
State identification using characterizing sets or
separating sequences

Kati Overbeeke

January 21, 2026

1/44

Overview

▶ Motivation for testing

▶ Prerequisites

▶ Difference in the papers

▶ Minimal Separating Sequences for All Pairs of States

▶ Efficient State Identification for Finite State Machine-based
Testing

▶ Comparison

▶ Conclusion

2/44

Motivation for testing

▶ Testing is costly
▶ Manual configuration
▶ Test case design

▶ Automation testing
▶ Faster
▶ Consistency and accuracy
▶ Frequent testing

▶ Using a Finite State Machine
▶ Does an implementation conform to its specification?

▶ Other methods:
▶ Property based testing
▶ Extended FSM Models
▶ Formal verification

3/44

Motivation for testing

▶ Testing is costly
▶ Manual configuration
▶ Test case design

▶ Automation testing
▶ Faster
▶ Consistency and accuracy
▶ Frequent testing

▶ Using a Finite State Machine

▶ Does an implementation conform to its specification?

▶ Other methods:
▶ Property based testing
▶ Extended FSM Models
▶ Formal verification

3/44

Motivation for testing

▶ Testing is costly
▶ Manual configuration
▶ Test case design

▶ Automation testing
▶ Faster
▶ Consistency and accuracy
▶ Frequent testing

▶ Using a Finite State Machine
▶ Does an implementation conform to its specification?

▶ Other methods:
▶ Property based testing
▶ Extended FSM Models
▶ Formal verification

3/44

Motivation for testing

▶ Testing is costly
▶ Manual configuration
▶ Test case design

▶ Automation testing
▶ Faster
▶ Consistency and accuracy
▶ Frequent testing

▶ Using a Finite State Machine
▶ Does an implementation conform to its specification?

▶ Other methods:
▶ Property based testing
▶ Extended FSM Models
▶ Formal verification

3/44

Overview prerequisites

▶ Finite State Machines

▶ Separating sequence

▶ Characterisation set

▶ Test suite

4/44

Finite State Machines
▶ Set of states, S
▶ Inputs, I
▶ Outputs, O
▶ λ : S × I → O
▶ δ : S × I → S

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

S := {s0, s1, s2, s3}, I := {x0, x1, x2}, O := {y0, y1, y2}.

5/44

Finite State Machines
▶ Set of states, S
▶ Inputs, I
▶ Outputs, O
▶ λ : S × I → O
▶ δ : S × I → S

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

S := {s0, s1, s2, s3}, I := {x0, x1, x2}, O := {y0, y1, y2}.

5/44

Finite State Machines
▶ Set of states, S
▶ Inputs, I
▶ Outputs, O
▶ λ : S × I → O
▶ δ : S × I → S

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

S := {s0, s1, s2, s3}

, I := {x0, x1, x2}, O := {y0, y1, y2}.

5/44

Finite State Machines
▶ Set of states, S
▶ Inputs, I
▶ Outputs, O
▶ λ : S × I → O
▶ δ : S × I → S

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

S := {s0, s1, s2, s3}, I := {x0, x1, x2}

, O := {y0, y1, y2}.

5/44

Finite State Machines
▶ Set of states, S
▶ Inputs, I
▶ Outputs, O
▶ λ : S × I → O
▶ δ : S × I → S

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

S := {s0, s1, s2, s3}, I := {x0, x1, x2}, O := {y0, y1, y2}.
5/44

Seperating Sequence

Definition (Separating Sequence)

A separating sequence for states s and t is a sequence x ∈ I ∗ such
that λ∗(s, x) ̸= λ∗(t, x).

We say x is minimal if |y | ≥ |x | for all
separating sequences y for s and t.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

x := x0x0 is a minimal separating sequence for s0 and s1.
x0, x1, x2 do not separate s0 and s1.

6/44

Seperating Sequence

Definition (Separating Sequence)

A separating sequence for states s and t is a sequence x ∈ I ∗ such
that λ∗(s, x) ̸= λ∗(t, x). We say x is minimal if |y | ≥ |x | for all
separating sequences y for s and t.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

x := x0x0 is a minimal separating sequence for s0 and s1.
x0, x1, x2 do not separate s0 and s1.

6/44

Seperating Sequence

Definition (Separating Sequence)

A separating sequence for states s and t is a sequence x ∈ I ∗ such
that λ∗(s, x) ̸= λ∗(t, x). We say x is minimal if |y | ≥ |x | for all
separating sequences y for s and t.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

x := x0x0 is a minimal separating sequence for s0 and s1.

x0, x1, x2 do not separate s0 and s1.

