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Introduction first paper

▶ Propositions as Sessions

▶ Philip Wadler

▶ Distributed systems

▶ π-calculus (CP)

▶ Channels

▶ GV

λ-calculus π-calculus
Evaluation of functions Communication between processes

Data types Session Types
Traditional Logic Linear Logic
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Introduction second paper

▶ Session Type Systems based on Linear Logic: Classical versus
Intuitionistic

▶ Bas van den Heuvel and Jorge A. Pérez

▶ Locality Principle

▶ πCLLCP, πILL and πULL

πCLLCP πILL πULL

Locality No Yes Yes and no
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Logic Cube

A ⊢ A

⊢ A,A⊥

▶ Intuitionistic → Classical

▶ Traditional → Linear

▶ Natural Deduction → Sequent Calculus
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Logic Cube: Curry Howard

A ⊢ A

⊢ A,A⊥

λ-calculus

πILL

πCLLCP

Curry Howard

▶ Intuitionistic → Classical

▶ Traditional → Linear

▶ Natural Deduction → Sequent Calculus
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Intuitionistic Sequent Calculus

Sequents

Sequents are of the following form:

A1,A2, . . . ,An ⊢ B and ⊢ (A1 ∧ A2 ∧ · · · ∧ An) → B

Rules

I
A ⊢ A

Γ ⊢ A Σ,A ⊢ B
Cut

Γ,Σ ⊢ B

Γ ⊢ A Γ ⊢ B ∧R
Γ ⊢ A ∧ B

Γ,A ⊢ C ∧L1Γ,A ∧ B ⊢ C
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Classical Sequent Calculus

Sequents

Judgements are of the following form:

A1,A2, . . . ,An ⊢ B1,B2, . . . ,Bk

Logical Interpretation

This can be expressed as:

⊢ (A1 ∧ A2 ∧ · · · ∧ An) → (B1 ∨ B2 ∨ · · · ∨ Bk)

or, equivalently,

⊢ ¬A1 ∨ ¬A2 ∨ · · · ∨ ¬An ∨ B1 ∨ B2 ∨ · · · ∨ Bk
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Some Rules for CL Sequent Calculus

Rules

I
A ⊢ A

Γ ⊢ ∆,A A,Σ ⊢ Π
Cut

Γ,Σ ⊢ ∆,Π

Γ ⊢ A,∆ Γ ⊢ B,∆
∧R

Γ ⊢ A ∧ B,∆

Γ,A ⊢ ∆ ∧L1Γ,A ∧ B ⊢ ∆

Γ ⊢ A,∆
¬L

Γ,¬A ⊢ ∆

Γ,A ⊢ ∆
¬R

Γ ⊢ ¬A,∆
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Introduction to Linear Logic

▶ Only use assumptions exactly once

▶ In traditional logic we can prove:

⊢ A ∧ A → A ⊢ A ∧ B → A ⊢ A → A ∧ A

▶ In linear logic, we cannot prove:

⊬ A⊗ A ⊸ A ⊬ A⊗ B ⊸ A ⊬ A ⊸ A⊗ A

▶ But we can prove:

⊢ A⊗ A ⊸ A⊗ A ⊢ A⊗ B ⊸ B ⊗ A
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Symbols in Linear Logic

Usage Name Meaning

A ⊸ B Lollipop Linear implication: “Consume A to pro-
duce B”

A⊗ B Times Multiplicative conjunction: “Both A and
B”

A` B Par Multiplicative disjunction: “A or B”

!A “Of course” Exponential: “A may be used multiple
times”

?A “Why-not” Dual exponential: “A may be produced
(proven) multiple times”
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Linear Negation

Neutral elements

▶ 1 unit for ⊗: absence of
any recources

▶ ⊥ unit for `:
unconsumable recourses

Definitions

A ⊸ B := A⊥ ` B

1⊗ A ≡ A

⊥` A ≡ A

(·)⊥(nil)

1⊥ := ⊥ (A⊗ B)⊥ := A⊥ ` B⊥ (!A)⊥ :=?A⊥

⊥⊥ := 1 (A` B)⊥ := A⊥ ⊗ B⊥ (?A)⊥ :=!A⊥
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Sequents in Linear Logic

▶ Γ: unrestricted context

▶ ∆: restricted context

▶ C : single proposition

Intuitionistic Linear Logic

Judgements are given by:

Γ;∆ ⊢ C

Classical Linear Logic

Judgements are given by:

⊢ Γ;∆
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Intuitionistic Linear Logic (ILL)

Rules

Id
Γ;A ⊢ A

Γ;∆ ⊢ A Γ;∆′,A ⊢ C
Cut

Γ;∆,∆′ ⊢ C

Γ;∆,A,B ⊢ C
⊗L

Γ;∆,A⊗ B ⊢ C
Γ;∆ ⊢ A Γ;∆′ ⊢ B ⊗R

Γ;∆,∆′ ⊢ A⊗ B
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Classical Linear Logic (CLL)

Rules

Id
⊢ Γ;A,A⊥

⊢ Γ;∆,A ⊢ Γ;∆′,A⊥
Cut⊢ Γ;∆,∆′

⊢ Γ;∆,A ⊢ Γ;∆′,B ⊗
⊢ Γ;∆,∆′,A⊗ B
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Logic Cube: Curry Howard

A ⊢ A

⊢ A,A⊥

λ-calculus

πILL

πCLLCP

Curry Howard

▶ Intuitionistic → Classical

▶ Traditional → Linear

▶ Natural Deduction → Sequent Calculus
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Curry-Howard correspondence

Traditional Logic λ-calculus
Propositions Types

Proofs Programs
Normalization of proofs Evaluation of programs

Linear Logic π-calculus
Propositions Session types

Proofs Processes
Cut elimination Communication
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Introduction to the π-calculus

Session types of the π-calculus

Session types in the π-calculus:

A ::= 1
∣∣ ⊥

∣∣ A⊗ B
∣∣ A` B

∣∣ A ⊸ B
∣∣ !A

∣∣ ?A

Duality in channels

▶ If A is sent, A⊥ is received

▶ If A⊥ is sent, (A⊥)⊥ = A is received
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Par and times

Times

A⊗ B: Output a channel of session type A, then behave as a
channel of session type B

Par

A` B: Dual of A⊗ B, input A and behave as B

Example

If one side of a channel behaves as A⊗ B, the other side behaves
as A⊥ ` B⊥

(A⊗ B)⊥ = A⊥ ` B⊥
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Server Accept and Client Request

Server Accept

!A: Repeatedly provide a service of type A. Accepts (receives)
input of type A

Client Request

?A: Connect to a service of type A. Request a service (sends)
output of type A
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Terms of the π-calculus

Terms

P,Q ::= 0
∣∣ [x ↔ y ]

∣∣ (νx).P
∣∣ P|Q

∣∣ x⟨y⟩.P
∣∣ x(y).P

∣∣
!x(y).P

∣∣ x⟨⟩.0
∣∣ x().P
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Forwarder and Parallel Composition

▶ Process [w ↔ x ] “fuses” channels x and y

▶ Input sent along w is sent as output along x

▶ Input sent along x is sent as output along w

Rule

Id
[w ↔ x ] ⊢ Γ; w : A⊥, x : A

Parallel composition

▶ P|Q: do processes P and Q concurrently
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▶ Input sent along w is sent as output along x
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Rule

Id
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Channel creation

λ-calculus π-calculus
λx .M (νx).P

x bound in M x bound in P

Cut rule

P ⊢ Γ; ∆, x : A Q ⊢ Γ; ∆′, x : A⊥
Cut

(νx)(P|Q) ⊢ Γ; ∆, ∆′
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Input

▶ x(y).P : receive a channel on channel x , bind it to y and
behave as P

▶ !x(y).P : receive on channel x and bind result to y , execute
P and repeat.

Rules

P ⊢ Γ; ∆, y : A, x : B `
x(y).P ⊢ Γ; ∆, x : A` B

P ⊢ Γ; y : A
!

!x(y).P ⊢ Γ; x : !A
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Output

▶ x⟨y⟩.P : send y over channel x and behave as P

▶ Sending multiple times?

Rules

P ⊢ Γ, y : A Q ⊢ ∆, x : B ⊗
νy .x⟨y⟩.(P|Q) ⊢ Γ, ∆, x : A⊗ B

P ⊢ Γ, u : A; ∆
?

