

Reasoning about Probabilistic Programs using Coalgebra

Codrin Iftode

Radboud University

January 20, 2026

Goal

Goal: reason about **probabilistic imperative programs**

Goal

Goal: reason about **probabilistic imperative programs**

Main paper, by Różowski and Silva, 2023 [1]: reason about **simple** probabilistic programs, **generically**

Goal

Goal: reason about **probabilistic imperative programs**

Main paper, by Różowski and Silva, 2023 [1]: reason about **simple** probabilistic programs, **generically**

Second paper, by Rutten, 2000 [2]: ‘generically’

Context

A *language* is a function $A^* \rightarrow \mathbb{B}$.

ϵ	a	aa	aaa	...
false	true	true	true	...

Context

A *language* is a function $A^* \rightarrow \mathbb{B}$.

ϵ	a	aa	aaa	...
false	true	true	true	...

A language is *regular* if recognised by either:

Regular Expression (RE): a ; (a^*)

Context

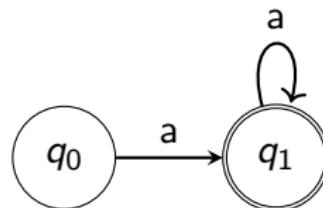
A *language* is a function $A^* \rightarrow \mathbb{B}$.

ϵ	a	aa	aaa	...
false	true	true	true	...

A language is *regular* if recognised by either:

Regular Expression (RE): $a ; (a^*)$

Deterministic Finite Automaton (DFA):



Context

A *language* is a function $A^* \rightarrow \mathbb{B}$.

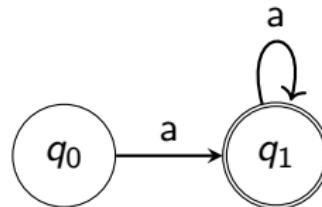
ϵ	a	aa	aaa	...
false	true	true	true	...

A language is *regular* if recognised by either:

Regular Expression (RE): $a ; (a^*)$

↑ Kleene's Theorem
↓

Deterministic Finite Automaton (DFA):



Context (2)

Is $a ; a^*$ the same as $a^* ; a$?

We want a reasoning system, i.e. an equivalence relation \equiv with:

$$\begin{array}{ccc} & \xrightarrow{\text{soundness}} & \\ e \equiv f & & \llbracket e \rrbracket = \llbracket f \rrbracket \\ & \xleftarrow{\text{completeness}} & \end{array}$$

See e.g. Salomaa [3].

Probabilistic Languages

A *probabilistic language* is a function $A^* \rightarrow [0, 1]$.

ϵ	a	aa	aaa	...
0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$...

Probabilistic Languages

A *probabilistic language* is a function $A^* \rightarrow [0, 1]$.

ϵ	a	aa	aaa	...
0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$...

'Probabilistic' Regular Expression (PRE)?

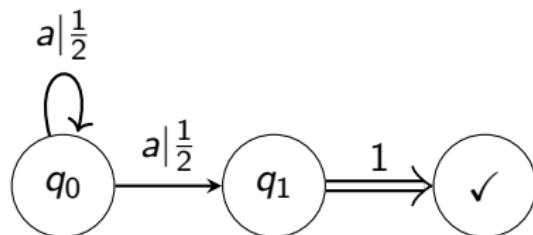
Probabilistic Languages

A *probabilistic language* is a function $A^* \rightarrow [0, 1]$.

ϵ	a	aa	aaa	...
0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$...

'Probabilistic' Regular Expression (PRE)?

Generative Probabilistic Transition System (GPTS):



Probabilistic Languages

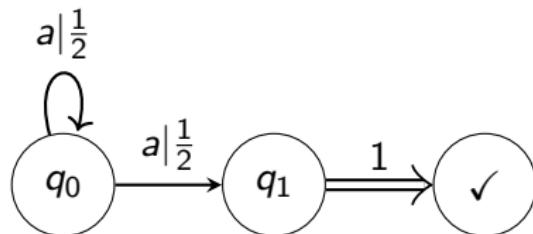
A *probabilistic language* is a function $A^* \rightarrow [0, 1]$.

ϵ	a	aa	aaa	...
0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$...

'Probabilistic' Regular Expression (PRE)?

↑
↓ Probabilistic Kleene's Theorem?

