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Goal

Goal: reason about probabilistic imperative programs

Main paper, by Rézowski and Silva, 2023 [1]: reason about simple
probabilistic programs, generically

Second paper, by Rutten, 2000 [2]: ‘generically’
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Context

A language is a function A* — B.

€ a aa aaa
false true true true

A language is regular if recognised by either:
Regular Expression (RE): a; (a*)
IKleene’s Theorem

Deterministic Finite Automaton (DFA):
a

@ -
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Context (2)

Is a; a* the same as a*; a7
We want a reasoning system, i.e. an equivalence relation = with:

soundness

e=f le] = [f]
e

completeness

See e.g. Salomaa [3].
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Probablistic Languages

A probabilistic language is a function A* — [0, 1].

€ dada
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Probablistic Languages

A probabilistic language is a function A* — [0, 1].

dada

€
0
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Nl L
ool

Probabilistic Regular Expression (PRE)

IProbabiIiStic Kleene's Theorem

Generative Probabilistic Transition System (GPTS):

a|%
OO0
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Soundness and Completeness

Do we have a reasoning system?
soundness
e=f [e] = [f]

P

completeness
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Soundness and Completeness

We have a reasoning system!

soundness

e="f le] = [f]

P

completeness
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Structure

AR A .

Coalgebra

Probabilistic Regular Expressions
Language equivalence
Soundness

Completeness
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Coalgebras

An F-coalgebra is a function S LN F(S).

Intuition: S is a set of states, 3 encodes transitions.
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Coalgebras

Determinstic:

shs
B(q0) = ¢
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Coalgebras

DF

sLBx(A=S)

B(qo)
B(q1)

(false,a — q1)
(true, _+— q1)
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Coalgebras

SES(1+AxS) =

B(qo)(a, q1) =
B(a0)(v) = 3

[0,1])
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Coalgebras

Ba0)(v) = 3
where DX is the set of maps f : X — [0,1] with >° _, f(x) < 1.
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Coalgebra Homomorphism

A coalgebra homomorphism from 3:S — FStovy: R — FR is a
map f : S — R such that the square commutes:

s—f R

ﬂl lv

FS —— FR

23/66



Coalgebra Homomorphism

A coalgebra homomorphism from 3:S — FStovy: R — FR is a
map f : S — R such that the square commutes:

s—f R

ﬂl lv

FS —— FR

Intuition: f preserves ‘transition structure’.
(2)— N
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Probabilistic Regular Expressions (PRE)

For an alphabet A, and p € [0, 1], define

efcbxpu=0|1|acA|led,f|e;f]|el
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Progress

soundness

e=f le] = [f]

X/

completeness
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Operational Semantics of PREs

Defining [—] : Exp — (A* = [0, 1]) directly is hard.
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Defining [—] : Exp — (A* = [0, 1]) directly is hard.
First define operational semantics 9 : Exp — D(1 + A x Exp).

ad1 b
3
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Operational Semantics of PREs

Defining [—] : Exp — (A* = [0, 1]) directly is hard.
First define operational semantics 9 : Exp — D(1 + A x Exp).
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Operational gives Denotational

Recall: [e] assigns a probability to each word a;a; ... ap,.

a a a
@ 1|Pl@ 2|p2 n|Pn o )Pt
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Semantics via Final Coalgebra

A coalgebra w : Q — FQ is final if for any coalgebra 5 : S — FS
there is a unique homomorphism 3 : 5 — Q.

s—-Y.,q
ol
FS —— FQ
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Semantics via Final Coalgebra

s-1.q
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Semantics via Final Coalgebra
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Semantics via Final Coalgebra

Exp A = j0,1]

D(1+ A x Exp)
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Semantics via Final Coalgebra

D(1+ A x Exp)
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Semantics via Final Coalgebra

D(1+ A x Exp)

A* = [0, 1] is not the final coalgebra for functor D(1 + A x (—)).
Reason: GPTS is nondeterministic.
Solution: determinisation [4].

