

Session Types with Classical and Intuitionistic Logic

Floris Reuvers

Radboud University

January 19, 2026

Table of Contents

Introduction

Prerequisites

Sequent Calculus
Linear Logic

Paper 1

π -calculus
Semantics of Session Types
Terms the π -calculus

Paper 2

Conclusion

Introduction first paper

- ▶ Propositions as Sessions
- ▶ Philip Wadler
- ▶ Distributed systems
- ▶ π -calculus (CP)
- ▶ Channels
- ▶ GV

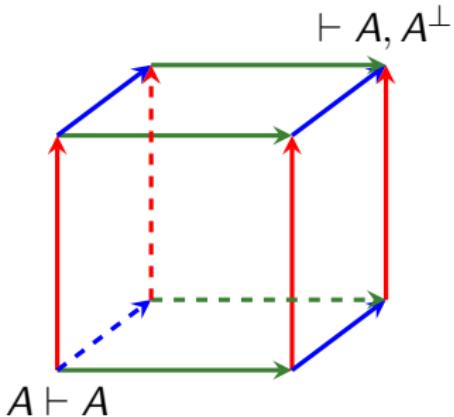
λ -calculus	π -calculus
Evaluation of functions	Communication between processes
Data types	Session Types
Traditional Logic	Linear Logic

Introduction second paper

- ▶ Session Type Systems based on Linear Logic: Classical versus Intuitionistic
- ▶ Bas van den Heuvel and Jorge A. Pérez
- ▶ Locality Principle
- ▶ $\pi\text{CLL}^{\text{CP}}$, πILL and πULL

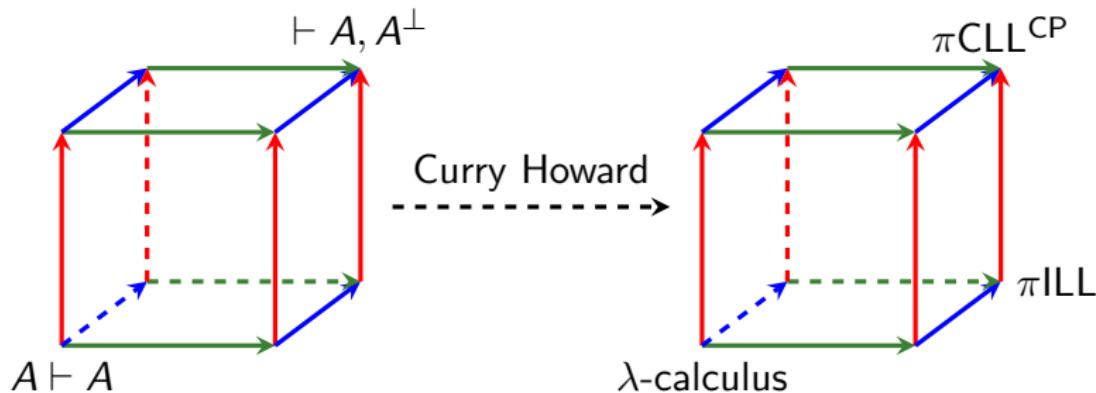
	$\pi\text{CLL}^{\text{CP}}$	πILL	πULL
Locality	No	Yes	Yes and no

Logic Cube



- ▶ Intuitionistic → Classical
- ▶ Traditional → Linear
- ▶ Natural Deduction → Sequent Calculus

Logic Cube: Curry Howard



- ▶ Intuitionistic → Classical
- ▶ Traditional → Linear
- ▶ Natural Deduction → Sequent Calculus

Table of Contents

Introduction

Prerequisites

Sequent Calculus
Linear Logic

Paper 1

π -calculus
Semantics of Session Types
Terms the π -calculus

Paper 2

Conclusion

Intuitionistic Sequent Calculus

Sequents

Sequents are of the following form:

$$A_1, A_2, \dots, A_n \vdash B \quad \text{and} \quad \vdash (A_1 \wedge A_2 \wedge \dots \wedge A_n) \rightarrow B$$

