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Goal

Goal: reason about probabilistic imperative programs

Main paper, by Różowski and Silva, 2023 [1]: reason about simple
probabilistic programs, generically

Second paper, by Rutten, 2000 [2]: ‘generically’
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Main paper, by Różowski and Silva, 2023 [1]: reason about simple
probabilistic programs, generically

Second paper, by Rutten, 2000 [2]: ‘generically’

3 / 66



Goal

Goal: reason about probabilistic imperative programs
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Context

A language is a function A∗ → B.

ϵ a aa aaa . . .
false true true true . . .

A language is regular if recognised by either:

Regular Expression (RE): a ; (a∗)

xyKleene’s Theorem

Deterministic Finite Automaton (DFA):

q0 q1
a

a
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Context (2)

Is a ; a∗ the same as a∗ ; a?
We want a reasoning system, i.e. an equivalence relation ≡ with:

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

See e.g. Salomaa [3].
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Probablistic Languages

A probabilistic language is a function A∗ → [0, 1].

ϵ a aa aaa . . .
0 1

2
1
4

1
8 . . .

‘Probabilistic’ Regular Expression (PRE)?

xyProbabilistic Kleene’s Theorem?

Generative Probabilistic Transition System (GPTS):

q0 q1 ✓
a|12

a|12

1
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Soundness and Completeness

Do we have a reasoning system?

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness
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Structure

1. Coalgebra

2. Probabilistic Regular Expressions

3. Language equivalence

4. Soundness

5. Completeness
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Coalgebras

An F -coalgebra is a function S
β−→ F (S).

Intuition: S is a set of states, β encodes transitions.
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Coalgebras

Determinstic:

q0 q1

S
β−→ S

β(q0) = q1
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Coalgebras

DFA:

q0 q1
a

S
β−→ B× (A ⇒ S)

β(q0) = (false, a 7→ q1)
β(q1) = (true, 7→ q1)
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Coalgebras

GPTS:

q0

q1

✓

a|14

1
2

S
β−→ ((1 + A× S) ⇒ [0, 1])

β(q0)(a, q1) =
1
4

β(q0)(✓) = 1
2
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Coalgebras

GPTS:

q0

q1

✓

a|14

1
2

S
β−→ D(1 + A× S)

β(q0)(a, q1) =
1
4

β(q0)(✓) = 1
2

where DX is the set of maps f : X → [0, 1] with
∑

x∈X f (x) ≤ 1.
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Coalgebra Homomorphism

A coalgebra homomorphism from β : S → FS to γ : R → FR is a
map f : S → R such that the square commutes:

S R

FS FR

f

β γ

Ff

Intuition: f preserves ‘transition structure’.

q0 q1 ⇒ f (q0) f (q1)
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Probabilistic Regular Expressions (PRE)

For an alphabet A, and p ∈ [0, 1], define

e, f ∈ Exp ::= 0 | 1 | a ∈ A | e ⊕p f | e ; f | e [p]

a⊕ 1
3
b

a ; a[
1
2
]
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Progress

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness
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Operational Semantics of PREs

Defining J−K : Exp → (A∗ ⇒ [0, 1]) directly is hard.

First define operational semantics ∂ : Exp → D(1 + A× Exp).
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Operational gives Denotational

Recall: JeK assigns a probability to each word a1a2 . . . an.

e e1 . . . en ✓
a1|p1 a2|p2 an|pn pt
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Semantics via Final Coalgebra

A coalgebra ω : Ω → FΩ is final if for any coalgebra β : S → FS
there is a unique homomorphism †β : S → Ω.

S Ω

FS FΩ

†β

β ω

F (†β)

A∗ ⇒ [0, 1] is not the final coalgebra for functor D(1 + A× (−)).

Reason: GPTS is nondeterministic.