Generative Probabilistic Transition System (GPTS):



Probabilistic Languages

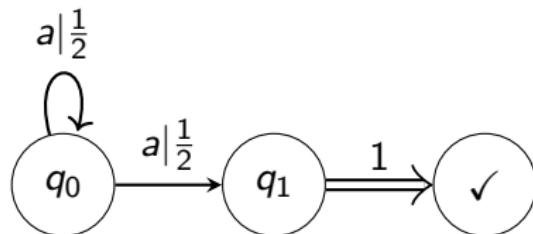
A *probabilistic language* is a function $A^* \rightarrow [0, 1]$.

ϵ	a	aa	aaa	...
0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$...

Probabilistic Regular Expression (PRE)

↑
Probabilistic Kleene's Theorem
↓

Generative Probabilistic Transition System (GPTS):



Soundness and Completeness

Do we have a reasoning system?

$\xrightarrow{\text{soundness}}$

$$e \equiv f \qquad \qquad \llbracket e \rrbracket = \llbracket f \rrbracket$$

$\xleftarrow[\text{completeness}]{} \rightleftharpoons$

Soundness and Completeness

We have a reasoning system!

$\xrightarrow{\text{soundness}}$

$$e \equiv f \qquad \qquad \llbracket e \rrbracket = \llbracket f \rrbracket$$

$\xleftarrow[\text{completeness}]{} \rightleftharpoons$

Structure

1. Coalgebra
2. Probabilistic Regular Expressions
3. Language equivalence
4. Soundness
5. Completeness

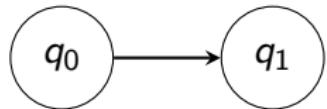
Coalgebras

An F -coalgebra is a function $S \xrightarrow{\beta} F(S)$.

Intuition: S is a set of states, β encodes transitions.

Coalgebras

Deterministic:

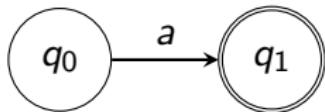


$$S \xrightarrow{\beta} S$$

$$\beta(q_0) = q_1$$

Coalgebras

DFA:



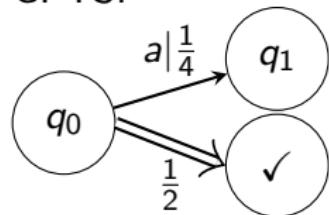
$$S \xrightarrow{\beta} \mathbb{B} \times (A \Rightarrow S)$$

$$\beta(q_0) = (\mathbf{false}, a \mapsto q_1)$$

$$\beta(q_1) = (\mathbf{true}, - \mapsto q_1)$$

Coalgebras

GPTS:



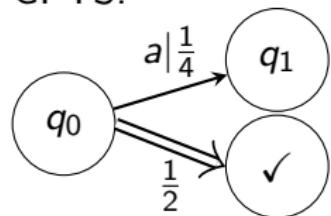
$$S \xrightarrow{\beta} ((1 + A \times S) \Rightarrow [0, 1])$$

$$\beta(q_0)(a, q_1) = \frac{1}{4}$$

$$\beta(q_0)(\checkmark) = \frac{1}{2}$$

Coalgebras

GPTS:



$$S \xrightarrow{\beta} \mathcal{D}(1 + A \times S)$$

$$\beta(q_0)(a, q_1) = \frac{1}{4}$$

$$\beta(q_0)(\checkmark) = \frac{1}{2}$$

where $\mathcal{D}X$ is the set of maps $f : X \rightarrow [0, 1]$ with $\sum_{x \in X} f(x) \leq 1$.

Coalgebra Homomorphism

A coalgebra *homomorphism* from $\beta : S \rightarrow FS$ to $\gamma : R \rightarrow FR$ is a map $f : S \rightarrow R$ such that the square commutes:

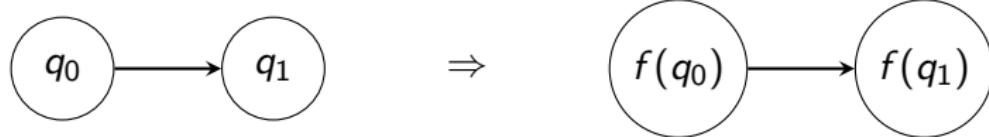
$$\begin{array}{ccc} S & \xrightarrow{f} & R \\ \beta \downarrow & & \downarrow \gamma \\ FS & \xrightarrow{Ff} & FR \end{array}$$

Coalgebra Homomorphism

A coalgebra *homomorphism* from $\beta : S \rightarrow FS$ to $\gamma : R \rightarrow FR$ is a map $f : S \rightarrow R$ such that the square commutes:

$$\begin{array}{ccc} S & \xrightarrow{f} & R \\ \beta \downarrow & & \downarrow \gamma \\ FS & \xrightarrow{Ff} & FR \end{array}$$

Intuition: f preserves 'transition structure'.



