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Motivation for testing

P> Testing is costly
» Manual configuration
P Test case design
» Automation testing
> Faster
» Consistency and accuracy
» Frequent testing
» Using a Finite State Machine
» Does an implementation conform to its specification?
» Other methods:

» Property based testing
» Extended FSM Models
» Formal verification
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Overview prerequisites

» Finite State Machines
> Separating sequence
» Characterisation set
P> Test suite
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Finite State Machines

> Set of states, S
Inputs, /
Outputs, O
A:SxI—=0

>
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Seperating Sequence

Definition (Separating Sequence)

A separating sequence for states s and t is a sequence x € [* such
that A*(s, x) # A*(¢t,x). We say x is minimal if |y| > |x| for all
separating sequences y for s and t.

Example

x1/y2. x2/Yo
x/y2

X := XpXp is @ minimal separating sequence for sy and s;.

Xg, X1, X2 do not separate sy and si.
6/44



Characterization set

Definition (Characterization set)

A set W C I* is a characterisation set if for every pair of states
(s,t) in FSM M there exists a w in W such that w separates s
and t.
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Characterization set

Definition (Characterization set)

A set W C I* is a characterisation set if for every pair of states
(s,t) in FSM M there exists a w in W such that w separates s

and t.
X*(s, w) # N*(t, w), where \* is the extended output.

Example

x1/y2, x/¥o
xe/y2

The set W = {xp, xox2} is a characterizing set.
7/44



Test suite

» Set of test cases
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Test suite

» Set of test cases

» Input sequence
» Corresponding expected output

» One of the definitions of the cost of a test suite:

» Size of inputs and input sequences
» Time required
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Difference in the papers

» Minimal Separating Sequences for All Pairs of States
» by Rick Smetsers, Joshua Moerman, and David N. Jansen
> 2016
> Efficient State ldentification for Finite State Machine-based
Testing
» by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza
Mousavi, and Khaled El-Fakih
> 2025
» Why do this work?
» Finite State Machine Testing is simple
» Still a few costly operations:
P> Reset sequences
» Transfer sequences

» Difference in the papers
» Building characterization sets

» Minimize costly operations.
» Minimal FSMs
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Minimal Separating Sequences for All Pairs of States

» Splitting Tree
» Splitting Tree to characterising set
> How to get a minimal splitting tree
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Splitting tree

Concepts by Moore (1956), first explicit splitting tree by
Yannakakis (1994):
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Splitting tree

Concepts by Moore (1956), first explicit splitting tree by
Yannakakis (1994):
Definition (Splitting tree)
For a Finite State Machine M, we define the splitting tree T with
a finite set of nodes such that:

» anode uin T is labelled by a subset of S, denoted /(u)

» the root is labelled by S

» For each inner node u, /(u) is partitioned by the labels of its
children

» inner node u is associated with a sequence o(u) separating
states in the children of u.
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Splitting tree
Original algorithm
> Two ways to split:

> split-output
» Node is split with a € I, if (s, a) # A(t, a)

> split-state
»> Node is split with ac(u) if we can split s and v with node

after a, and that has label o(u)
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Splitting tree
Original algorithm
> Two ways to split:

> split-output
» Node is split with a € I, if (s, a) # A(t, a)

> split-state
»> Node is split with ac(u) if we can split s and v with node

after a, and that has label o(u)

Example

xo/y1 x1/y2

x1/y2, X2/yo
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Splitting tree to characterising set

/vt a/y,

Example
W = {xo0, x1, Xox0}
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Verifying characterising set
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Example

Characterising set: W = {xp, x1, XoX0}
We do the checks:

{s0,s1} : x0x0,{50, 52} : x1,
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Verifying characterising set

xo/y1 xi/y2

Example

Characterising set: W = {xp, x1, XoX0}
We do the checks:

{s0,s1} : x0x0,{50, %2} : x1, {50, 3} : 0,
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Verifying characterising set

xo/y1 xi/y2

Example

Characterising set: W = {xp, x1, XoX0}

We do the checks:

{s0,s1} : x0x0,{50, 52} : x1, {50,853} : x0, {s1,5} : x1, {51,853} : X0,
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Verifying characterising set

xo/y1 xi/y2

Example
Characterising set: W = {xp, x1, XoX0}
We do the checks:
{s0,s1} : x0x0,{50, 52} : x1, {50,853} : x0, {s1,5} : x1, {51,853} : X0,
{s2,83} : X0
14/44



Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states S’ C S is
the node u such that S’ C /(u), and for all children v of u:

S g I(v).
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Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states S’ C S is
the node u such that S’ C /(u), and for all children v of u:

S g I(v).

Example
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Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states S’ C S is
the node u such that S’ C /(u), and for all children v of u:

S g I(v).

Example

For S’ := {sp, s>} this is {sp,s1,52}. And for S” := {s, s3} this is
{s0, 51,52, 53}

15/44
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A partition is acceptable if for all s, t in the same block and for all
ael, Xs,a) = \(t,a)

Example
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Acceptable splitting tree

Definition (acceptable partition)

A partition is acceptable if for all s, t in the same block and for all
ael, Xs,a) = \(t,a)

Example

[{s0, 51,52}, {s3}] is not acceptable.
[{s0,s1},{s2},{s3}] is acceptable.
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Stable splitting tree

Definition (Stable partition)
A partition is stable if it is acceptable, and for all s, t in the same
block, and all a € I, we have that d(s, a) and d(t, a) are in the

same block.
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block, and all a € I, we have that d(s, a) and d(t, a) are in the
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Example

x1/y2, x2/¥o
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Stable splitting tree

Definition (Stable partition)
A partition is stable if it is acceptable, and for all s, t in the same
block, and all a € I, we have that d(s, a) and d(t, a) are in the

same block.

Example

x1/y2, x2/¥o

[{s0,s1},{s2}, {s3}] is not stable.
[{so},{s1},{s2}, {s3}] is stable. o



k-Stable splitting tree
Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block
A(s, x) = A(t, x) for all x € I=K
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Example

x1/y2, x2/yo
x2/y2

[{s0,s1},{s2},{s3}] is 1-stable.

18/44



k-Stable splitting tree
Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block
A(s, x) = A(t, x) for all x € I=K

Example

x1/y2, x2/yo
x2/y2

[{s0,s1},{s2},{s3}] is 1-stable.
[{so0,s1},{s2}, {s3}] is not 2-stable.
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k-Stable splitting tree
Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block
A(s, x) = A(t, x) for all x € I=K

Example

x1/y2, x2/yo
x2/y2

[{s0,s1},{s2},{s3}] is 1-stable.
[{so0,s1},{s2}, {s3}] is not 2-stable.
[{so},{s1},{s2},{s3}] is 2-stable.
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Minimal splitting tree

Definition (minimal splitting tree)
T is minimal if for all states s, t in different leaves \(s, x) # A(t, x)
implies |x| > |o(lca(s, t))]| for all x € I*.
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Minimal splitting tree

Definition (minimal splitting tree)
T is minimal if for all states s, t in different leaves \(s, x) # A(t, x)
implies |x| > |o(lca(s, t))]| for all x € I*.

Example

x0/y1 xi/y2
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How to get a Minimal splitting tree
» Get an acceptable splitting tree

20/44



How to get a Minimal splitting tree

» Get an acceptable splitting tree
» Go from a k-stable to k + 1-stable tree.

20/44



How to get a Minimal splitting tree

» Get an acceptable splitting tree

» Go from a k-stable to k + 1-stable tree.
> ueT,ael, lca(6({u},a))
» o(u) =ao(v), v:=96{u},a)

20/44



How to get a Minimal splitting tree

» Get an acceptable splitting tree
» Go from a k-stable to k + 1-stable tree.
> ueT,ael, lca(6({u},a))
» o(u) =ao(v), v:=96{u},a)
> Note: an acceptable splitting tree is a 1-stable tree.