38/66



Determinisation

Exp

gl

D(1 + A x Exp)

|

[0,1] x (A = DExp)
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Determinisation

Exp — = DExp

o|

D(1+ A x Exp)

|

[0,1] x (A= DExp)
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Determinisation

Exp — " DExp T A% = [0, 1]

o]

D(1+ A x Exp)

|

[0,1] x (A = DExp)

Y
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Determinisation

Exp 2% DExp s A* = [0,1]

[-1
See [5] for a proof.
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Progress

soundness

e=f le] = [f]

B

completeness
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Language Equivalence

Probabilistic Choice
e=edpe
e @p f = f @1—;) e

Distributivity
(e®pf)ig=(eg)dp(fig)

Loops

e; e[p] @P 1= e[p]

Sequencing
l.e=e
e(fig)=(ef)g

Fixpoint rule
g=egdpyf E(e)=0
g = elpl: £
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Soundness and Completeness

soundness

e=f [e] = [f]

P

completeness
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Soundness and Completeness

soundness

e=f [e] = [f]

P

completeness
Suppose we could write [—] as the composition:

Exp , Exp/ = SN SN [0,1]
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Soundness and Completeness

soundness

e=f [e] = [f]

P

completeness

Suppose we could write [—] as the composition:

Exp , Exp/ = SN SN [0,1]

Then, soundness:

e=f
= [e] = [f]
= td([e]) = 1d([f])
= [e] =[]
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Soundness and Completeness

soundness

e=f [e] = [f]

P

completeness

Suppose we could write [—] as the composition:

Exp , Exp/ = SN SN [0,1]

Also completeness, if td is injective:

e=f
< [e] = [f]
< td([e]) = 1d([f])
< [e] =[]
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Soundness

For soundness, remains to show two maps are equal:
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Soundness |dea

We know 7 is the unique homomorphism DExp — (A* = [0, 1]).
So if we build a coalgebra homomorphism:

DExp —— ... —— A* = [0, 1]

it must be equal to 7.
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Soundness |dea

We build such a coalgebra homomorphism:

D[-]= o i
DExp ig DExp/=¢ —— Exp/=0 % Exp/= SLENY SN [0,1]

=y is the same as =, but without two axioms.
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Can we quotient coalgebras?

Does the quotient Exp/=¢ have a coalgebra structure?
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Can we quotient coalgebras?

Does the quotient Exp/=¢ have a coalgebra structure?

Yes, since =g is a bisimulation equivalence (Lemma 6.1 [1]).
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GPTS Bisimulation Equivalence Example
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GPTS Bisimulation Equivalence Anti-Example

E
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Quotienting with a Bisimulation Equivalence
Proposition 5.8 [2]: The quotient of a coalgebra with a
bisimulation equivalence is a coalgebra.

s ey s/R

y

FS
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Quotienting with a Bisimulation Equivalence
Proposition 5.8 [2]: The quotient of a coalgebra with a
bisimulation equivalence is a coalgebra.

5[—>S/R

BS\L } ﬁ

FS 52 F(S/R)
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Quotienting with a Bisimulation Equivalence

Proposition 5.8 [2]: The quotient of a coalgebra with a
bisimulation equivalence is a coalgebra.

Exp H= » Exp/=0

al E

D(1+ A x Exp) Y D(1+ A x Exp/=p)
=
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Quotienting with a Bisimulation Equivalence

Proposition 5.8 [2]: The quotient of a coalgebra with a
bisimulation equivalence is a coalgebra.

Exp H= » Exp/=o

al E

D(1+ A x Exp) Y D(1+ A x Exp/=p)
=

alp
iff p=3S" ,
PoY e
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Quotienting with a Bisimulation Equivalence

Proposition 5.8 [2]: The quotient of a coalgebra with a
bisimulation equivalence is a coalgebra.

Exp H= » Exp/=o

al 5

D(1+ A x Exp) Y D(1+ A x Exp/=p)
=

alp o
I = B
P elﬁzoe’ q
p
O=OFrrs
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Completeness

We want td : Exp/= — (A* = [0, 1]) to be injective:
e=f
< [e] = [f]
< td([e]) = td([f])
< [e] = [f]
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Completeness Overview

Exp/= also has algebra structure DExp/= % Exp/=.
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Completeness Overview

Exp/= also has algebra structure DExp/= % Exp/=.

We can lift functor [0, 1] x (A = —) to D-algebras, and restrict it
to a functor G whose coalgebras, when determinised, correspond

to GPTS.
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Completeness Overview

Exp/= also has algebra structure DExp/= % Exp/=.

We can lift functor [0, 1] x (A = —) to D-algebras, and restrict it
to a functor G whose coalgebras, when determinised, correspond

to GPTS.

Exp/= is the rational fixpoint of G; here, a subcoalgebra of its
final coalgebra Q:

Exp/=— Qg — (A" = [0,1])

Exp/= % (A" = [0,1])
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Conclusion

soundness

e="f le] = [f]

P

completeness

We have PREs, and a sound and complete system for reasoning
about equivalence.
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