Probabilistic Regular Expressions (PRE)

For an alphabet A , and $p \in [0, 1]$, define

$$e, f \in \text{Exp} ::= 0 \mid 1 \mid a \in A \mid e \oplus_p f \mid e ; f \mid e^{[p]}$$

$$a \oplus_{\frac{1}{3}} b$$

$$a ; a^{[\frac{1}{2}]}$$

Progress

$\xrightarrow{\text{soundness}}$

$$e \equiv f \qquad \llbracket e \rrbracket = \llbracket f \rrbracket$$

$\xleftarrow{\text{completeness}}$

Operational Semantics of PREs

Defining $\llbracket - \rrbracket : \text{Exp} \rightarrow (A^* \Rightarrow [0, 1])$ directly is hard.

Operational Semantics of PREs

Defining $\llbracket - \rrbracket : \text{Exp} \rightarrow (A^* \Rightarrow [0, 1])$ directly is hard.

First define operational semantics $\partial : \text{Exp} \rightarrow \mathcal{D}(1 + A \times \text{Exp})$.

Operational Semantics of PREs

Defining $\llbracket - \rrbracket : \text{Exp} \rightarrow (A^* \Rightarrow [0, 1])$ directly is hard.

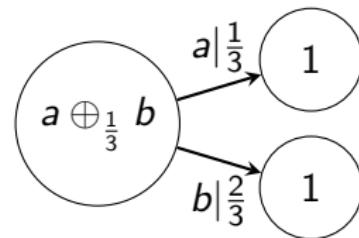
First define operational semantics $\partial : \text{Exp} \rightarrow \mathcal{D}(1 + A \times \text{Exp})$.

$$a \oplus_{\frac{1}{3}} b$$

Operational Semantics of PREs

Defining $\llbracket - \rrbracket : \text{Exp} \rightarrow (A^* \Rightarrow [0, 1])$ directly is hard.

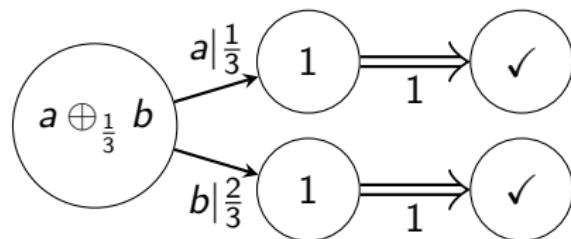
First define operational semantics $\partial : \text{Exp} \rightarrow \mathcal{D}(1 + A \times \text{Exp})$.



Operational Semantics of PREs

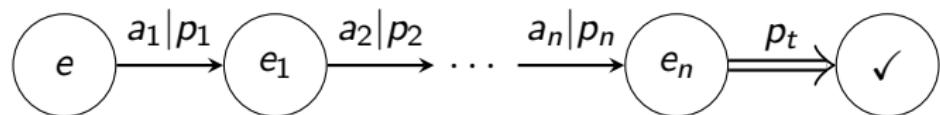
Defining $\llbracket - \rrbracket : \text{Exp} \rightarrow (A^* \Rightarrow [0, 1])$ directly is hard.

First define operational semantics $\partial : \text{Exp} \rightarrow \mathcal{D}(1 + A \times \text{Exp})$.



Operational gives Denotational

Recall: $\llbracket e \rrbracket$ assigns a probability to each word $a_1 a_2 \dots a_n$.