6/44

Seperating Sequence

Definition (Separating Sequence)

A separating sequence for states s and t is a sequence x ∈ I ∗ such
that λ∗(s, x) ̸= λ∗(t, x). We say x is minimal if |y | ≥ |x | for all
separating sequences y for s and t.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

x := x0x0 is a minimal separating sequence for s0 and s1.
x0, x1, x2 do not separate s0 and s1.

6/44

Characterization set

Definition (Characterization set)

A set W ⊆ I ∗ is a characterisation set if for every pair of states
(s, t) in FSM M there exists a w in W such that w separates s
and t.

λ∗(s,w) ̸= λ∗(t,w), where λ∗ is the extended output.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

The set W = {x0, x2x2} is a characterizing set.

7/44

Characterization set

Definition (Characterization set)

A set W ⊆ I ∗ is a characterisation set if for every pair of states
(s, t) in FSM M there exists a w in W such that w separates s
and t.
λ∗(s,w) ̸= λ∗(t,w), where λ∗ is the extended output.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

The set W = {x0, x2x2} is a characterizing set.

7/44

Characterization set

Definition (Characterization set)

A set W ⊆ I ∗ is a characterisation set if for every pair of states
(s, t) in FSM M there exists a w in W such that w separates s
and t.
λ∗(s,w) ̸= λ∗(t,w), where λ∗ is the extended output.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

The set W = {x0, x2x2} is a characterizing set.
7/44

Test suite

▶ Set of test cases

▶ Input sequence
▶ Corresponding expected output

▶ One of the definitions of the cost of a test suite:
▶ Size of inputs and input sequences
▶ Time required

8/44

Test suite

▶ Set of test cases
▶ Input sequence
▶ Corresponding expected output

▶ One of the definitions of the cost of a test suite:
▶ Size of inputs and input sequences
▶ Time required

8/44

Difference in the papers

▶ Minimal Separating Sequences for All Pairs of States
▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
▶ 2016

▶ Efficient State Identification for Finite State Machine-based
Testing
▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza

Mousavi, and Khaled El-Fakih
▶ 2025

▶ Why do this work?
▶ Finite State Machine Testing is simple
▶ Still a few costly operations:

▶ Reset sequences
▶ Transfer sequences

▶ Difference in the papers
▶ Building characterization sets
▶ Minimize costly operations.
▶ Minimal FSMs

9/44

Difference in the papers

▶ Minimal Separating Sequences for All Pairs of States
▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
▶ 2016

▶ Efficient State Identification for Finite State Machine-based
Testing
▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza

Mousavi, and Khaled El-Fakih
▶ 2025

▶ Why do this work?
▶ Finite State Machine Testing is simple
▶ Still a few costly operations:

▶ Reset sequences
▶ Transfer sequences

▶ Difference in the papers
▶ Building characterization sets
▶ Minimize costly operations.
▶ Minimal FSMs

9/44

Difference in the papers

▶ Minimal Separating Sequences for All Pairs of States
▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
▶ 2016

▶ Efficient State Identification for Finite State Machine-based
Testing
▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza

Mousavi, and Khaled El-Fakih
▶ 2025

▶ Why do this work?
▶ Finite State Machine Testing is simple
▶ Still a few costly operations:

▶ Reset sequences
▶ Transfer sequences

▶ Difference in the papers
▶ Building characterization sets
▶ Minimize costly operations.
▶ Minimal FSMs

9/44

Difference in the papers

▶ Minimal Separating Sequences for All Pairs of States
▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
▶ 2016

▶ Efficient State Identification for Finite State Machine-based
Testing
▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza

Mousavi, and Khaled El-Fakih
▶ 2025

▶ Why do this work?
▶ Finite State Machine Testing is simple
▶ Still a few costly operations:

▶ Reset sequences
▶ Transfer sequences

▶ Difference in the papers
▶ Building characterization sets
▶ Minimize costly operations.
▶ Minimal FSMs

9/44

Difference in the papers

▶ Minimal Separating Sequences for All Pairs of States
▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
▶ 2016

▶ Efficient State Identification for Finite State Machine-based
Testing
▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza

Mousavi, and Khaled El-Fakih
▶ 2025

▶ Why do this work?
▶ Finite State Machine Testing is simple
▶ Still a few costly operations:

▶ Reset sequences
▶ Transfer sequences

▶ Difference in the papers
▶ Building characterization sets

▶ Minimize costly operations.
▶ Minimal FSMs

9/44

Difference in the papers

▶ Minimal Separating Sequences for All Pairs of States
▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
▶ 2016

▶ Efficient State Identification for Finite State Machine-based
Testing
▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza

Mousavi, and Khaled El-Fakih
▶ 2025

▶ Why do this work?
▶ Finite State Machine Testing is simple
▶ Still a few costly operations:

▶ Reset sequences
▶ Transfer sequences

▶ Difference in the papers
▶ Building characterization sets
▶ Minimize costly operations.

