

State identification using characterizing sets or separating sequences

Kati Overbeeke

January 21, 2026

Overview

- ▶ Motivation for testing
- ▶ Prerequisites
- ▶ Difference in the papers
- ▶ Minimal Separating Sequences for All Pairs of States
- ▶ Efficient State Identification for Finite State Machine-based Testing
- ▶ Comparison
- ▶ Conclusion

Motivation for testing

- ▶ Testing is costly
 - ▶ Manual configuration
 - ▶ Test case design

Motivation for testing

- ▶ Testing is costly
 - ▶ Manual configuration
 - ▶ Test case design
- ▶ Automation testing
 - ▶ Faster
 - ▶ Consistency and accuracy
 - ▶ Frequent testing
- ▶ Using a Finite State Machine

Motivation for testing

- ▶ Testing is costly
 - ▶ Manual configuration
 - ▶ Test case design
- ▶ Automation testing
 - ▶ Faster
 - ▶ Consistency and accuracy
 - ▶ Frequent testing
- ▶ Using a Finite State Machine
 - ▶ Does an implementation conform to its specification?

Motivation for testing

- ▶ Testing is costly
 - ▶ Manual configuration
 - ▶ Test case design
- ▶ Automation testing
 - ▶ Faster
 - ▶ Consistency and accuracy
 - ▶ Frequent testing
- ▶ Using a Finite State Machine
 - ▶ Does an implementation conform to its specification?
- ▶ Other methods:
 - ▶ Property based testing
 - ▶ Extended FSM Models
 - ▶ Formal verification

Overview prerequisites

- ▶ Finite State Machines
- ▶ Separating sequence
- ▶ Characterisation set
- ▶ Test suite

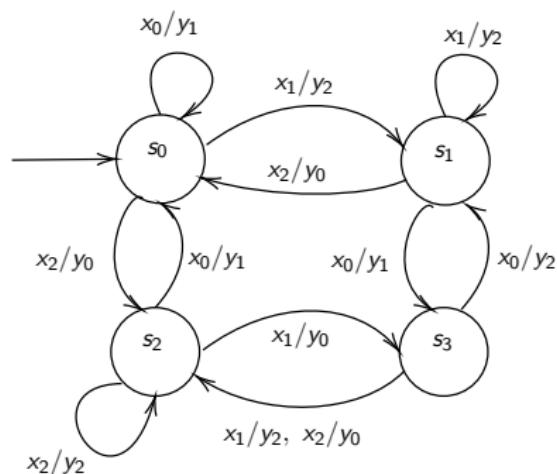
Finite State Machines

- ▶ Set of states, S
- ▶ Inputs, I
- ▶ Outputs, O
- ▶ $\lambda : S \times I \rightarrow O$
- ▶ $\delta : S \times I \rightarrow S$

Finite State Machines

- ▶ Set of states, S
- ▶ Inputs, I
- ▶ Outputs, O
- ▶ $\lambda : S \times I \rightarrow O$
- ▶ $\delta : S \times I \rightarrow S$

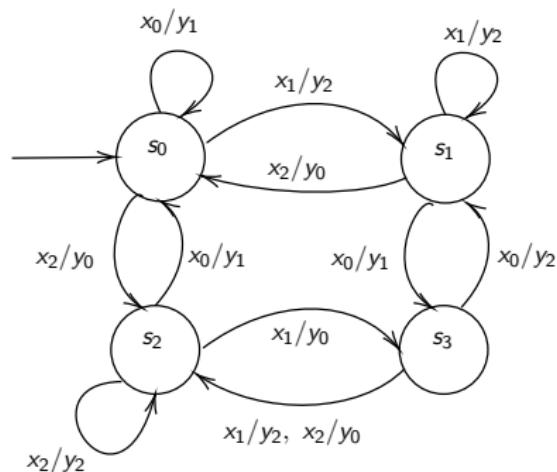
Example



Finite State Machines

- ▶ Set of states, S
- ▶ Inputs, I
- ▶ Outputs, O
- ▶ $\lambda : S \times I \rightarrow O$
- ▶ $\delta : S \times I \rightarrow S$

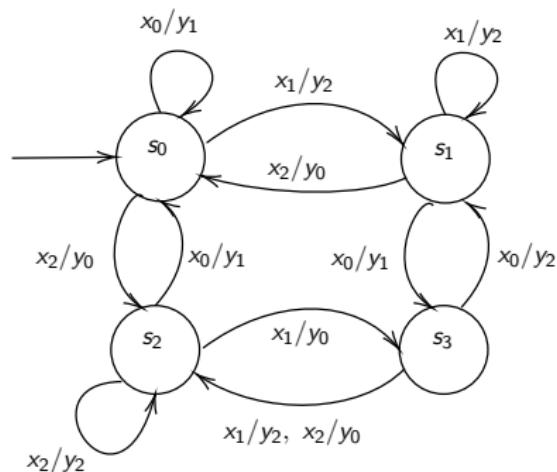
Example



Finite State Machines

- ▶ Set of states, S
- ▶ Inputs, I
- ▶ Outputs, O
- ▶ $\lambda : S \times I \rightarrow O$
- ▶ $\delta : S \times I \rightarrow S$

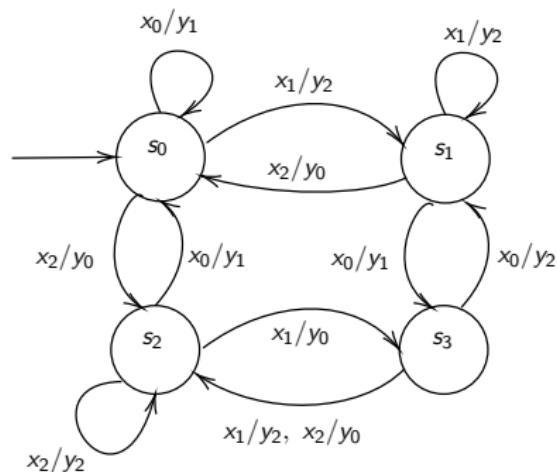
Example



Finite State Machines

- ▶ Set of states, S
- ▶ Inputs, I
- ▶ Outputs, O
- ▶ $\lambda : S \times I \rightarrow O$
- ▶ $\delta : S \times I \rightarrow S$

Example



Seperating Sequence

Definition (Separating Sequence)

A separating sequence for states s and t is a sequence $x \in I^*$ such that $\lambda^*(s, x) \neq \lambda^*(t, x)$.

Seperating Sequence

Definition (Separating Sequence)

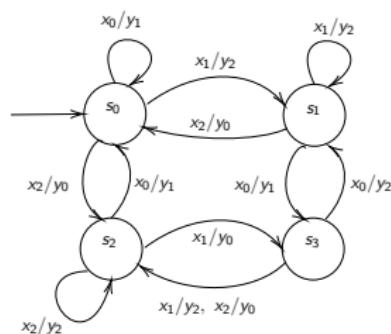
A separating sequence for states s and t is a sequence $x \in I^*$ such that $\lambda^*(s, x) \neq \lambda^*(t, x)$. We say x is minimal if $|y| \geq |x|$ for all separating sequences y for s and t .

Seperating Sequence

Definition (Separating Sequence)

A separating sequence for states s and t is a sequence $x \in I^*$ such that $\lambda^*(s, x) \neq \lambda^*(t, x)$. We say x is minimal if $|y| \geq |x|$ for all separating sequences y for s and t .

Example



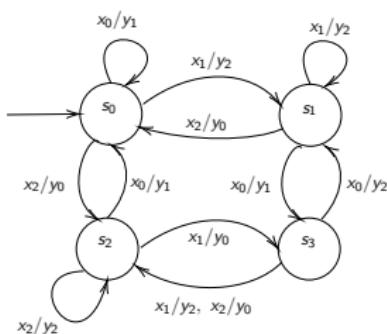
$x := x_0 x_0$ is a minimal separating sequence for s_0 and s_1 .

Seperating Sequence

Definition (Separating Sequence)

A separating sequence for states s and t is a sequence $x \in I^*$ such that $\lambda^*(s, x) \neq \lambda^*(t, x)$. We say x is minimal if $|y| \geq |x|$ for all separating sequences y for s and t .

Example



$x := x_0 x_0$ is a minimal separating sequence for s_0 and s_1 .
 x_0, x_1, x_2 do not separate s_0 and s_1 .

Characterization set

Definition (Characterization set)

A set $W \subseteq I^*$ is a characterisation set if for every pair of states (s, t) in FSM M there exists a w in W such that w separates s and t .

Characterization set

Definition (Characterization set)

A set $W \subseteq I^*$ is a characterisation set if for every pair of states (s, t) in FSM M there exists a w in W such that w separates s and t .

$\lambda^*(s, w) \neq \lambda^*(t, w)$, where λ^* is the extended output.