Semantics via Final Coalgebra

A coalgebra $\omega : \Omega \rightarrow F\Omega$ is *final* if for any coalgebra $\beta : S \rightarrow FS$ there is a unique homomorphism $\dagger\beta : S \rightarrow \Omega$.

$$\begin{array}{ccc} S & \xrightarrow{\dagger\beta} & \Omega \\ \beta \downarrow & & \downarrow \omega \\ FS & \xrightarrow{F(\dagger\beta)} & F\Omega \end{array}$$

Semantics via Final Coalgebra

$$\begin{array}{ccc} S & \xrightarrow{\dagger\beta} & \Omega \\ \beta \downarrow & & \\ FS & & \end{array}$$

Semantics via Final Coalgebra

$$\begin{array}{ccc} S & \xrightarrow{\llbracket - \rrbracket} & A^* \Rightarrow \mathbb{B} \\ \beta \downarrow & & \\ \mathbb{B} \times (A \Rightarrow S) & & \end{array}$$

Semantics via Final Coalgebra

$$\begin{array}{ccc} \text{Exp} & \xrightarrow{\llbracket - \rrbracket ?} & A^* \Rightarrow [0, 1] \\ \partial \downarrow & & \\ \mathcal{D}(1 + A \times \text{Exp}) & & \end{array}$$

Semantics via Final Coalgebra

$$\begin{array}{ccc} \text{Exp} & \xrightarrow{\text{---} \text{---} \text{---}} & A^* \xrightarrow{\text{---}} [0, 1] \\ \partial \downarrow & & \\ \mathcal{D}(1 + A \times \text{Exp}) & & \end{array}$$

Semantics via Final Coalgebra

$$\begin{array}{ccc} \text{Exp} & \xrightarrow{\text{---}} & A^* \xrightarrow{\text{---}} [0, 1] \\ \partial \downarrow & & \\ \mathcal{D}(1 + A \times \text{Exp}) & & \end{array}$$

$A^* \Rightarrow [0, 1]$ is **not** the final coalgebra for functor $\mathcal{D}(1 + A \times (-))$.

Reason: GPTS is nondeterministic.

Solution: determinisation [4].

Determinisation

$$\begin{array}{c} \text{Exp} \\ \downarrow \partial \\ \mathcal{D}(1 + A \times \text{Exp}) \\ \downarrow \\ [0, 1] \times (A \Rightarrow \mathcal{D}\text{Exp}) \end{array}$$

Determinisation

$$\begin{array}{ccc} \text{Exp} & \xrightarrow{\eta_{\text{Exp}}} & \mathcal{D}\text{Exp} \\ \partial \downarrow & & \swarrow \gamma \\ \mathcal{D}(1 + A \times \text{Exp}) & & \\ \downarrow & & \\ [0, 1] \times (A \Rightarrow \mathcal{D}\text{Exp}) & & \end{array}$$

Determinisation

$$\begin{array}{ccccc} \text{Exp} & \xrightarrow{\eta_{\text{Exp}}} & \mathcal{D}\text{Exp} & \dashrightarrow^{\dagger\gamma} & A^* \Rightarrow [0, 1] \\ \partial \downarrow & & & & \\ \mathcal{D}(1 + A \times \text{Exp}) & & & \gamma & \\ \downarrow & \swarrow & & & \\ [0, 1] \times (A \Rightarrow \mathcal{D}\text{Exp}) & & & & \end{array}$$

Determinisation

$$\text{Exp} \xrightarrow{\eta_{\text{Exp}}} \mathcal{D}\text{Exp} \xrightarrow{\dagger\gamma} A^* \Rightarrow [0, 1]$$

$\llbracket - \rrbracket$

See [5] for a proof.

Progress

$\xrightarrow{\text{soundness}}$

$$e \equiv f \qquad \llbracket e \rrbracket = \llbracket f \rrbracket$$

$\xleftarrow{\text{completeness}}$

Language Equivalence

Probabilistic Choice

$$e \equiv e \oplus_p e$$

$$e \oplus_p f \equiv f \oplus_{1-p} e$$

...

Sequencing

$$1; e \equiv e$$

$$e; (f; g) \equiv (e; f); g$$

...

Distributivity

$$(e \oplus_p f); g \equiv (e; g) \oplus_p (f; g)$$

Loops

$$e; e^{[p]} \oplus_p 1 \equiv e^{[p]}$$

...

Fixpoint rule

$$\frac{g \equiv e; g \oplus_p f \quad E(e) = 0}{g \equiv e^{[p]}; f}$$

...