Rules

$$\frac{}{A \vdash A} I$$

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B} \wedge R$$

$$\frac{\Gamma \vdash A \quad \Sigma, A \vdash B}{\Gamma, \Sigma \vdash B} Cut$$

$$\frac{\Gamma, A \vdash C}{\Gamma, A \wedge B \vdash C} \wedge L_1$$

Classical Sequent Calculus

Sequents

Judgements are of the following form:

$$A_1, A_2, \dots, A_n \vdash B_1, B_2, \dots, B_k$$

Logical Interpretation

This can be expressed as:

$$\vdash (A_1 \wedge A_2 \wedge \dots \wedge A_n) \rightarrow (B_1 \vee B_2 \vee \dots \vee B_k)$$

or, equivalently,

$$\vdash \neg A_1 \vee \neg A_2 \vee \dots \vee \neg A_n \vee B_1 \vee B_2 \vee \dots \vee B_k$$

Some Rules for CL Sequent Calculus

Rules

$$\frac{}{A \vdash A} I$$

$$\frac{\Gamma \vdash \Delta, A \quad A, \Sigma \vdash \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi} Cut$$

$$\frac{\Gamma \vdash A, \Delta \quad \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta} \wedge R$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta} \wedge L_1$$

$$\frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} \neg L$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \neg R$$

Introduction to Linear Logic

- ▶ Only use assumptions exactly *once*
- ▶ In traditional logic we can prove:

$$\vdash A \wedge A \rightarrow A$$

$$\vdash A \wedge B \rightarrow A$$

$$\vdash A \rightarrow A \wedge A$$

- ▶ In linear logic, we cannot prove:

$$\nvdash A \otimes A \multimap A$$

$$\nvdash A \otimes B \multimap A$$

$$\nvdash A \multimap A \otimes A$$

- ▶ But we *can* prove:

$$\vdash A \otimes A \multimap A \otimes A$$

$$\vdash A \otimes B \multimap B \otimes A$$

Symbols in Linear Logic

Usage	Name	Meaning
$A \multimap B$	Lollipop	Linear implication: “Consume A to produce B ”
$A \otimes B$	Times	Multiplicative conjunction: “Both A and B ”
$A \wp B$	Par	Multiplicative disjunction: “ A or B ”
$!A$	“Of course”	Exponential: “ A may be used multiple times”
$?A$	“Why-not”	Dual exponential: “ A may be produced (proven) multiple times”

Linear Negation

Neutral elements

- ▶ **1** unit for \otimes : absence of any resources
- ▶ \perp unit for \wp : unconsumable resources

Definitions

$$A \multimap B := A^\perp \wp B$$
$$\mathbf{1} \otimes A \equiv A$$
$$\perp \wp A \equiv A$$

$$(\cdot)^\perp(nil)$$

$$\mathbf{1}^\perp := \perp \quad (A \otimes B)^\perp := A^\perp \wp B^\perp \quad (!A)^\perp := ?A^\perp$$
$$\perp^\perp := \mathbf{1} \quad (A \wp B)^\perp := A^\perp \otimes B^\perp \quad (?A)^\perp := !A^\perp$$

Sequents in Linear Logic

- ▶ Γ : unrestricted context
- ▶ Δ : restricted context
- ▶ C : single proposition

Intuitionistic Linear Logic

Judgements are given by:

$$\Gamma; \Delta \vdash C$$

Classical Linear Logic

Judgements are given by:

$$\vdash \Gamma; \Delta$$

Intuitionistic Linear Logic (ILL)

Rules

$$\frac{}{\Gamma; A \vdash A} \text{ID}$$

$$\frac{\Gamma; \Delta \vdash A \quad \Gamma; \Delta', A \vdash C}{\Gamma; \Delta, \Delta' \vdash C} \text{CUT}$$

$$\frac{\Gamma; \Delta, A, B \vdash C}{\Gamma; \Delta, A \otimes B \vdash C} \otimes L$$

$$\frac{\Gamma; \Delta \vdash A \quad \Gamma; \Delta' \vdash B}{\Gamma; \Delta, \Delta' \vdash A \otimes B} \otimes R$$

Classical Linear Logic (CLL)