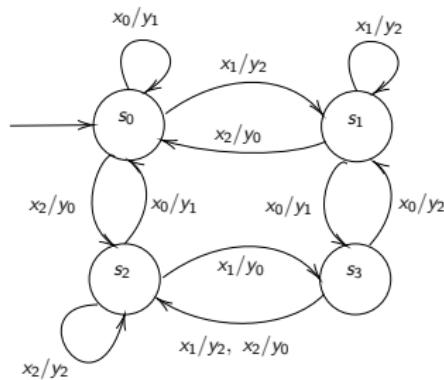
Characterization set

Definition (Characterization set)

A set $W \subseteq I^*$ is a characterisation set if for every pair of states (s, t) in FSM M there exists a w in W such that w separates s and t .

$\lambda^*(s, w) \neq \lambda^*(t, w)$, where λ^* is the extended output.

Example



The set $W = \{x_0, x_2x_2\}$ is a characterizing set.

Test suite

- ▶ Set of test cases

Test suite

- ▶ Set of test cases
 - ▶ Input sequence
 - ▶ Corresponding expected output
- ▶ One of the definitions of the cost of a test suite:
 - ▶ Size of inputs and input sequences
 - ▶ Time required

Difference in the papers

Difference in the papers

- ▶ Minimal Separating Sequences for All Pairs of States
 - ▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
 - ▶ 2016

Difference in the papers

- ▶ Minimal Separating Sequences for All Pairs of States
 - ▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
 - ▶ 2016
- ▶ Efficient State Identification for Finite State Machine-based Testing
 - ▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza Mousavi, and Khaled El-Fakih
 - ▶ 2025

Difference in the papers

- ▶ Minimal Separating Sequences for All Pairs of States
 - ▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
 - ▶ 2016
- ▶ Efficient State Identification for Finite State Machine-based Testing
 - ▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza Mousavi, and Khaled El-Fakih
 - ▶ 2025
- ▶ Why do this work?
 - ▶ Finite State Machine Testing is simple
 - ▶ Still a few costly operations:
 - ▶ Reset sequences
 - ▶ Transfer sequences

Difference in the papers

- ▶ Minimal Separating Sequences for All Pairs of States
 - ▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
 - ▶ 2016
- ▶ Efficient State Identification for Finite State Machine-based Testing
 - ▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza Mousavi, and Khaled El-Fakih
 - ▶ 2025
- ▶ Why do this work?
 - ▶ Finite State Machine Testing is simple
 - ▶ Still a few costly operations:
 - ▶ Reset sequences
 - ▶ Transfer sequences
- ▶ Difference in the papers
 - ▶ Building characterization sets

Difference in the papers

- ▶ Minimal Separating Sequences for All Pairs of States
 - ▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
 - ▶ 2016
- ▶ Efficient State Identification for Finite State Machine-based Testing
 - ▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza Mousavi, and Khaled El-Fakih
 - ▶ 2025
- ▶ Why do this work?
 - ▶ Finite State Machine Testing is simple
 - ▶ Still a few costly operations:
 - ▶ Reset sequences
 - ▶ Transfer sequences
- ▶ Difference in the papers
 - ▶ Building characterization sets
 - ▶ Minimize costly operations.

Difference in the papers

- ▶ Minimal Separating Sequences for All Pairs of States
 - ▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
 - ▶ 2016
- ▶ Efficient State Identification for Finite State Machine-based Testing
 - ▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza Mousavi, and Khaled El-Fakih
 - ▶ 2025
- ▶ Why do this work?
 - ▶ Finite State Machine Testing is simple
 - ▶ Still a few costly operations:
 - ▶ Reset sequences
 - ▶ Transfer sequences
- ▶ Difference in the papers
 - ▶ Building characterization sets
 - ▶ Minimize costly operations.
 - ▶ Minimal FSMs

Minimal Separating Sequences for All Pairs of States

Minimal Separating Sequences for All Pairs of States

- ▶ Splitting Tree
- ▶ Splitting Tree to characterising set
- ▶ How to get a minimal splitting tree

Splitting tree

Concepts by Moore (1956), first explicit splitting tree by Yannakakis (1994):

Splitting tree

Concepts by Moore (1956), first explicit splitting tree by Yannakakis (1994):

Definition (Splitting tree)

For a Finite State Machine M , we define the splitting tree T with a finite set of nodes such that:

- ▶ a node u in T is labelled by a subset of S , denoted $I(u)$
- ▶ the root is labelled by S
- ▶ For each inner node u , $I(u)$ is partitioned by the labels of its children
- ▶ inner node u is associated with a sequence $\sigma(u)$ separating states in the children of u .

Splitting tree

Original algorithm

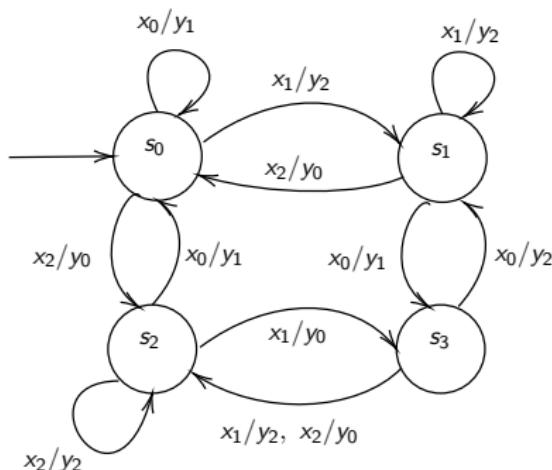
- ▶ Two ways to split:
 - ▶ split-output
 - ▶ Node is split with $a \in I$, if $\lambda(s, a) \neq \lambda(t, a)$
 - ▶ split-state
 - ▶ Node is split with $a\sigma(u)$ if we can split s and v with node after a , and that has label $\sigma(u)$

Splitting tree

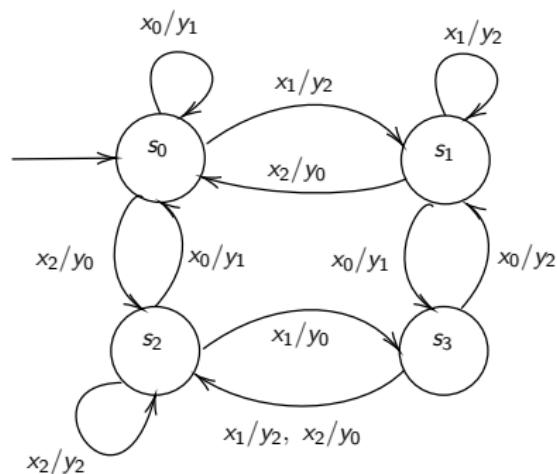
Original algorithm

- ▶ Two ways to split:
 - ▶ split-output
 - ▶ Node is split with $a \in I$, if $\lambda(s, a) \neq \lambda(t, a)$
 - ▶ split-state
 - ▶ Node is split with $a\sigma(u)$ if we can split s and v with node after a , and that has label $\sigma(u)$

Example



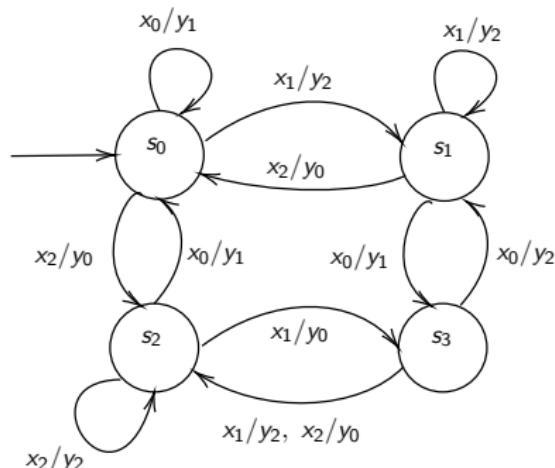
Splitting tree to characterising set



Example

$$W = \{x_0, x_1, x_0 x_0\}$$

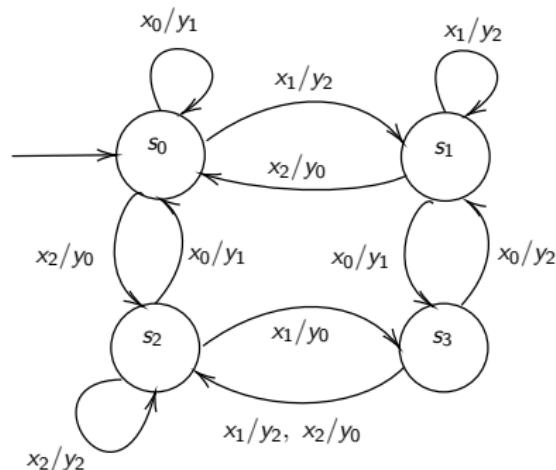
Verifying characterising set



Example

Characterising set: $W = \{x_0, x_1, x_0x_0\}$

Verifying characterising set

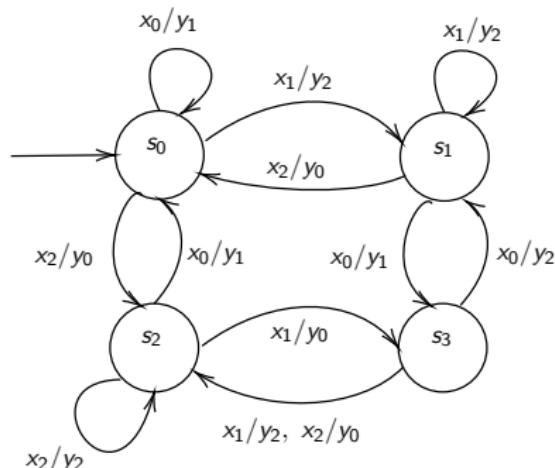


Example

Characterising set: $W = \{x_0, x_1, x_0x_0\}$

We do the checks:

Verifying characterising set



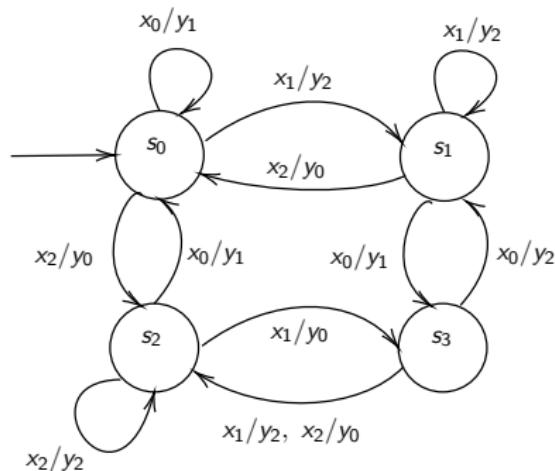
Example

Characterising set: $W = \{x_0, x_1, x_0x_0\}$

We do the checks:

$\{s_0, s_1\} : x_0x_0$,

Verifying characterising set



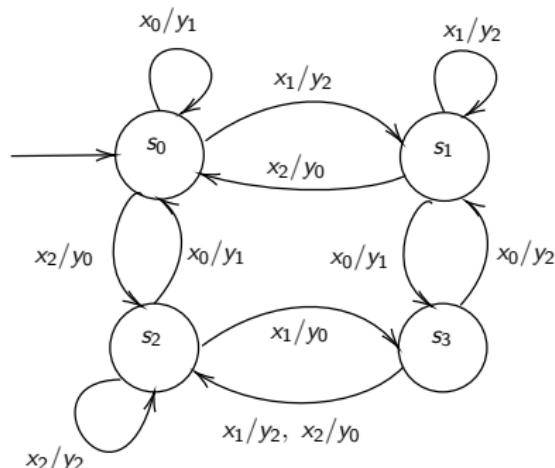
Example

Characterising set: $W = \{x_0, x_1, x_0x_0\}$

We do the checks:

$\{s_0, s_1\} : x_0x_0, \{s_0, s_2\} : x_1,$

Verifying characterising set



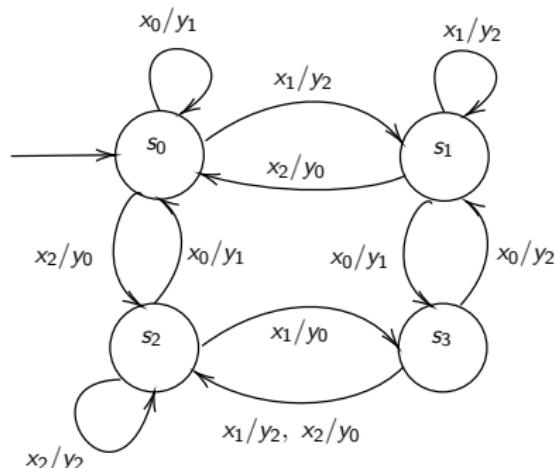
Example

Characterising set: $W = \{x_0, x_1, x_0x_0\}$

We do the checks:

$\{s_0, s_1\} : x_0x_0, \{s_0, s_2\} : x_1, \{s_0, s_3\} : x_0,$

Verifying characterising set



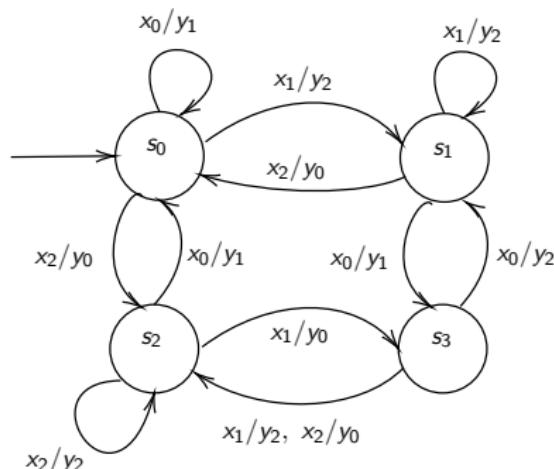
Example

Characterising set: $W = \{x_0, x_1, x_0x_0\}$

We do the checks:

$\{s_0, s_1\} : x_0x_0, \{s_0, s_2\} : x_1, \{s_0, s_3\} : x_0, \{s_1, s_2\} : x_1,$

Verifying characterising set



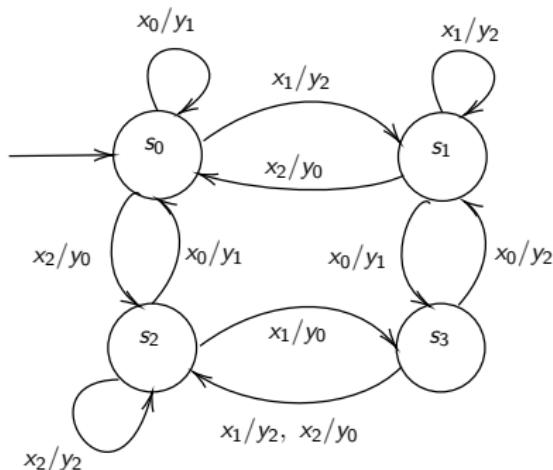
Example

Characterising set: $W = \{x_0, x_1, x_0x_0\}$

We do the checks:

$\{s_0, s_1\} : x_0x_0, \{s_0, s_2\} : x_1, \{s_0, s_3\} : x_0, \{s_1, s_2\} : x_1, \{s_1, s_3\} : x_0,$

Verifying characterising set



Example

Characterising set: $W = \{x_0, x_1, x_0x_0\}$

We do the checks:

$\{s_0, s_1\} : x_0x_0, \{s_0, s_2\} : x_1, \{s_0, s_3\} : x_0, \{s_1, s_2\} : x_1, \{s_1, s_3\} : x_0,$
 $\{s_2, s_3\} : x_0$

Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states $S' \subseteq S$ is the node u such that $S' \subseteq I(u)$, and for all children v of u : $S' \not\subseteq I(v)$.

Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states $S' \subseteq S$ is the node u such that $S' \subseteq I(u)$, and for all children v of u : $S' \not\subseteq I(v)$.

Example

For $S' := \{s_0, s_2\}$

Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states $S' \subseteq S$ is the node u such that $S' \subseteq I(u)$, and for all children v of u : $S' \not\subseteq I(v)$.

Example

For $S' := \{s_0, s_2\}$ this is $\{s_0, s_1, s_2\}$.

Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states $S' \subseteq S$ is the node u such that $S' \subseteq I(u)$, and for all children v of u : $S' \not\subseteq I(v)$.

Example

For $S' := \{s_0, s_2\}$ this is $\{s_0, s_1, s_2\}$. And for $S'' := \{s_2, s_3\}$

Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states $S' \subseteq S$ is the node u such that $S' \subseteq I(u)$, and for all children v of u : $S' \not\subseteq I(v)$.

Example

For $S' := \{s_0, s_2\}$ this is $\{s_0, s_1, s_2\}$. And for $S'' := \{s_2, s_3\}$ this is $\{s_0, s_1, s_2, s_3\}$.

Acceptable splitting tree

Definition (acceptable partition)

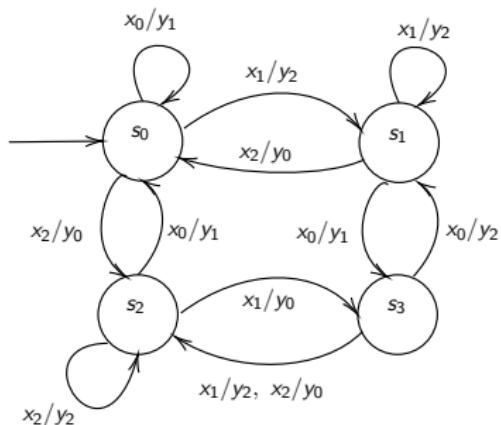
A partition is acceptable if for all s, t in the same block and for all $a \in I$, $\lambda(s, a) = \lambda(t, a)$

Acceptable splitting tree

Definition (acceptable partition)

A partition is acceptable if for all s, t in the same block and for all $a \in I$, $\lambda(s, a) = \lambda(t, a)$

Example

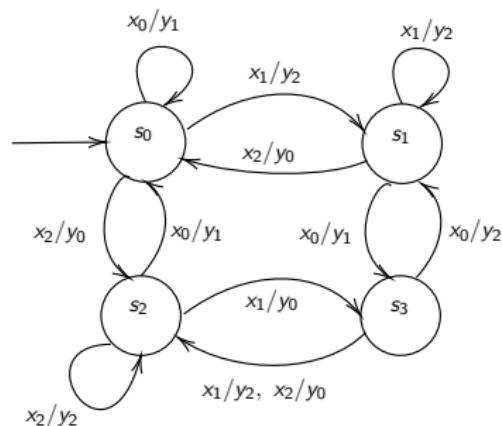


Acceptable splitting tree

Definition (acceptable partition)

A partition is acceptable if for all s, t in the same block and for all $a \in I$, $\lambda(s, a) = \lambda(t, a)$

Example



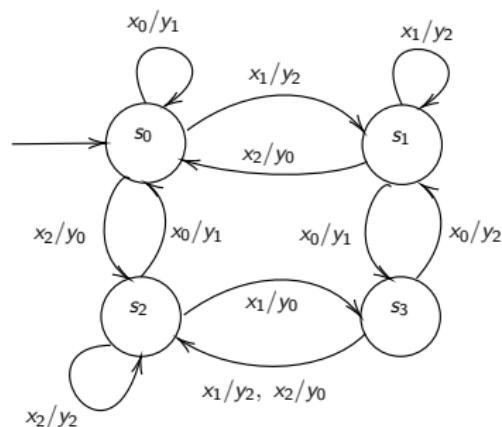
$[\{s_0, s_1, s_2\}, \{s_3\}]$ is not acceptable.