Soundness and Completeness

$$\begin{array}{ccc} & \xrightarrow{\text{soundness}} & \\ e \equiv f & & \llbracket e \rrbracket = \llbracket f \rrbracket \\ & \xleftarrow{\text{completeness}} & \end{array}$$

Soundness and Completeness

$$\begin{array}{ccc} & \xrightarrow{\text{soundness}} & \\ e \equiv f & & \llbracket e \rrbracket = \llbracket f \rrbracket \\ & \xleftarrow{\text{completeness}} & \end{array}$$

Suppose we could write $\llbracket - \rrbracket$ as the composition:

$$\text{Exp} \xrightarrow{[-]} \text{Exp}/ \equiv \xrightarrow{\dagger^d} A^* \Rightarrow [0, 1]$$

Soundness and Completeness

$$\begin{array}{ccc} & \xrightarrow{\text{soundness}} & \\ e \equiv f & & \llbracket e \rrbracket = \llbracket f \rrbracket \\ & \xleftarrow{\text{completeness}} & \end{array}$$

Suppose we could write $\llbracket - \rrbracket$ as the composition:

$$\text{Exp} \xrightarrow{[-]} \text{Exp}/ \equiv \xrightarrow{\dagger d} A^* \Rightarrow [0, 1]$$

Then, soundness:

$$\begin{aligned} e &\equiv f \\ \Rightarrow \llbracket e \rrbracket &= \llbracket f \rrbracket \\ \Rightarrow \dagger d(\llbracket e \rrbracket) &= \dagger d(\llbracket f \rrbracket) \\ \Rightarrow \llbracket e \rrbracket &= \llbracket f \rrbracket \end{aligned}$$

Soundness and Completeness

$$\begin{array}{ccc} & \xrightarrow{\text{soundness}} & \\ e \equiv f & & \llbracket e \rrbracket = \llbracket f \rrbracket \\ & \xleftarrow{\text{completeness}} & \end{array}$$

Suppose we could write $\llbracket - \rrbracket$ as the composition:

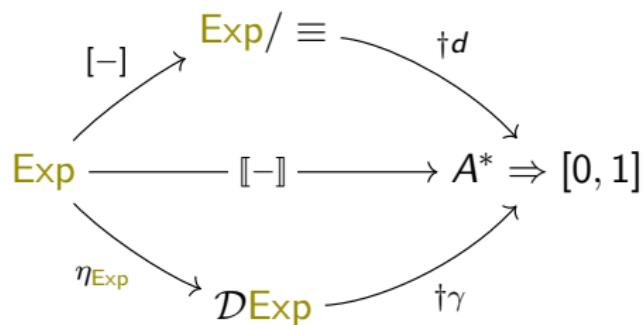
$$\text{Exp} \xrightarrow{[-]} \text{Exp}/ \equiv \xrightarrow{\dagger d} A^* \Rightarrow [0, 1]$$

Also completeness, if $\dagger d$ is **injective**:

$$\begin{aligned} e \equiv f \\ \Leftarrow \llbracket e \rrbracket = \llbracket f \rrbracket \\ \Leftarrow \dagger d(\llbracket e \rrbracket) = \dagger d(\llbracket f \rrbracket) \\ \Leftarrow \llbracket e \rrbracket = \llbracket f \rrbracket \end{aligned}$$

Soundness

For soundness, remains to show two maps are equal:



Soundness Idea

We know $\dagger\gamma$ is the **unique** homomorphism $\mathcal{D}\text{Exp} \rightarrow (A^* \Rightarrow [0, 1])$.
So if we build a coalgebra homomorphism:

$$\mathcal{D}\text{Exp} \longrightarrow \dots \longrightarrow A^* \Rightarrow [0, 1]$$

it must be equal to $\dagger\gamma$.

Soundness Idea

We build such a coalgebra homomorphism:

$$\mathcal{D}\text{Exp} \xrightarrow{\mathcal{D}[-]_{\equiv_0}} \mathcal{D}\text{Exp}/\equiv_0 \xrightarrow{\alpha_0} \text{Exp}/\equiv_0 \xrightarrow{[-]_{\equiv}} \text{Exp}/\equiv \xrightarrow{\dagger^d} A^* \Rightarrow [0, 1]$$

\equiv_0 is the same as \equiv , but without two axioms.

Can we quotient coalgebras?