Rules

$$\frac{}{\vdash \Gamma; A, A^\perp} \text{ID}$$

$$\frac{\vdash \Gamma; \Delta, A \quad \vdash \Gamma; \Delta', A^\perp}{\vdash \Gamma; \Delta, \Delta'} \text{CUT}$$

$$\frac{\vdash \Gamma; \Delta, A \quad \vdash \Gamma; \Delta', B}{\vdash \Gamma; \Delta, \Delta', A \otimes B} \otimes$$

Table of Contents

Introduction

Prerequisites

Sequent Calculus
Linear Logic

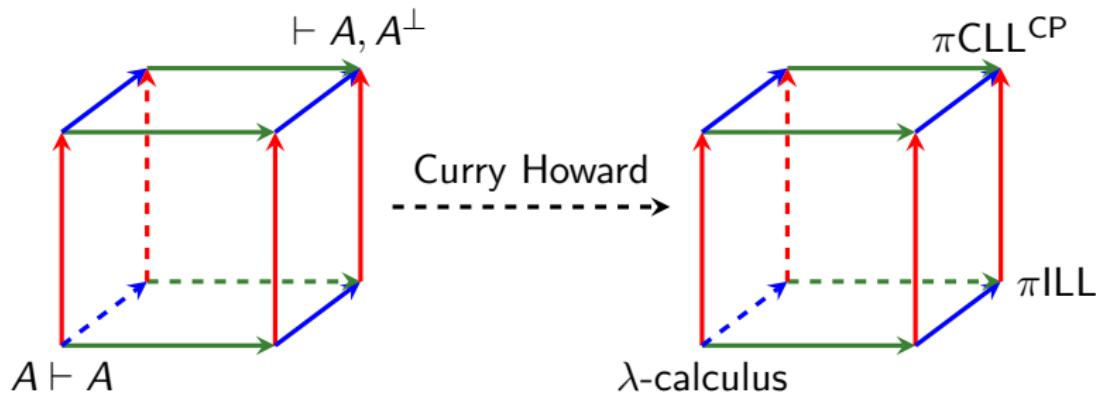
Paper 1

π -calculus
Semantics of Session Types
Terms the π -calculus

Paper 2

Conclusion

Logic Cube: Curry Howard



- ▶ Intuitionistic \rightarrow Classical
- ▶ Traditional \rightarrow Linear
- ▶ Natural Deduction \rightarrow Sequent Calculus

Curry-Howard correspondence

Traditional Logic	λ -calculus
Propositions Proofs Normalization of proofs	Types Programs Evaluation of programs

Linear Logic	π -calculus
Propositions Proofs Cut elimination	Session types Processes Communication

Introduction to the π -calculus

Session types of the π -calculus

Session types in the π -calculus:

$$A ::= \mathbf{1} \mid \perp \mid A \otimes B \mid A \wp B \mid A \multimap B \mid !A \mid ?A$$

Duality in channels

- ▶ If A is sent, A^\perp is received
- ▶ If A^\perp is sent, $(A^\perp)^\perp = A$ is received

Par and times

Times

$A \otimes B$: Output a channel of session type A , then behave as a channel of session type B

Par

$A \wp B$: Dual of $A \otimes B$, input A and behave as B

Example

If one side of a channel behaves as $A \otimes B$, the other side behaves as $A^\perp \wp B^\perp$

$$(A \otimes B)^\perp = A^\perp \wp B^\perp$$

Server Accept and Client Request

Server Accept

!A: Repeatedly provide a service of type A. Accepts (receives) input of type A

Client Request

?A: Connect to a service of type A. Request a service (sends) output of type A

Terms of the π -calculus

Terms

$$\begin{aligned} P, Q ::= & \mathbf{0} \mid [x \leftrightarrow y] \mid (\nu x).P \mid P|Q \mid x\langle y \rangle.P \mid x(y).P \mid \\ & !x(y).P \mid x\langle \rangle.\mathbf{0} \mid x().P \end{aligned}$$

Forwarder and Parallel Composition

- ▶ Process $[w \leftrightarrow x]$ “fuses” channels x and y
- ▶ Input sent along w is sent as output along x
- ▶ Input sent along x is sent as output along w