20/44



How to get a Minimal splitting tree

» Get an acceptable splitting tree
» Go from a k-stable to k + 1-stable tree.
> ueT,ael, lca(6({u},a))
» o(u) =ao(v), v:=96{u},a)
> Note: an acceptable splitting tree is a 1-stable tree.

Example

20/44



How to get a Minimal splitting tree

» Get an acceptable splitting tree
» Go from a k-stable to k + 1-stable tree.
> ueT,ael, lca(6({u},a))
» o(u) =ao(v), v:=96{u},a)
> Note: an acceptable splitting tree is a 1-stable tree.

Example

Note that this example is small, so it yields no difference. 2044
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Complexity of the algorithm

Speed up improvements:
» Building the split-state parts bottom up
> Adding a data structure

Complexity of the splitting tree algorithm with speed up
improvements: O(mlog n).
It was O(m n) in Moore's version.

21/44



Efficient state identification for finite state machine-based
testing
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Efficient state identification for finite state machine-based
testing

» Redundant Characterizing set

> Identification path

» (B)O-Wset

» Complexity of the (B)O-Wset problem
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Redundant Characterizing set

Definition (Redundant Characterizing set)
A characterizing set W is redundant if either:
» W\ {w} is a characterizing set for some w € W.

> WU {w'}\ {w} is a characterizing set for some w € W and
a proper prefix w' of w.
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Redundant Characterizing set Example

Xo/y1 x1/y2

Example
Wi = {xox0x0, x2} is redundant: xpxp separates sp, s, and s; and
S3.
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Redundant Characterizing set Example

Xo/y1

x1/ya

Example

Wi = {xox0x0, x2} is redundant: xpxp separates sp, s, and s; and
S3.
W5 = {x2, xox0} is non-redundant.
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|dentification path

» Transfer-free identification path

> State identification path with transfers
» Why transfer-free?

» Transfers are often manual
» Transfers are costly

Example

An example of a transfer is when we have a sequence x1 bxp, and
b¢ W.
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Transfer-free identification path

Definition (Transfer-free identification path)

This is a path ajasp ... oy starting in the initial state, such that
input(c;) € W. Furthermore, for all w € W, and for all states s,
there is an «; such that it corresponds with (s, w).
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Definition (Transfer-free identification path)
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input(c;) € W. Furthermore, for all w € W, and for all states s,
there is an «; such that it corresponds with (s, w).
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Transfer-free identification path

Definition (Transfer-free identification path)

This is a path ajasp ... oy starting in the initial state, such that
input(c;) € W. Furthermore, for all w € W, and for all states s,
there is an «; such that it corresponds with (s, w).

Cr——(
a/2 @ a/l

W:{a} S0 —7aS1 —7aS2 —7a%

Example
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State identification path with transfers

Definition (ldentification path with transfers)

This is a path a;f81a20> ... a starting in the initial state, such
that input(«j) € W Furthermore, for all w € W, and for all states
s, there is an o; such that it corresponds with (s, w), and f; is a
transfer sequence.
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Definition (ldentification path with transfers)

This is a path a;f81a20> ... a starting in the initial state, such
that input(«j) € W Furthermore, for all w € W, and for all states
s, there is an o; such that it corresponds with (s, w), and f; is a
transfer sequence.

Example

W = {x1, x0x}
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State identification path with transfers

Definition (ldentification path with transfers)

This is a path a;f81a20> ... a starting in the initial state, such
that input(«j) € W Furthermore, for all w € W, and for all states
s, there is an o; such that it corresponds with (s, w), and f; is a
transfer sequence.