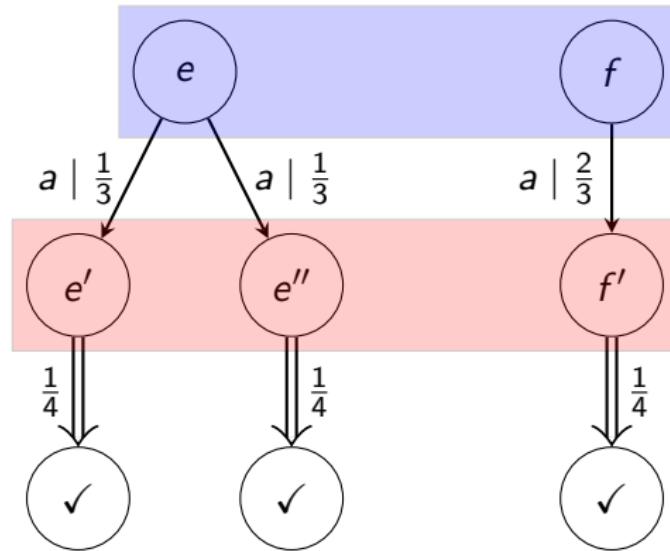
Does the quotient Exp/\equiv_0 have a coalgebra structure?

Can we quotient coalgebras?

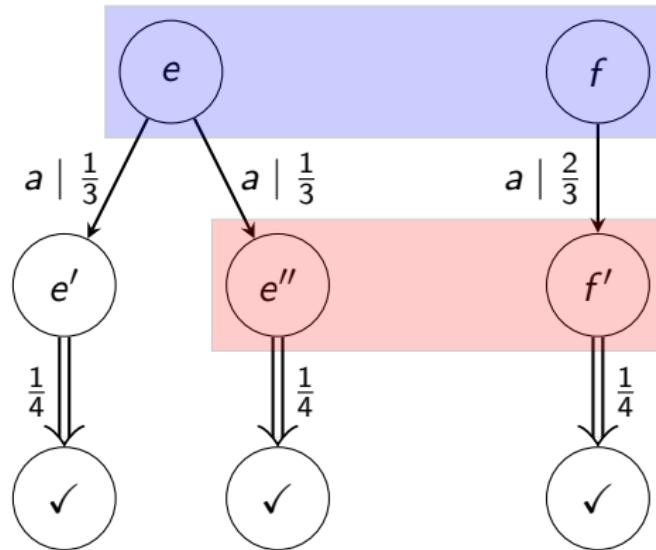
Does the quotient Exp/\equiv_0 have a coalgebra structure?

Yes, since \equiv_0 is a **bisimulation** equivalence (Lemma 6.1 [1]).

GPTS Bisimulation Equivalence Example



GPTS Bisimulation Equivalence Anti-Example



Quotienting with a Bisimulation Equivalence

Proposition 5.8 [2]: The quotient of a coalgebra with a bisimulation equivalence is a coalgebra.

$$\begin{array}{ccc} S & \xrightarrow{[-]_R} & S/R \\ \beta_S \downarrow & & \\ FS & & \end{array}$$

Quotienting with a Bisimulation Equivalence

Proposition 5.8 [2]: The quotient of a coalgebra with a bisimulation equivalence is a coalgebra.

$$\begin{array}{ccc} S & \xrightarrow{[-]_R} & S/R \\ \beta_S \downarrow & & \downarrow \beta \\ FS & \xrightarrow{F[-]_R} & F(S/R) \end{array}$$

Quotienting with a Bisimulation Equivalence

Proposition 5.8 [2]: The quotient of a coalgebra with a bisimulation equivalence is a coalgebra.

$$\begin{array}{ccc} \text{Exp} & \xrightarrow{[-]_{\equiv_0}} & \text{Exp}/\equiv_0 \\ \partial \downarrow & & \downarrow \beta \\ \mathcal{D}(1 + A \times \text{Exp}) & \xrightarrow{F[-]_{\equiv_0}} & \mathcal{D}(1 + A \times \text{Exp}/\equiv_0) \end{array}$$

Quotienting with a Bisimulation Equivalence

Proposition 5.8 [2]: The quotient of a coalgebra with a bisimulation equivalence is a coalgebra.

$$\begin{array}{ccc} \text{Exp} & \xrightarrow{[-]_{\equiv_0}} & \text{Exp}/\equiv_0 \\ \partial \downarrow & & \downarrow \beta \\ \mathcal{D}(1 + A \times \text{Exp}) & \xrightarrow{F[-]_{\equiv_0}} & \mathcal{D}(1 + A \times \text{Exp}/\equiv_0) \end{array}$$