Rule

$$\frac{}{[w \leftrightarrow x] \vdash \Gamma; \ w : A^\perp, \ x : A} \text{ID}$$

Forwarder and Parallel Composition

- ▶ Process $[w \leftrightarrow x]$ “fuses” channels x and y
- ▶ Input sent along w is sent as output along x
- ▶ Input sent along x is sent as output along w

Rule

$$\frac{}{[w \leftrightarrow x] \vdash \Gamma; \ w : A^\perp, \ x : A} \text{ID}$$

Parallel composition

- ▶ $P|Q$: do processes P and Q concurrently

Channel creation

λ-calculus	π-calculus
$\lambda x.M$ x bound in M	$(\nu x).P$ x bound in P

Cut rule

$$\frac{P \vdash \Gamma; \Delta, x : A \quad Q \vdash \Gamma; \Delta', x : A^\perp}{(\nu x)(P|Q) \vdash \Gamma; \Delta, \Delta'} \text{CUT}$$

Input

- ▶ $x(y).P$: receive a channel on channel x , bind it to y and behave as P
- ▶ $!x(y).P$: receive on channel x and bind result to y , execute P and repeat.

Rules

$$\frac{P \vdash \Gamma; \Delta, y : A, x : B}{x(y).P \vdash \Gamma; \Delta, x : A \wp B} \wp$$

$$\frac{P \vdash \Gamma; y : A}{!x(y).P \vdash \Gamma; x : !A} !$$

Output

- ▶ $x\langle y \rangle.P$: send y over channel x and behave as P
- ▶ Sending multiple times?

Rules

$$\frac{P \vdash \Gamma, y : A \quad Q \vdash \Delta, x : B}{\nu y. x\langle y \rangle.(P|Q) \vdash \Gamma, \Delta, x : A \otimes B} \otimes$$

$$\frac{P \vdash \Gamma, u : A; \Delta}{P\{x/u\} \vdash \Gamma; \Delta, x : ?A} ?$$

Closing a channel

0

- ▶ **0**: process construct for inaction
- ▶ Similar to *nil* for lists or 0 for nat

Closing x

$$x\langle \rangle.\mathbf{0} \mid x().Q \rightarrow Q$$

Rules

$$\frac{P \vdash \Gamma; \Delta}{x().P \vdash \Gamma; \Delta, x : \perp} \perp \qquad \frac{}{x\langle \rangle.\mathbf{0} \vdash \Gamma; x : \mathbf{1}} \mathbf{1}$$

Findings first paper

CP

- ▶ Wadler uses $\vdash !\Gamma, \Delta$ instead of $\vdash \Gamma; \Delta$
- ▶ Judgements in CP look like $P \vdash !\Gamma, \Delta$

GV

- ▶ Based on the language by Gay and Vasconcelos
- ▶ A session-typed functional language
- ▶ Translation into CP

Table of Contents

Introduction

Prerequisites

Sequent Calculus
Linear Logic

Paper 1

π -calculus
Semantics of Session Types
Terms the π -calculus

Paper 2

Conclusion

Sequents in $\pi\text{CLL}^{\text{CP}}$, πILL and πULL

Sequents

- ▶ Unrestricted context: Γ
- ▶ Restricted (Linear contexts): Δ and Λ

$\pi\text{CLL}^{\text{CP}}$

$$P \vdash \Gamma ; \Delta$$

πILL

$$\Gamma ; \Delta \vdash P :: x : A$$

πULL

$$\Gamma ; \Delta \vdash P :: \Lambda$$

Differences in the identity rule

ID π CLL^{CP}

$$\frac{}{[x \leftrightarrow y] \vdash \Gamma ; x : A, y : A^\perp} \text{ID}$$

ID π -ILL

$$\frac{\Gamma ; x : A \vdash [x \leftrightarrow y] :: y : A}{\Gamma ; x : A \vdash [x \leftrightarrow y] :: y : A} \text{ID}$$

Locality Principle

- ▶ “received channels cannot be used for further reception, i.e., only the output capability of channels can be sent”
- ▶ “received channels cannot be used to provide a service”

Question

What should happen when CPU1 sends a message on channel x ?