Acceptable splitting tree

Definition (acceptable partition)

A partition is acceptable if for all s, t in the same block and for all $a \in I$, $\lambda(s, a) = \lambda(t, a)$

Example



$[\{s_0, s_1, s_2\}, \{s_3\}]$ is not acceptable.

$[\{s_0, s_1\}, \{s_2\}, \{s_3\}]$ is acceptable.

Stable splitting tree

Definition (Stable partition)

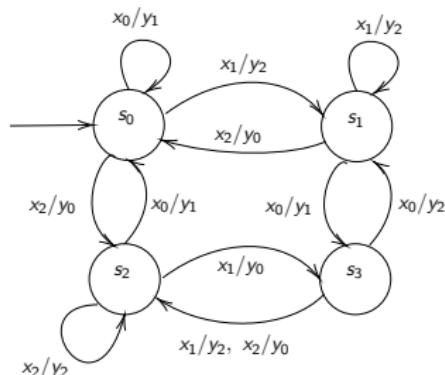
A partition is stable if it is acceptable, and for all s, t in the same block, and all $a \in I$, we have that $\delta(s, a)$ and $\delta(t, a)$ are in the same block.

Stable splitting tree

Definition (Stable partition)

A partition is stable if it is acceptable, and for all s, t in the same block, and all $a \in I$, we have that $\delta(s, a)$ and $\delta(t, a)$ are in the same block.

Example



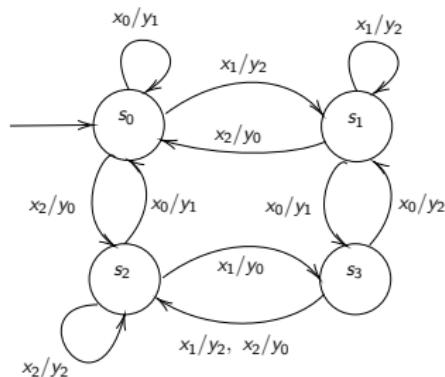
$[\{s_0, s_1\}, \{s_2\}, \{s_3\}]$ is not stable.

Stable splitting tree

Definition (Stable partition)

A partition is stable if it is acceptable, and for all s, t in the same block, and all $a \in I$, we have that $\delta(s, a)$ and $\delta(t, a)$ are in the same block.

Example



$[\{s_0, s_1\}, \{s_2\}, \{s_3\}]$ is not stable.

$[\{s_0\}, \{s_1\}, \{s_2\}, \{s_3\}]$ is stable.

k-Stable splitting tree

Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block

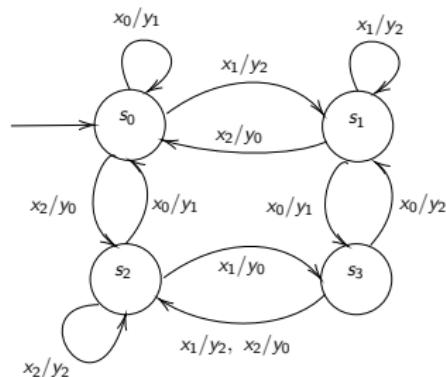
$$\lambda(s, x) = \lambda(t, x) \text{ for all } x \in I^{\leq k}$$

k-Stable splitting tree

Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block $\lambda(s, x) = \lambda(t, x)$ for all $x \in I^{\leq k}$

Example

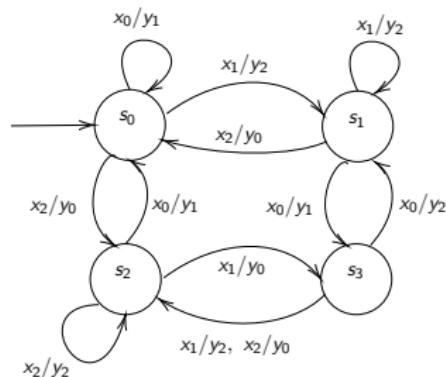


k-Stable splitting tree

Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block $\lambda(s, x) = \lambda(t, x)$ for all $x \in I^{\leq k}$

Example



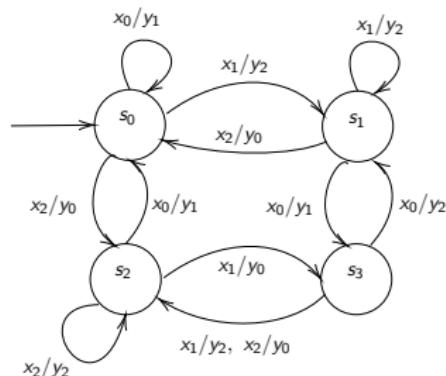
$[\{s_0, s_1\}, \{s_2\}, \{s_3\}]$ is 1-stable.

k-Stable splitting tree

Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block $\lambda(s, x) = \lambda(t, x)$ for all $x \in I^{\leq k}$

Example



$[\{s_0, s_1\}, \{s_2\}, \{s_3\}]$ is 1-stable.

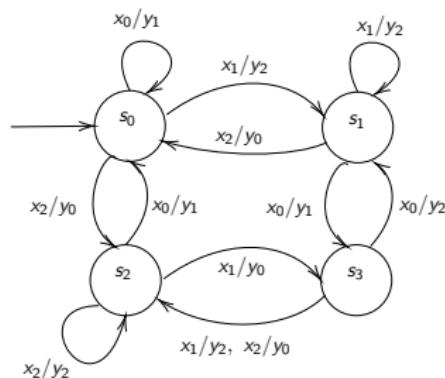
$[\{s_0, s_1\}, \{s_2\}, \{s_3\}]$ is not 2-stable.

k-Stable splitting tree

Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block $\lambda(s, x) = \lambda(t, x)$ for all $x \in I^{\leq k}$

Example



$[\{s_0, s_1\}, \{s_2\}, \{s_3\}]$ is 1-stable.

$[\{s_0, s_1\}, \{s_2\}, \{s_3\}]$ is not 2-stable.

$[\{s_0\}, \{s_1\}, \{s_2\}, \{s_3\}]$ is 2-stable.

Minimal splitting tree

Definition (minimal splitting tree)

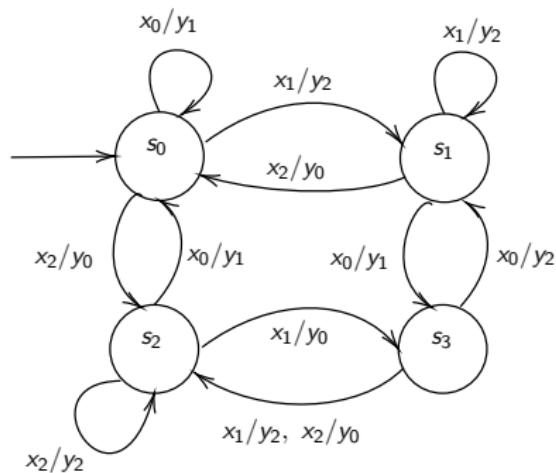
T is minimal if for all states s, t in different leaves $\lambda(s, x) \neq \lambda(t, x)$ implies $|x| \geq |\sigma(lca(s, t))|$ for all $x \in I^*$.

Minimal splitting tree

Definition (minimal splitting tree)

T is minimal if for all states s, t in different leaves $\lambda(s, x) \neq \lambda(t, x)$ implies $|x| \geq |\sigma(lca(s, t))|$ for all $x \in I^*$.

Example



How to get a Minimal splitting tree

- ▶ Get an acceptable splitting tree

How to get a Minimal splitting tree

- ▶ Get an acceptable splitting tree
- ▶ Go from a k -stable to $k + 1$ -stable tree.