Solution: determinisation [4].
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S A∗ ⇒ B

B× (A ⇒ S)

J−K

β
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Determinisation

Exp

D(1 + A× Exp)

[0, 1]× (A ⇒ DExp)

∂
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Determinisation

Exp DExp

D(1 + A× Exp)

[0, 1]× (A ⇒ DExp)

ηExp

∂

γ
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Determinisation

Exp DExp A∗ ⇒ [0, 1]

D(1 + A× Exp)

[0, 1]× (A ⇒ DExp)

ηExp

∂

†γ

γ
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Determinisation

Exp DExp A∗ ⇒ [0, 1]
ηExp

J−K

†γ

See [5] for a proof.
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Progress

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness
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Language Equivalence

Probabilistic Choice Sequencing
e ≡ e ⊕p e 1; e ≡ e
e ⊕p f ≡ f ⊕1−p e e; (f ; g) ≡ (e; f ); g
· · · · · ·

Distributivity
(e ⊕p f ); g ≡ (e; g)⊕p (f ; g)

Loops Fixpoint rule

e; e [p] ⊕p 1 ≡ e[p]
g ≡ e; g ⊕p f E (e) = 0

g ≡ e[p]; f
· · · · · ·
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Soundness and Completeness

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

Suppose we could write J−K as the composition:

Exp Exp/ ≡ A∗ ⇒ [0, 1]
[−] †d
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Soundness and Completeness

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

Suppose we could write J−K as the composition:

Exp Exp/ ≡ A∗ ⇒ [0, 1]
[−] †d

Then, soundness:

e ≡ f

⇒ [e] = [f ]

⇒ †d([e]) = †d([f ])
⇒ JeK = Jf K
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Soundness and Completeness

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

Suppose we could write J−K as the composition:

Exp Exp/ ≡ A∗ ⇒ [0, 1]
[−] †d

Also completeness, if †d is injective:

e ≡ f

⇐ [e] = [f ]

⇐ †d([e]) = †d([f ])
⇐ JeK = Jf K
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Soundness

For soundness, remains to show two maps are equal:

Exp/ ≡

Exp A∗ ⇒ [0, 1]

DExp

†d
[−]

J−K

ηExp
†γ
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Soundness Idea

We know †γ is the unique homomorphism DExp → (A∗ ⇒ [0, 1]).
So if we build a coalgebra homomorphism:

DExp . . . A∗ ⇒ [0, 1]

it must be equal to †γ.
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Soundness Idea

We build such a coalgebra homomorphism:

DExp DExp/≡0 Exp/≡0 Exp/≡ A∗ ⇒ [0, 1]
D[−]≡0 α0 [−]≡ †d

≡0 is the same as ≡, but without two axioms.
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Can we quotient coalgebras?

Does the quotient Exp/≡0 have a coalgebra structure?

Yes, since ≡0 is a bisimulation equivalence (Lemma 6.1 [1]).
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GPTS Bisimulation Equivalence Example

e f

e ′ e ′′ f ′

✓ ✓ ✓

a | 1
3 a | 1

3 a | 2
3

1
4

1
4

1
4
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GPTS Bisimulation Equivalence Anti-Example

e f

e ′ e ′′ f ′

✓ ✓ ✓

a | 1
3 a | 1

3 a | 2
3

1
4

1
4

1
4
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Quotienting with a Bisimulation Equivalence
Proposition 5.8 [2]: The quotient of a coalgebra with a
bisimulation equivalence is a coalgebra.

S S/R

FS

[−]R

βS

Exp Exp/≡0

D(1 + A× Exp) D(1 + A× Exp/≡0)

[−]≡0

∂ β

F [−]≡0

[e] [e ′]
a|p

iff p =
∑

e
a|q−−→f≡0e′

q

[e] ✓
p

iff e
p
=⇒ ✓
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Completeness

We want †d : Exp/≡ → (A∗ ⇒ [0, 1]) to be injective:

e ≡ f

⇐ [e] = [f ]

⇐ †d([e]) = †d([f ])
⇐ JeK = Jf K
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Completeness Overview

Exp/≡ also has algebra structure DExp/≡ α−→ Exp/≡.

We can lift functor [0, 1]× (A ⇒ −) to D-algebras, and restrict it
to a functor Ĝ whose coalgebras, when determinised, correspond
to GPTS.

Exp/≡ is the rational fixpoint of Ĝ ; here, a subcoalgebra of its
final coalgebra ΩĜ :

Exp/≡ ↪→ ΩĜ ↪→ (A∗ ⇒ [0, 1])

=

Exp/≡ †d−→ (A∗ ⇒ [0, 1])
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Conclusion

e ≡ f

soundness
=======⇒

JeK = Jf K

⇐========
completeness

We have PREs, and a sound and complete system for reasoning
about equivalence.
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