Term that violates locality

Let $C = (\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q|R_x))$

Prooftree $\pi\text{CLL}^{\text{CP}}$

$$(\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q|R_x)) \vdash \cdot ; \cdot$$

Term that violates locality

Let $C = (\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q|R_x))$

Prooftree $\pi\text{CLL}^{\text{CP}}$

$$\frac{x(y).!y(z).P_x \vdash \cdot ; x : (!A) \wp (?B) \quad t_1}{(\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q|R_x)) \vdash \cdot ; \cdot} \text{CUT}$$

Term that violates locality

Let $C = (\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q|R_x))$

Prooftree $\pi\text{CLL}^{\text{CP}}$

$$\frac{\frac{!y(z).P_x \vdash \cdot ; y : !A, x : ?B}{x(y).!y(z).P_x \vdash \cdot ; x : (!A) \wp (?B)} \wp \quad t_1}{(\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q|R_x)) \vdash \cdot ; \cdot} \text{CUT}$$

Term that violates locality

Let $C = (\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q|R_x))$

Prooftree $\pi\text{CLL}^{\text{CP}}$

$$\frac{\frac{\frac{!y(z).P'_x \vdash u : B ; y : !A}{!y(z).P_x \vdash \cdot ; y : !A, x : ?B} ?}{x(y).!y(z).P_x \vdash \cdot ; x : (!A) \wp (?B)} \wp}{(\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q|R_x)) \vdash \cdot ; \cdot} t_1 \text{ CUT}$$

$$P_x = P'_x\{x/u\}$$

Term that violates locality

Let $C = (\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q|R_x))$

Prooftree $\pi\text{CLL}^{\text{CP}}$

$$\frac{\frac{\frac{P'_x \vdash u : B ; z : A}{!y(z).P'_x \vdash u : B ; y : !A} !}{!y(z).P_x \vdash \cdot ; y : !A, x : ?B} ?}{x(y).!y(z).P_x \vdash \cdot ; x : (!A) \wp (?B)} \wp \frac{t_1}{(\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q|R_x)) \vdash \cdot ; \cdot} \text{CUT}$$

$$P_x = P'_x \{x/u\}$$

Term that violates locality

Let $C = (\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q | R_x))$

Prooftree $\pi\text{CLL}^{\text{CP}}$

$$\frac{\frac{\frac{t_2}{P'_x \vdash u : B ; z : A}}{!y(z).P'_x \vdash u : B ; y : !A} !}{!y(z).P_x \vdash \cdot ; y : !A, x : ?B} ? \frac{x(y).!y(z).P_x \vdash \cdot ; x : (!A) \wp (?B)}{(\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q | R_x)) \vdash \cdot ; \cdot} t_1 \text{CUT}$$

$$P_x = P'_x \{x/u\}$$

C is not Typeable in π ILL

Attempt 1 with \mathcal{R} R rule

Prooftree

$$\cdot ; \cdot \vdash (\nu x)(\textcolor{red}{x(y).!y(z).P_x} | (\nu q)x\langle q \rangle.(Q_q|R_x)) :: w : C$$

C is not Typeable in π ILL

Attempt 1 with $\mathfrak{A}R$ rule

Prooftree

$$\frac{\cdot ; \cdot \vdash x(y).!y(z).P_x :: x : A \mathfrak{A} B \quad t_1}{\cdot ; \cdot \vdash (\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q | R_x)) :: w : C} \text{CUT}$$

C is not Typeable in π ILL

Attempt 1 with $\mathfrak{F}R$ rule

Prooftree

$$\frac{\frac{\cdot ; y : A^\perp \vdash !y(z).P_x :: x : B}{\cdot ; \cdot \vdash x(y).!y(z).P_x :: x : A \mathfrak{F} B} \mathfrak{F}R \quad t_1}{\cdot ; \cdot \vdash (\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q | R_x)) :: w : C} \text{CUT}$$

C is not Typeable in π ILL

Attempt 1 with $\wp R$ rule

Prooftree

$$\frac{\frac{\frac{\cdot ; y : A^\perp \vdash !y(z).P_x :: x : B}{\cdot ; \cdot \vdash x(y).!y(z).P_x :: x : A \wp B} \wp R \quad t_1}{\cdot ; \cdot \vdash (\nu x)(x(y).!y(z).P_x | (\nu q)x\langle q \rangle.(Q_q | R_x)) :: w : C} \text{CUT}}$$