How to get a Minimal splitting tree

- ▶ Get an acceptable splitting tree
- ▶ Go from a k -stable to $k + 1$ -stable tree.
 - ▶ $u \in T, a \in I, \text{lca}(\delta(\{u\}, a))$
 - ▶ $\sigma(u) = a\sigma(v), v := \delta(\{u\}, a)$

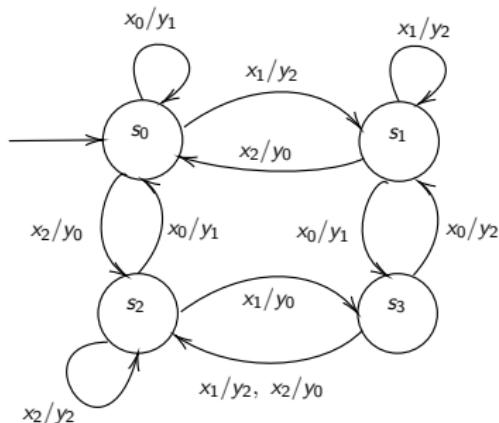
How to get a Minimal splitting tree

- ▶ Get an acceptable splitting tree
- ▶ Go from a k -stable to $k + 1$ -stable tree.
 - ▶ $u \in T, a \in I, lca(\delta(\{u\}, a))$
 - ▶ $\sigma(u) = a\sigma(v), v := \delta(\{u\}, a)$
- ▶ Note: an acceptable splitting tree is a 1-stable tree.

How to get a Minimal splitting tree

- ▶ Get an acceptable splitting tree
- ▶ Go from a k -stable to $k + 1$ -stable tree.
 - ▶ $u \in T, a \in I, \text{lca}(\delta(\{u\}), a))$
 - ▶ $\sigma(u) = a\sigma(v), v := \delta(\{u\}, a)$
- ▶ Note: an acceptable splitting tree is a 1-stable tree.

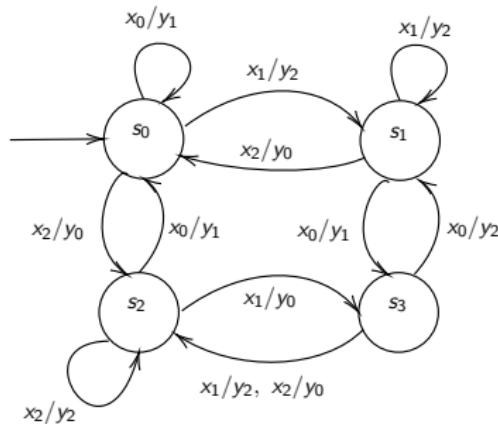
Example



How to get a Minimal splitting tree

- ▶ Get an acceptable splitting tree
- ▶ Go from a k -stable to $k + 1$ -stable tree.
 - ▶ $u \in T, a \in I, lca(\delta(\{u\}, a))$
 - ▶ $\sigma(u) = a\sigma(v), v := \delta(\{u\}, a)$
- ▶ Note: an acceptable splitting tree is a 1-stable tree.

Example



Note that this example is small, so it yields no difference.

Complexity of the algorithm

Speed up improvements:

Complexity of the algorithm

Speed up improvements:

- ▶ Building the split-state parts bottom up

Complexity of the algorithm

Speed up improvements:

- ▶ Building the split-state parts bottom up
- ▶ Adding a data structure

Complexity of the algorithm

Speed up improvements:

- ▶ Building the split-state parts bottom up
- ▶ Adding a data structure

Complexity of the splitting tree algorithm with speed up improvements: $\mathcal{O}(m \log n)$.

Complexity of the algorithm

Speed up improvements:

- ▶ Building the split-state parts bottom up
- ▶ Adding a data structure

Complexity of the splitting tree algorithm with speed up improvements: $\mathcal{O}(m \log n)$.

It was $\mathcal{O}(m n)$ in Moore's version.

Efficient state identification for finite state machine-based testing

Efficient state identification for finite state machine-based testing

- ▶ Redundant Characterizing set
- ▶ Identification path
- ▶ (B)O-Wset
- ▶ Complexity of the (B)O-Wset problem

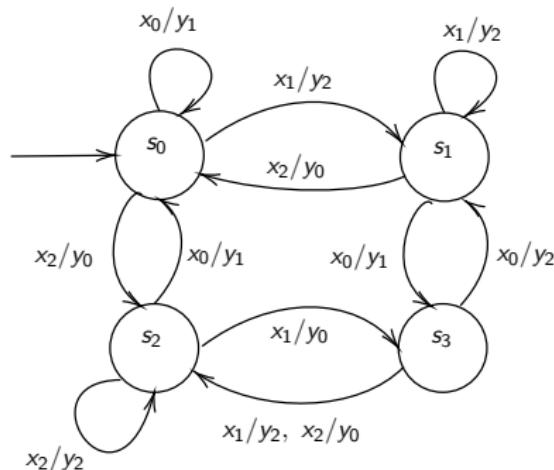
Redundant Characterizing set

Definition (Redundant Characterizing set)

A characterizing set W is redundant if either:

- ▶ $W \setminus \{w\}$ is a characterizing set for some $w \in W$.
- ▶ $W \cup \{w'\} \setminus \{w\}$ is a characterizing set for some $w \in W$ and a proper prefix w' of w .

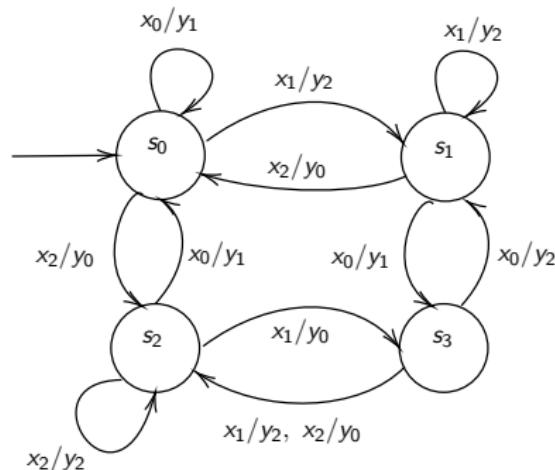
Redundant Characterizing set Example



Example

$W_1 = \{x_0x_0x_0, x_2\}$ is redundant: x_0x_0 separates s_0, s_2 and s_1 and s_3 .

Redundant Characterizing set Example



Example

$W_1 = \{x_0x_0x_0, x_2\}$ is redundant: x_0x_0 separates s_0, s_2 and s_1 and s_3 .

$W_2 = \{x_2, x_0x_0\}$ is non-redundant.

Identification path

- ▶ Transfer-free identification path
- ▶ State identification path with transfers

Identification path

- ▶ Transfer-free identification path
- ▶ State identification path with transfers
- ▶ Why transfer-free?

Identification path

- ▶ Transfer-free identification path
- ▶ State identification path with transfers
- ▶ Why transfer-free?
 - ▶ Transfers are often manual
 - ▶ Transfers are costly

Identification path

- ▶ Transfer-free identification path
- ▶ State identification path with transfers
- ▶ Why transfer-free?
 - ▶ Transfers are often manual
 - ▶ Transfers are costly

Example

An example of a transfer is when we have a sequence x_1bx_2 , and $b \notin W$.

Transfer-free identification path

Definition (Transfer-free identification path)

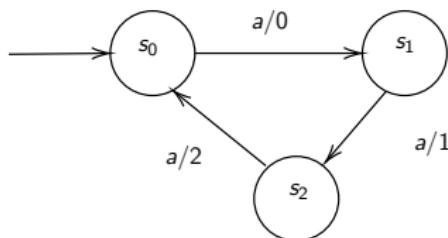
This is a path $\alpha_1\alpha_2\dots\alpha_k$ starting in the initial state, such that $\text{input}(\alpha_i) \in W$. Furthermore, for all $w \in W$, and for all states s , there is an α_i such that it corresponds with (s, w) .

Transfer-free identification path

Definition (Transfer-free identification path)

This is a path $\alpha_1\alpha_2\dots\alpha_k$ starting in the initial state, such that $\text{input}(\alpha_i) \in W$. Furthermore, for all $w \in W$, and for all states s , there is an α_i such that it corresponds with (s, w) .

Example



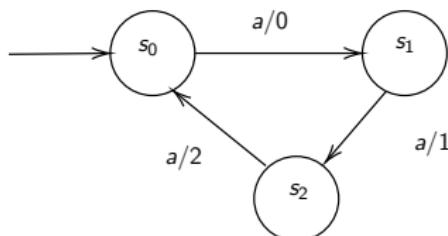
$$W = \{a\}$$

Transfer-free identification path

Definition (Transfer-free identification path)

This is a path $\alpha_1\alpha_2\dots\alpha_k$ starting in the initial state, such that $\text{input}(\alpha_i) \in W$. Furthermore, for all $w \in W$, and for all states s , there is an α_i such that it corresponds with (s, w) .

Example



$$W = \{a\} \quad s_0 \xrightarrow{a} s_1 \xrightarrow{a} s_2 \xrightarrow{a} s_0$$

State identification path with transfers

Definition (Identification path with transfers)

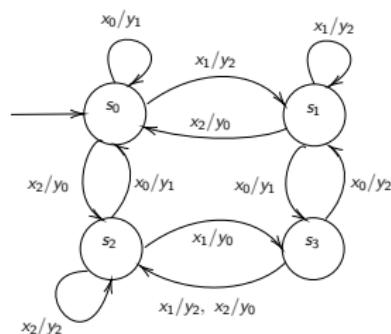
This is a path $\alpha_1\beta_1\alpha_2\beta_2\dots\alpha_k$ starting in the initial state, such that $\text{input}(\alpha_i) \in W$ Furthermore, for all $w \in W$, and for all states s , there is an α_i such that it corresponds with (s, w) , and β_j is a transfer sequence.