Example

x1/y2. x2/yo
x/y2

W = {Xl,X2X2} S0 —)Xl S1 —>X1 S1 —)X2X2 So —)Xl S3 —)Xl So —)X2X2
s2 _>XO S0 _>X2X2 _>X0X1Xos3 —>X2X2 27 /44



(B)O-Wset

» Minimal characterising set
> O-Wset
> BO-Wset
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Minimal characterising set

Definition (Minimal characterising set)

A characterising set W is called minimal if for all s,s" € S where
s # s’ there is a prefix w’ of a sequence w € W such that:

» ' separates s and s’

» no shorter sequence separates s and s’
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Minimal Characterizing set - Example 1

Cr——(
a/2 : a/1

Example

P a separates sg, S1, S2
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Minimal Characterizing set - Example 1

Cr——(
a/2 : a/1

Example

P a separates sg, S1, S2
» No shorter sequence separates the states
» So W = {a} is minimal
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Minimal Characterizing set - Example 2

XO/Yl Xl/y2

Example
W = {x1, xox2}.
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Minimal Characterizing set - Example 2

x0/n1 x1/y2

Example
W = {Xl7 X2X2}.

> x; separates s, from sp, s1, s3, and no shorter sequence does.
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Minimal Characterizing set - Example 2

x0/n1 x1/y2

Example
W = {X17X2X2}.
> x; separates s, from sp, s1, s3, and no shorter sequence does.

P> x, separates s3 from sg and s;, and is a prefix of xpx2, no
shorter sequence does.
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Minimal Characterizing set - Example 2

x0/n1 x1/y2

Example
W = {Xl7 X2X2}.

> x; separates s, from sp, s1, s3, and no shorter sequence does.

P> x, separates s3 from sg and s;, and is a prefix of xpx2, no
shorter sequence does.

> x>x» separates sy and s; and no shorter sequence does.
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Minimal Characterizing set - Example 2

x0/n1 x1/y2

Example
W = {X17X2X2}.
> x; separates s, from sp, s1, s3, and no shorter sequence does.

P> x, separates s3 from sg and s;, and is a prefix of xpx2, no
shorter sequence does.

> x>x» separates sy and s; and no shorter sequence does.

» So W = {x1, xax2} is minimal.

31/44



O-Wset

Definition
W is an O-Wset if
> W is a minimal characterizing set

P> There exists a transfer-free state identification path for W.
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O-Wset

Definition
W is an O-Wset if
> W is a minimal characterizing set

P> There exists a transfer-free state identification path for W.

Cr——C
a/2 : a/1
Example

W = {a} is an O-Wset: W is minimal
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O-Wset

Definition
W is an O-Wset if
> W is a minimal characterizing set

P> There exists a transfer-free state identification path for W.

Cr—
HO

W = {a} is an O-Wset: W is minimal and sp —, 51 —a 52 —a2 So IS
a transfer-free path.

Example

32/44



BO-Wset

Definition
W is a BO-Wset if there exists a k such that:
» W is minimal

» There exists a state identification path with at most k
transfers.
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BO-Wset, k =0

M
NO

Example
W = {a} is a BO-Wset:
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BO-Wset, k =0

Cr—(
ROl
Example

W = {a} is a BO-Wset:W is minimal
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BO-Wset, k =0

G
ROl
Example

W = {a} is a BO-Wset:W is minimal and sp —, s1 —5 2 —4 S0
is a transfer-free path, so there are at most kK = 0 transfers.
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BO-Wset, k = 4

Example
W = {Xl,X2X2} is a BO-Wset:
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BO-Wset, k = 4

Example

W = {x1,x0x2} is a BO-Wset:W is minimal and

S0 —7x; S1 —7x; S1 —>;2X2 S —rxy S3 —x 52 —>;2X2 S _>Xo S0 _>;k<2)<2
2 s %053 Txox, S2 Nas at most k = 4 transfers.
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> forej,ejc Cwithi#j: egNe =10