- ▶ Channel y ends up on the left of the turnstile
- ▶ No rule to define a service on y

C is not Typeable in π ILL

Attempt 2 with $\otimes L$ rule

Prooftree

$$\cdot ; \cdot \vdash (\nu x)((\nu q)x\langle q \rangle.(Q_q|R_x)|\textcolor{red}{x(y).!y(z).P_x}) :: w : C$$

C is not Typeable in π ILL

Attempt 2 with $\otimes L$ rule

Prooftree

$$\frac{t_1 \quad \cdot ; x : A^\perp \otimes B^\perp \vdash x(y).!y(z).P_x :: w : C}{\cdot ; \cdot \vdash (\nu x)((\nu q)x\langle q \rangle.(Q_q|R_x)|x(y).!y(z).P_x) :: w : C} \text{CUT}$$

C is not Typeable in π ILL

Attempt 2 with $\otimes L$ rule

Prooftree

$$\frac{t_1 \quad \frac{\cdot ; y : A^\perp, x : B^\perp \vdash !y(z).P_x :: w : C}{\cdot ; x : A^\perp \otimes B^\perp \vdash x(y).!y(z).P_x :: w : C} \otimes L}{\cdot ; \cdot \vdash (\nu x)((\nu q)x\langle q \rangle.(Q_q|R_x)|x(y).!y(z).P_x) :: w : C} \text{CUT}$$

C is not Typeable in π ILL

Attempt 2 with $\otimes L$ rule

Prooftree

$$\frac{\frac{\frac{\cdot ; y : A^\perp, x : B^\perp \vdash !y(z).P_x :: w : C}{\cdot ; x : A^\perp \otimes B^\perp \vdash x(y).!y(z).P_x :: w : C} \otimes L}{\cdot ; \cdot \vdash (\nu x)((\nu q)x\langle q \rangle.(Q_q|R_x)|x(y).!y(z).P_x) :: w : C} CUT$$

- ▶ Again, channel y ends up on the left of the turnstile
- ▶ No rule to define a service on y

Table of Contents

Introduction

Prerequisites

Sequent Calculus
Linear Logic

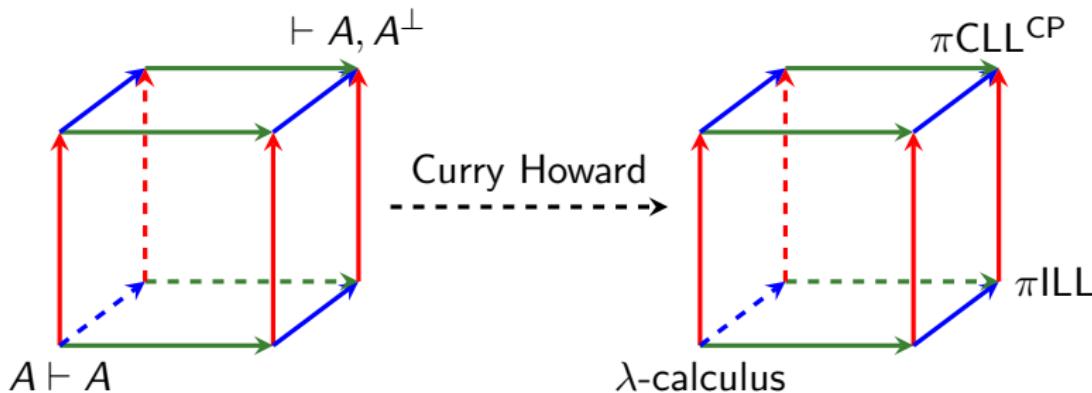
Paper 1

π -calculus
Semantics of Session Types
Terms the π -calculus

Paper 2

Conclusion

Logic Cube: Curry Howard



- ▶ Intuitionistic → Classical
- ▶ Traditional → Linear
- ▶ Natural Deduction → Sequent Calculus

Questions

Are there any questions?