State identification path with transfers

Definition (Identification path with transfers)

This is a path $\alpha_1\beta_1\alpha_2\beta_2\dots\alpha_k$ starting in the initial state, such that $\text{input}(\alpha_i) \in W$. Furthermore, for all $w \in W$, and for all states s , there is an α_i such that it corresponds with (s, w) , and β_j is a transfer sequence.

Example



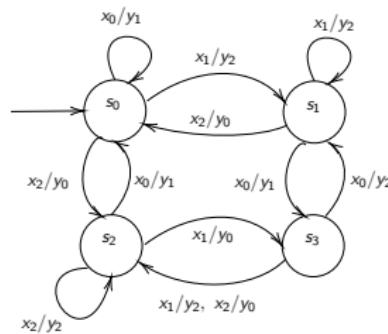
$$W = \{x_1, x_2x_2\}$$

State identification path with transfers

Definition (Identification path with transfers)

This is a path $\alpha_1\beta_1\alpha_2\beta_2\dots\alpha_k$ starting in the initial state, such that $\text{input}(\alpha_i) \in W$. Furthermore, for all $w \in W$, and for all states s , there is an α_i such that it corresponds with (s, w) , and β_j is a transfer sequence.

Example



$$W = \{x_1, x_2x_2\}, s_0 \xrightarrow{x_1} s_1 \xrightarrow{x_1} s_1 \xrightarrow{*_{x_2x_2}} s_2 \xrightarrow{x_1} s_3 \xrightarrow{x_1} s_2 \xrightarrow{*_{x_2x_2}} s_0$$

$s_2 \xrightarrow{x_0} s_0 \xrightarrow{*_{x_2x_2}} s_2 \xrightarrow{*_{x_0x_1x_0}} s_3 \xrightarrow{*_{x_2x_2}} s_2$

(B)O-Wset

- ▶ Minimal characterising set
- ▶ O-Wset
- ▶ BO-Wset

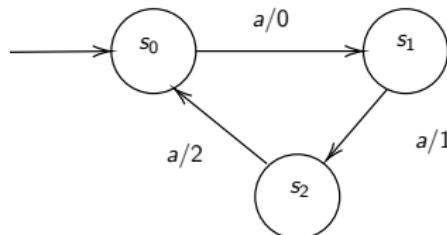
Minimal characterising set

Definition (Minimal characterising set)

A characterising set W is called minimal if for all $s, s' \in S$ where $s \neq s'$ there is a prefix w' of a sequence $w \in W$ such that:

- ▶ w' separates s and s'
- ▶ no shorter sequence separates s and s'

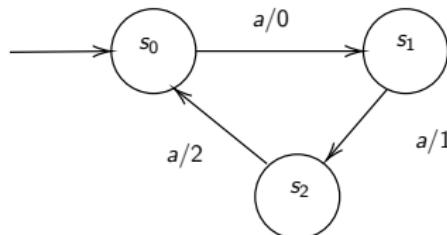
Minimal Characterizing set - Example 1



Example

- ▶ a separates s_0, s_1, s_2

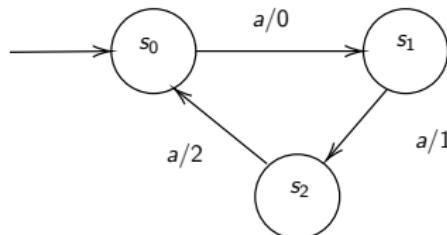
Minimal Characterizing set - Example 1



Example

- ▶ a separates s_0, s_1, s_2
- ▶ No shorter sequence separates the states

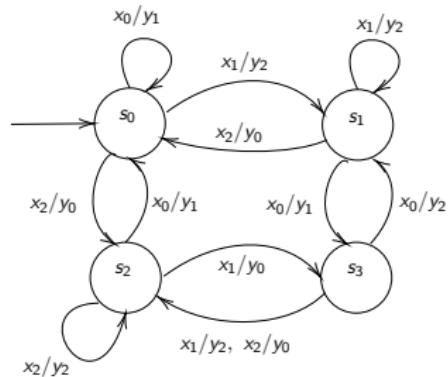
Minimal Characterizing set - Example 1



Example

- ▶ a separates s_0, s_1, s_2
- ▶ No shorter sequence separates the states
- ▶ So $W = \{a\}$ is minimal

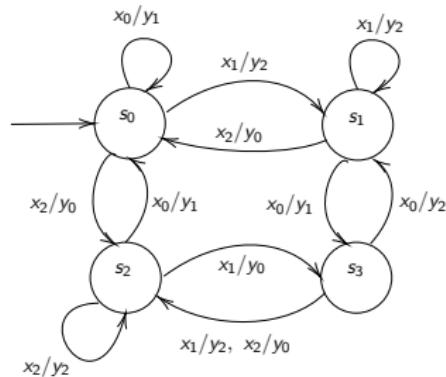
Minimal Characterizing set - Example 2



Example

$$W = \{x_1, x_2x_2\}.$$

Minimal Characterizing set - Example 2

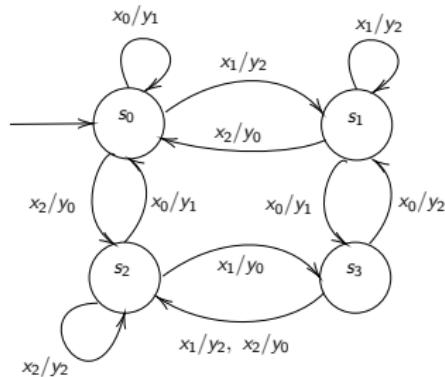


Example

$$W = \{x_1, x_2x_2\}.$$

- x_1 separates s_2 from s_0, s_1, s_3 , and no shorter sequence does.

Minimal Characterizing set - Example 2

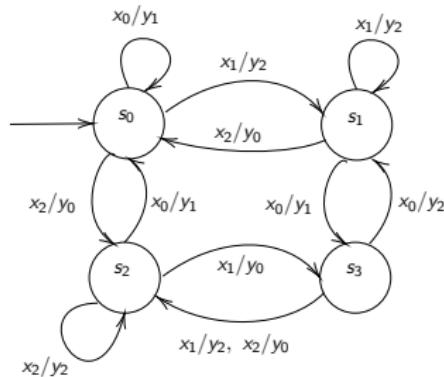


Example

$$W = \{x_1, x_2x_2\}.$$

- ▶ x_1 separates s_2 from s_0, s_1, s_3 , and no shorter sequence does.
- ▶ x_2 separates s_3 from s_0 and s_1 , and is a prefix of x_2x_2 , no shorter sequence does.

Minimal Characterizing set - Example 2

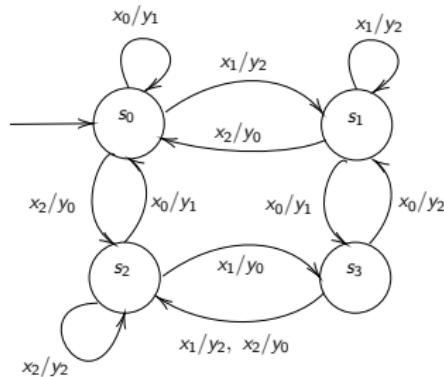


Example

$$W = \{x_1, x_2x_2\}.$$

- ▶ x_1 separates s_2 from s_0, s_1, s_3 , and no shorter sequence does.
- ▶ x_2 separates s_3 from s_0 and s_1 , and is a prefix of x_2x_2 , no shorter sequence does.
- ▶ x_2x_2 separates s_0 and s_1 and no shorter sequence does.

Minimal Characterizing set - Example 2



Example

$$W = \{x_1, x_2x_2\}.$$

- ▶ x_1 separates s_2 from s_0, s_1, s_3 , and no shorter sequence does.
- ▶ x_2 separates s_3 from s_0 and s_1 , and is a prefix of x_2x_2 , no shorter sequence does.
- ▶ x_2x_2 separates s_0 and s_1 and no shorter sequence does.
- ▶ So $W = \{x_1, x_2x_2\}$ is minimal.

O-Wset

Definition

W is an O-Wset if

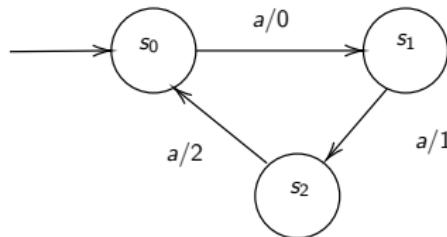
- ▶ W is a minimal characterizing set
- ▶ There exists a transfer-free state identification path for W .

O-Wset

Definition

W is an O-Wset if

- ▶ W is a minimal characterizing set
- ▶ There exists a transfer-free state identification path for W .