» Complexity: NP-complete

Example

U:={1,2,3,4,5,6}, C:={{1,2,3},{2,3,4},{4,5,6}}.
Is there a satisfying assignment?
Yes C = {{1,2,3},{4,5,6}}

Example
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X3C

» Set of elements U

» Finite set of subsets of the elements (of size 3): C
> Find CC C

» Ue;ECei:U
> forej,ejc Cwithi#j: egNe =10

» Complexity: NP-complete

Example

U:={1,2,3,4,5,6}, C:={{1,2,3},{2,3,4},{4,5,6}}.
Is there a satisfying assignment?
Yes C = {{1,2,3},{4,5,6}}

Example

U:={1,2,3,4,5,6}, C:={{1,3,5},{2,3,4},{4,5,6}}.
Is there a satisfying assignment?
No.
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X3C to O-Wset

Theorem
There is a satisfying assignment C for a given X3C problem iff
there is a transfer-free path in the FSM M.
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Theorem

There is a satisfying assignment C for a given X3C problem iff
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X3C to O-Wset

Theorem

There is a satisfying assignment C for a given X3C problem iff
there is a transfer-free path in the FSM M. M is defined by the
mapping S = {sij|lui € U} U {sjyj41}, | := {xilc; € C},

i if uj € ¢
0 = {y;|u; € UYU{0}, and (i, x;) =42 " 1159

Si+1 if uj € €j
s; otherwise

. , and
0 otherwise

Example
U={u,w,us}, € ={e} = {{ur, u2, u3}}.
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Mapping X3C to O-Wset

U = {ul, up, U3}, 5 = {51,52,53,54}, C = {el} = {{ul, up, U3}},
| = {Xl},

O = {y1,y2,¥3,0}.

Transition for state s;: For xq, u; in e => goes to sp, with output
y1 as it is state 1.

Transition for state s: For xq, u1 in e => goes to s3,with output
Yo as it is state 2.

Transition for state s3: For xq, u3 in e => goes to sg,with output
y3 as it is state 3.

Transition for state s4: For xi, u; not in e => goes to s4, with
output O.
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X3C to O-Wset - path

U= {u1,uo,us,ua, us, us},
C=A{e,e}={{uv,u,us},{us, us, ue}},
S = {51,52, 53,54, 55, 5, 57}

I ={x1,x2}, O ={y1,y2,¥3, ¥4, ¥5, ¥6, 0}

x1/0,
%/0 /0 x2/0 x1/0 x1/0 x1/0 x/0

Xl/yl e xu/y2 X1/Y3 Xz/ﬂ Xz/ys H x2/Ye

W = {x1,x}.
Path is : 51 —x, S1 =25 $2 —x, 2 —7x S3 —Px, S3 —Ix S4 —Fxq
S4 —7xy S5 7x; S5 “xp S6 TPx1 6 7xo ST ~'xq ST “7xy ST
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X3C to O-Wset - path

U= {u1,u2,u3, U, us5,u6},
C={e,e}={{ui,u,us},{us,us,ue}},
5 = {51,52,53,54,55,56,57},

I'={x1,x2}, O ={y1,y2,¥3,¥4,¥s5,¥6,0}

x1/0, x/0,
x2/0 x/0 x2/0 x1/0 x1/0 x2/0

Xl/yl a x1/ya e c H x2/ys H x2/ Y6

x1/ya, x2/ya

No path.
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NP completeness for (B)O-Wset

» Mapping from X3C to O-Wset
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NP completeness for (B)O-Wset

» Mapping from X3C to O-Wset
> X3C to BO-Wset
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Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?

When should we use a splitting tree and when is a (B)O-Wset
better?

Resets needed for splitting tree.

Resets can be costly.

(B)O-Wset yield a long path for all states, splitting tree small ones
for every pair of states.

Is a combination possible?
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Conclusion

» Splitting Tree
» Splitting Tree to characterising set
> (B)O-Wset

» Comparison of methods
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