Quotienting with a Bisimulation Equivalence

Proposition 5.8 [2]: The quotient of a coalgebra with a bisimulation equivalence is a coalgebra.

$$\begin{array}{ccc} \mathbf{Exp} & \xrightarrow{[-]_{\equiv_0}} & \mathbf{Exp}/\equiv_0 \\ \partial \downarrow & & \downarrow \beta \\ \mathcal{D}(1 + A \times \mathbf{Exp}) & \xrightarrow{F[-]_{\equiv_0}} & \mathcal{D}(1 + A \times \mathbf{Exp}/\equiv_0) \end{array}$$

$$\text{[e]} \xrightarrow{a|p} \text{[e']} \quad \text{iff} \quad p = \sum_{e \xrightarrow{a|q} f \equiv_0 e'} q$$

$$\text{[e]} \xrightarrow{p} \checkmark \quad \text{iff} \quad e \xrightarrow{p} \checkmark$$

Completeness

We want $\dagger d : \text{Exp}/\equiv \rightarrow (A^* \Rightarrow [0, 1])$ to be injective:

$$\begin{aligned} e &\equiv f \\ \Leftrightarrow [e] &= [f] \\ \Leftrightarrow \dagger d([e]) &= \dagger d([f]) \\ \Leftrightarrow \llbracket e \rrbracket &= \llbracket f \rrbracket \end{aligned}$$

Completeness Overview

Exp/\equiv also has algebra structure $\mathcal{D}\text{Exp}/\equiv \xrightarrow{\alpha} \text{Exp}/\equiv$.

Completeness Overview

Exp/\equiv also has algebra structure $\mathcal{D}\text{Exp}/\equiv \xrightarrow{\alpha} \text{Exp}/\equiv$.

We can lift functor $[0, 1] \times (A \Rightarrow -)$ to \mathcal{D} -algebras, and restrict it to a functor \hat{G} whose coalgebras, when determinised, correspond to GPTS.

Completeness Overview

Exp/\equiv also has algebra structure $\mathcal{D}\text{Exp}/\equiv \xrightarrow{\alpha} \text{Exp}/\equiv$.

We can lift functor $[0, 1] \times (A \Rightarrow -)$ to \mathcal{D} -algebras, and restrict it to a functor \hat{G} whose coalgebras, when determinised, correspond to GPTS.

Exp/\equiv is the **rational fixpoint** of \hat{G} ; here, a subcoalgebra of its final coalgebra $\Omega_{\hat{G}}$:

$$\text{Exp}/\equiv \hookrightarrow \Omega_{\hat{G}} \hookrightarrow (A^* \Rightarrow [0, 1])$$

=

$$\text{Exp}/\equiv \xrightarrow{\dagger_d} (A^* \Rightarrow [0, 1])$$

Conclusion

$$\begin{array}{ccc} & \xrightarrow{\text{soundness}} & \\ e \equiv f & & \llbracket e \rrbracket = \llbracket f \rrbracket \\ & \xleftarrow{\text{completeness}} & \end{array}$$

We have PREs, and a sound and complete system for reasoning about equivalence.

References

- [1] Różowski, W. and Silva, A. (2024). A completeness theorem for probabilistic regular expressions. In *Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science*, LICS '24, New York, NY, USA. Association for Computing Machinery.
- [2] Rutten, J. (2000). Universal coalgebra: a theory of systems. *Theoretical Computer Science*, 249(1):3–80. Modern Algebra.
- [3] Salomaa, A. (1966). Two complete axiom systems for the algebra of regular events. *J. ACM*, 13(1):158–169.
- [4] Silva, A., Bonchi, F., Bonsangue, M. M., and Rutten, J. J. M. M. (2010). Generalizing the powerset construction, coalgebraically. In Lodaya, K. and Mahajan, M., editors, *IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)*, volume 8 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pages 272–283, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
- [5] Silva, A. and Sokolova, A. (2011). Sound and complete axiomatization of trace semantics for probabilistic systems. *Electronic Notes in Theoretical Computer Science*, 276:291–311. Twenty-seventh Conference on the Mathematical Foundations of Programming Semantics (MFPS XXVII).