Example

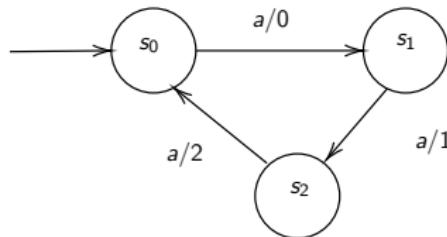
$W = \{a\}$ is an O-Wset:

O-Wset

Definition

W is an O-Wset if

- ▶ W is a minimal characterizing set
- ▶ There exists a transfer-free state identification path for W .



Example

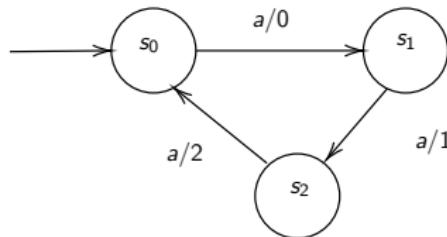
$W = \{a\}$ is an O-Wset: W is minimal

O-Wset

Definition

W is an O-Wset if

- ▶ W is a minimal characterizing set
- ▶ There exists a transfer-free state identification path for W .



Example

$W = \{a\}$ is an O-Wset: W is minimal and $s_0 \rightarrow_a s_1 \rightarrow_a s_2 \rightarrow_a s_0$ is a transfer-free path.

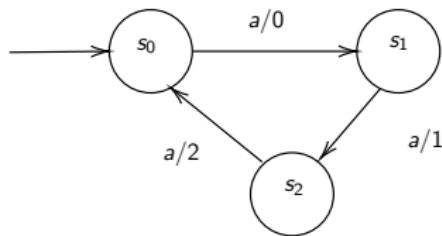
BO-Wset

Definition

W is a BO-Wset if there exists a k such that:

- ▶ W is minimal
- ▶ There exists a state identification path with at most k transfers.

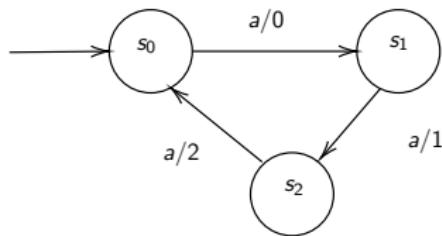
BO-Wset, $k = 0$



Example

$W = \{a\}$ is a BO-Wset:

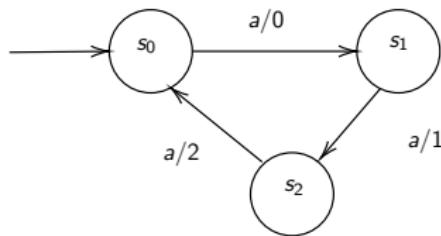
BO-Wset, $k = 0$



Example

$W = \{a\}$ is a BO-Wset: W is minimal

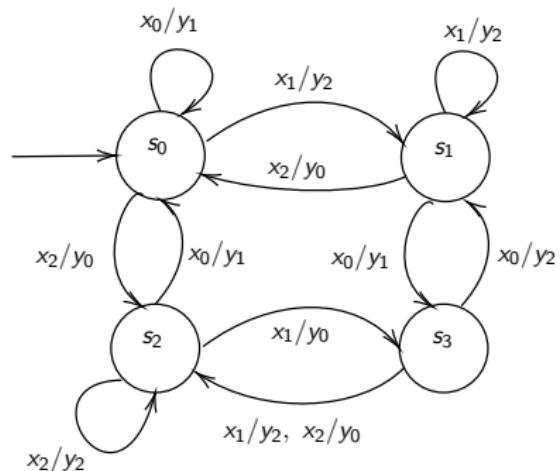
BO-Wset, $k = 0$



Example

$W = \{a\}$ is a BO-Wset: W is minimal and $s_0 \rightarrow_a s_1 \rightarrow_a s_2 \rightarrow_a s_0$ is a transfer-free path, so there are at most $k = 0$ transfers.

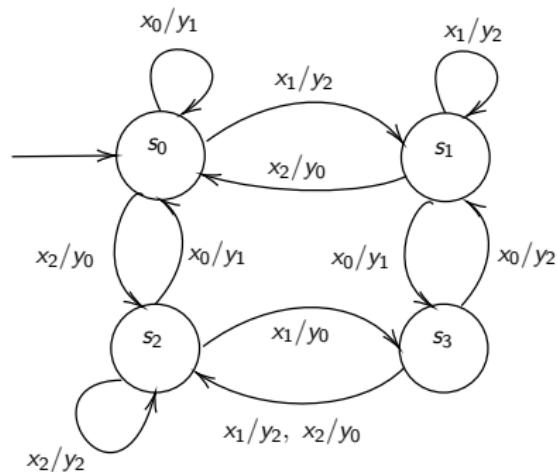
BO-Wset, $k = 4$



Example

$W = \{x_1, x_2x_2\}$ is a BO-Wset:

BO-Wset, $k = 4$



Example

$W = \{x_1, x_2x_2\}$ is a BO-Wset: W is minimal

BO-Wset, $k = 4$



Example

$W = \{x_1, x_2x_2\}$ is a BO-Wset: W is minimal and

$s_0 \xrightarrow{x_1} s_1 \xrightarrow{x_1} s_1 \xrightarrow{*_{x_2x_2}} s_2 \xrightarrow{x_1} s_3 \xrightarrow{x_1} s_2 \xrightarrow{*_{x_2x_2}} s_2 \xrightarrow{x_0} s_0 \xrightarrow{*_{x_2x_2}} s_0$

$s_2 \xrightarrow{*_{x_0x_1x_0}} s_3 \xrightarrow{*_{x_2x_2}} s_2$ has at most $k = 4$ transfers.

Complexity of finding a (B)O-WSet

- ▶ NP-complete

Complexity of finding a (B)O-WSet

- ▶ NP-complete
- ▶ X3C

Complexity of finding a (B)O-WSet

- ▶ NP-complete
- ▶ X3C
- ▶ Mapping X3C to O-WSet

- ▶ Set of elements U

X3C

- ▶ Set of elements U
- ▶ Finite set of subsets of the elements (of size 3): C

X3C

- ▶ Set of elements U
- ▶ Finite set of subsets of the elements (of size 3): C
- ▶ Find $\mathbb{C} \subseteq C$

X3C

- ▶ Set of elements U
- ▶ Finite set of subsets of the elements (of size 3): C
- ▶ Find $\mathbb{C} \subseteq C$
 - ▶ $\bigcup_{e_i \in \mathbb{C}} e_i = U$

X3C

- ▶ Set of elements U
- ▶ Finite set of subsets of the elements (of size 3): C
- ▶ Find $\mathbb{C} \subseteq C$
 - ▶ $\bigcup_{e_i \in \mathbb{C}} e_i = U$
 - ▶ for $e_i, e_j \in \mathbb{C}$ with $i \neq j$: $e_i \cap e_j = \emptyset$

X3C

- ▶ Set of elements U
- ▶ Finite set of subsets of the elements (of size 3): C
- ▶ Find $\mathbb{C} \subseteq C$
 - ▶ $\bigcup_{e_i \in \mathbb{C}} e_i = U$
 - ▶ for $e_i, e_j \in \mathbb{C}$ with $i \neq j$: $e_i \cap e_j = \emptyset$
- ▶ Complexity: NP-complete

X3C

- ▶ Set of elements U
- ▶ Finite set of subsets of the elements (of size 3): C
- ▶ Find $\mathbb{C} \subseteq C$
 - ▶ $\bigcup_{e_i \in \mathbb{C}} e_i = U$
 - ▶ for $e_i, e_j \in \mathbb{C}$ with $i \neq j$: $e_i \cap e_j = \emptyset$
- ▶ Complexity: NP-complete

Example

$U := \{1, 2, 3, 4, 5, 6\}$, $C := \{\{1, 2, 3\}, \{2, 3, 4\}, \{4, 5, 6\}\}$.
Is there a satisfying assignment?

X3C

- ▶ Set of elements U
- ▶ Finite set of subsets of the elements (of size 3): C
- ▶ Find $\mathbb{C} \subseteq C$
 - ▶ $\bigcup_{e_i \in \mathbb{C}} e_i = U$
 - ▶ for $e_i, e_j \in \mathbb{C}$ with $i \neq j$: $e_i \cap e_j = \emptyset$
- ▶ Complexity: NP-complete

Example

$U := \{1, 2, 3, 4, 5, 6\}$, $C := \{\{1, 2, 3\}, \{2, 3, 4\}, \{4, 5, 6\}\}$.

Is there a satisfying assignment?

Yes $\mathbb{C} = \{\{1, 2, 3\}, \{4, 5, 6\}\}$

X3C

- ▶ Set of elements U
- ▶ Finite set of subsets of the elements (of size 3): C
- ▶ Find $\mathbb{C} \subseteq C$
 - ▶ $\bigcup_{e_i \in \mathbb{C}} e_i = U$
 - ▶ for $e_i, e_j \in \mathbb{C}$ with $i \neq j$: $e_i \cap e_j = \emptyset$
- ▶ Complexity: NP-complete

Example

$U := \{1, 2, 3, 4, 5, 6\}$, $C := \{\{1, 2, 3\}, \{2, 3, 4\}, \{4, 5, 6\}\}$.