P{x/u} ⊢ Γ; ∆, x :?A
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Closing a channel

0

▶ 0: process construct for inaction

▶ Similar to nil for lists or O for nat

Closing x

x⟨⟩.0 | x().Q → Q

Rules

P ⊢ Γ;∆ ⊥
x().P ⊢ Γ;∆, x : ⊥

1
x⟨⟩.0 ⊢ Γ; x : 1
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Findings first paper

CP

▶ Wadler uses ⊢!Γ,∆ instead of ⊢ Γ;∆

▶ Judgements in CP look like P ⊢!Γ,∆

GV

▶ Based on the language by Gay and Vasconcelos

▶ A session-typed functional language

▶ Translation into CP
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Sequents in πCLLCP, πILL and πULL

Sequents

▶ Unrestricted context: Γ

▶ Restricted (Linear contexts): ∆ and Λ

πCLLCP

P ⊢ Γ ; ∆

πILL

Γ ; ∆ ⊢ P :: x : A

πULL

Γ ; ∆ ⊢ P :: Λ
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Differences in the identity rule

Id πCLLCP

Id
[x ↔ y ] ⊢ Γ ; x : A, y : A⊥

Id π-ILL

Id
Γ ; x : A ⊢ [x ↔ y ] :: y : A
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Locality Principle

▶ “received channels cannot be used for further reception, i.e.,
only the output capability of channels can be sent”

▶ “received channels cannot be used to provide a service”

CPU1 x CPU2 y CPU3

x

Question

What should happen when CPU1 sends a message on channel x?
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Term that violates locality

Let C = (νx)(x(y).!y(z).Px |(νq)x⟨q⟩.(Qq|Rx))

Prooftree πCLLCP

(νx)(x(y).!y(z).Px |(νq)x⟨q⟩.(Qq|Rx)) ⊢ · ; ·

Px = P ′
x{x/u}
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Term that violates locality

Let C = (νx)(x(y).!y(z).Px |(νq)x⟨q⟩.(Qq|Rx))

Prooftree πCLLCP

x(y).!y(z).Px ⊢ · ; x : (!A)` (?B) t1
Cut

(νx)(x(y).!y(z).Px |(νq)x⟨q⟩.(Qq|Rx)) ⊢ · ; ·

Px = P ′
x{x/u}
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Term that violates locality
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?
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x(y).!y(z).Px ⊢ · ; x : (!A)` (?B) t1
Cut

(νx)(x(y).!y(z).Px |(νq)x⟨q⟩.(Qq|Rx)) ⊢ · ; ·

Px = P ′
x{x/u}



Introduction Prerequisites Paper 1 Paper 2 Conclusion

Term that violates locality

Let C = (νx)(x(y).!y(z).Px |(νq)x⟨q⟩.(Qq|Rx))
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P ′
x ⊢ u : B ; z : A

!
!y(z).P ′
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?
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Term that violates locality

Let C = (νx)(x(y).!y(z).Px |(νq)x⟨q⟩.(Qq|Rx))

Prooftree πCLLCP

t2
P ′
x ⊢ u : B ; z : A

!
!y(z).P ′

x ⊢ u : B ; y : !A
?

!y(z).Px ⊢ · ; y : !A, x : ?B `
x(y).!y(z).Px ⊢ · ; x : (!A)` (?B) t1

Cut
(νx)(x(y).!y(z).Px |(νq)x⟨q⟩.(Qq|Rx)) ⊢ · ; ·

Px = P ′
x{x/u}
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C is not Typeable in πILL

Attempt 1 with `R rule

Prooftree

· ; · ⊢ (νx)(x(y).!y(z).Px |(νq)x⟨q⟩.(Qq|Rx)) :: w : C

▶ Channel y ends up on the left of the turnstile

▶ No rule to define a service on y
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· ; · ⊢ x(y).!y(z).Px :: x : A` B t1
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C is not Typeable in πILL

Attempt 2 with ⊗L rule

Prooftree

· ; · ⊢ (νx)((νq)x⟨q⟩.(Qq|Rx)|x(y).!y(z).Px) :: w : C

▶ Again, channel y ends up on the left of the turnstile

▶ No rule to define a service on y
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Logic Cube: Curry Howard

A ⊢ A

⊢ A,A⊥

λ-calculus

πILL

πCLLCP

Curry Howard

▶ Intuitionistic → Classical

▶ Traditional → Linear

▶ Natural Deduction → Sequent Calculus
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Questions

Are there any questions?
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