Exp/≡ also has algebra structure DExp/≡ α−→ Exp/≡.

We can lift functor [0, 1]× (A ⇒ −) to D-algebras, and restrict it
to a functor Ĝ whose coalgebras, when determinised, correspond
to GPTS.

Exp/≡ is the rational fixpoint of Ĝ ; here, a subcoalgebra of its
final coalgebra ΩĜ :

Exp/≡ ↪→ ΩĜ ↪→ (A∗ ⇒ [0, 1])

=

Exp/≡ †d−→ (A∗ ⇒ [0, 1])

64 / 66

Conclusion

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

We have PREs, and a sound and complete system for reasoning
about equivalence.

65 / 66

References

[1] Różowski, W. and Silva, A. (2024). A completeness theorem for
probabilistic regular expressions. In Proceedings of the 39th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’24, New York,
NY, USA. Association for Computing Machinery.

[2] Rutten, J. (2000). Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249(1):3–80. Modern Algebra.

[3] Salomaa, A. (1966). Two complete axiom systems for the algebra of
regular events. J. ACM, 13(1):158–169.

[4] Silva, A., Bonchi, F., Bonsangue, M. M., and Rutten, J. J. M. M. (2010).
Generalizing the powerset construction, coalgebraically. In Lodaya, K. and
Mahajan, M., editors, IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2010), volume 8 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 272–283,
Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[5] Silva, A. and Sokolova, A. (2011). Sound and complete axiomatization of
trace semantics for probabilistic systems. Electronic Notes in Theoretical
Computer Science, 276:291–311. Twenty-seventh Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXVII).

66 / 66

	References