Is there a satisfying assignment?

Yes $\mathbb{C} = \{\{1, 2, 3\}, \{4, 5, 6\}\}$

Example

$U := \{1, 2, 3, 4, 5, 6\}$, $C := \{\{1, 3, 5\}, \{2, 3, 4\}, \{4, 5, 6\}\}$.

Is there a satisfying assignment?

X3C

- ▶ Set of elements U
- ▶ Finite set of subsets of the elements (of size 3): C
- ▶ Find $\mathbb{C} \subseteq C$
 - ▶ $\bigcup_{e_i \in \mathbb{C}} e_i = U$
 - ▶ for $e_i, e_j \in \mathbb{C}$ with $i \neq j$: $e_i \cap e_j = \emptyset$
- ▶ Complexity: NP-complete

Example

$U := \{1, 2, 3, 4, 5, 6\}$, $C := \{\{1, 2, 3\}, \{2, 3, 4\}, \{4, 5, 6\}\}$.

Is there a satisfying assignment?

Yes $\mathbb{C} = \{\{1, 2, 3\}, \{4, 5, 6\}\}$

Example

$U := \{1, 2, 3, 4, 5, 6\}$, $C := \{\{1, 3, 5\}, \{2, 3, 4\}, \{4, 5, 6\}\}$.

Is there a satisfying assignment?

No.

X3C to O-Wset

Theorem

There is a satisfying assignment \mathbb{C} for a given X3C problem iff there is a transfer-free path in the FSM M .

X3C to O-Wset

Theorem

There is a satisfying assignment \mathbb{C} for a given X3C problem iff there is a transfer-free path in the FSM M . M is defined by the mapping $S := \{s_i | u_i \in U\} \cup \{s_{|U|+1}\}$, $I := \{x_i | c_i \in C\}$,

$O := \{y_i | u_i \in U\} \cup \{0\}$,

X3C to O-Wset

Theorem

There is a satisfying assignment \mathbb{C} for a given X3C problem iff there is a transfer-free path in the FSM M . M is defined by the mapping $S := \{s_i | u_i \in U\} \cup \{s_{|U|+1}\}$, $I := \{x_i | c_i \in C\}$,

$$O := \{y_i | u_i \in U\} \cup \{0\}, \text{ and } \lambda(s_i, x_j) = \begin{cases} y_i & \text{if } u_i \in e_j \\ 0 & \text{otherwise} \end{cases},$$

X3C to O-Wset

Theorem

There is a satisfying assignment \mathbb{C} for a given X3C problem iff there is a transfer-free path in the FSM M . M is defined by the mapping $S := \{s_i | u_i \in U\} \cup \{s_{|U|+1}\}$, $I := \{x_i | c_i \in C\}$,

$$O := \{y_i | u_i \in U\} \cup \{0\}, \text{ and } \lambda(s_i, x_j) = \begin{cases} y_i & \text{if } u_i \in e_j \\ 0 & \text{otherwise} \end{cases}, \text{ and}$$

$$\delta(s_i, x_j) = \begin{cases} s_{i+1} & \text{if } u_i \in e_j \\ s_i & \text{otherwise} \end{cases}.$$

X3C to O-Wset

Theorem

There is a satisfying assignment \mathbb{C} for a given X3C problem iff there is a transfer-free path in the FSM M . M is defined by the mapping $S := \{s_i | u_i \in U\} \cup \{s_{|U|+1}\}$, $I := \{x_i | c_i \in C\}$,

$O := \{y_i | u_i \in U\} \cup \{0\}$, and $\lambda(s_i, x_j) = \begin{cases} y_i & \text{if } u_i \in e_j \\ 0 & \text{otherwise} \end{cases}$, and

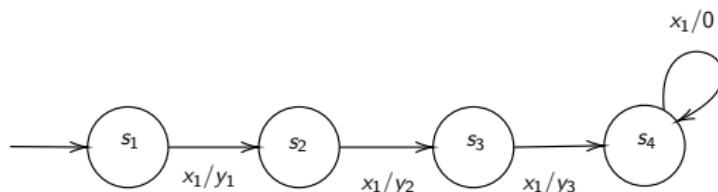
$\delta(s_i, x_j) = \begin{cases} s_{i+1} & \text{if } u_i \in e_j \\ s_i & \text{otherwise} \end{cases}$.

Example

$U = \{u_1, u_2, u_3\}$, $C = \{e_1\} = \{\{u_1, u_2, u_3\}\}$.

Mapping X3C to O-Wset

$$U = \{u_1, u_2, u_3\}, S = \{s_1, s_2, s_3, s_4\}, C = \{e_1\} = \{\{u_1, u_2, u_3\}\},$$
$$I = \{x_1\},$$
$$O = \{y_1, y_2, y_3, 0\}.$$



Transition for state s_1 : For x_1, u_1 in $e_1 \Rightarrow$ goes to s_2 , with output y_1 as it is state 1.

Transition for state s_2 : For x_1, u_1 in $e_1 \Rightarrow$ goes to s_3 , with output y_2 as it is state 2.

Transition for state s_3 : For x_1, u_1 in $e_1 \Rightarrow$ goes to s_4 , with output y_3 as it is state 3.

Transition for state s_4 : For x_1, u_1 not in $e_1 \Rightarrow$ goes to s_4 , with output 0.

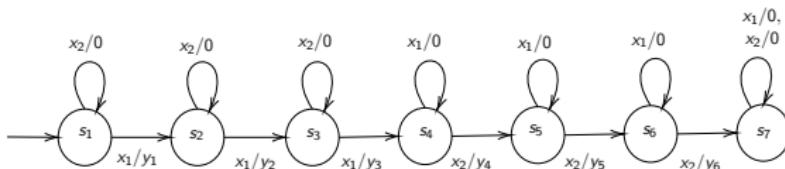
X3C to O-Wset - path

$$U = \{u_1, u_2, u_3, u_4, u_5, u_6\},$$

$$C = \{e_1, e_2\} = \{\{u_1, u_2, u_3\}, \{u_4, u_5, u_6\}\},$$

$$S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7\},$$

$$I = \{x_1, x_2\}, O = \{y_1, y_2, y_3, y_4, y_5, y_6, 0\}$$



$$W := \{x_1, x_2\}.$$

Path is : $s_1 \rightarrow_{x_2} s_1 \rightarrow_{x_1} s_2 \rightarrow_{x_2} s_2 \rightarrow_{x_1} s_3 \rightarrow_{x_2} s_3 \rightarrow_{x_1} s_4 \rightarrow_{x_1} s_4 \rightarrow_{x_2} s_5 \rightarrow_{x_1} s_5 \rightarrow_{x_2} s_6 \rightarrow_{x_1} s_6 \rightarrow_{x_2} s_7 \rightarrow_{x_1} s_7 \rightarrow_{x_2} s_7$

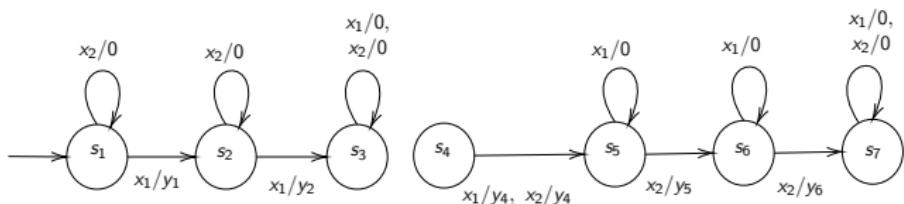
X3C to O-Wset - path

$$U = \{u_1, u_2, u_3, u_4, u_5, u_6\},$$

$$C = \{e_1, e_2\} = \{\{u_1, u_2, u_4\}, \{u_4, u_5, u_6\}\},$$

$$S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7\},$$

$$I = \{x_1, x_2\}, O = \{y_1, y_2, y_3, y_4, y_5, y_6, 0\}$$



No path.

NP completeness for (B)O-Wset

- ▶ Mapping from X3C to O-Wset

NP completeness for (B)O-Wset

- ▶ Mapping from X3C to O-Wset
- ▶ X3C to BO-Wset

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?

When should we use a splitting tree and when is a (B)O-Wset better?

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?

When should we use a splitting tree and when is a (B)O-Wset better?

Resets needed for splitting tree.

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?

When should we use a splitting tree and when is a (B)O-Wset better?

Resets needed for splitting tree.

Resets can be costly.

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?

When should we use a splitting tree and when is a (B)O-Wset better?

Resets needed for splitting tree.

Resets can be costly.

(B)O-Wset yield a long path for all states, splitting tree small ones for every pair of states.

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?

When should we use a splitting tree and when is a (B)O-Wset better?

Resets needed for splitting tree.

Resets can be costly.

(B)O-Wset yield a long path for all states, splitting tree small ones for every pair of states.

Is a combination possible?

Conclusion

- ▶ Splitting Tree
- ▶ Splitting Tree to characterising set
- ▶ (B)O-Wset
- ▶ Comparison of methods