▶ Minimal FSMs

9/44

Difference in the papers

▶ Minimal Separating Sequences for All Pairs of States
▶ by Rick Smetsers, Joshua Moerman, and David N. Jansen
▶ 2016

▶ Efficient State Identification for Finite State Machine-based
Testing
▶ by Uraz Cengiz Turker, Robert M. Hierons, Mohammad Reza

Mousavi, and Khaled El-Fakih
▶ 2025

▶ Why do this work?
▶ Finite State Machine Testing is simple
▶ Still a few costly operations:

▶ Reset sequences
▶ Transfer sequences

▶ Difference in the papers
▶ Building characterization sets
▶ Minimize costly operations.
▶ Minimal FSMs

9/44

Minimal Separating Sequences for All Pairs of States

▶ Splitting Tree

▶ Splitting Tree to characterising set

▶ How to get a minimal splitting tree

10/44

Minimal Separating Sequences for All Pairs of States

▶ Splitting Tree

▶ Splitting Tree to characterising set

▶ How to get a minimal splitting tree

10/44

Splitting tree

Concepts by Moore (1956), first explicit splitting tree by
Yannakakis (1994):

Definition (Splitting tree)

For a Finite State Machine M, we define the splitting tree T with
a finite set of nodes such that:

▶ a node u in T is labelled by a subset of S , denoted l(u)

▶ the root is labelled by S

▶ For each inner node u, l(u) is partitioned by the labels of its
children

▶ inner node u is associated with a sequence σ(u) separating
states in the children of u.

11/44

Splitting tree

Concepts by Moore (1956), first explicit splitting tree by
Yannakakis (1994):

Definition (Splitting tree)

For a Finite State Machine M, we define the splitting tree T with
a finite set of nodes such that:

▶ a node u in T is labelled by a subset of S , denoted l(u)

▶ the root is labelled by S

▶ For each inner node u, l(u) is partitioned by the labels of its
children

▶ inner node u is associated with a sequence σ(u) separating
states in the children of u.

11/44

Splitting tree
Original algorithm
▶ Two ways to split:

▶ split-output
▶ Node is split with a ∈ I , if λ(s, a) ̸= λ(t, a)

▶ split-state
▶ Node is split with aσ(u) if we can split s and v with node

after a, and that has label σ(u)

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

12/44

Splitting tree
Original algorithm
▶ Two ways to split:

▶ split-output
▶ Node is split with a ∈ I , if λ(s, a) ̸= λ(t, a)

▶ split-state
▶ Node is split with aσ(u) if we can split s and v with node

after a, and that has label σ(u)

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

12/44

Splitting tree to characterising set

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

W = {x0, x1, x0x0}

13/44

Verifying characterising set
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

Characterising set: W = {x0, x1, x0x0}

We do the checks:
{s0, s1} : x0x0,{s0, s2} : x1, {s0, s3} : x0, {s1, s2} : x1, {s1, s3} : x0,
{s2, s3} : x0

14/44

Verifying characterising set
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

Characterising set: W = {x0, x1, x0x0}
We do the checks:

{s0, s1} : x0x0,{s0, s2} : x1, {s0, s3} : x0, {s1, s2} : x1, {s1, s3} : x0,
{s2, s3} : x0

14/44

Verifying characterising set
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

Characterising set: W = {x0, x1, x0x0}
We do the checks:
{s0, s1} : x0x0,

{s0, s2} : x1, {s0, s3} : x0, {s1, s2} : x1, {s1, s3} : x0,
{s2, s3} : x0

14/44

Verifying characterising set
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

Characterising set: W = {x0, x1, x0x0}
We do the checks:
{s0, s1} : x0x0,{s0, s2} : x1,

{s0, s3} : x0, {s1, s2} : x1, {s1, s3} : x0,
{s2, s3} : x0

14/44

Verifying characterising set
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

Characterising set: W = {x0, x1, x0x0}
We do the checks:
{s0, s1} : x0x0,{s0, s2} : x1, {s0, s3} : x0,

{s1, s2} : x1, {s1, s3} : x0,
{s2, s3} : x0

14/44

Verifying characterising set
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

Characterising set: W = {x0, x1, x0x0}
We do the checks:
{s0, s1} : x0x0,{s0, s2} : x1, {s0, s3} : x0, {s1, s2} : x1,

{s1, s3} : x0,
{s2, s3} : x0

14/44

Verifying characterising set
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

Characterising set: W = {x0, x1, x0x0}
We do the checks:
{s0, s1} : x0x0,{s0, s2} : x1, {s0, s3} : x0, {s1, s2} : x1, {s1, s3} : x0,

{s2, s3} : x0

14/44

Verifying characterising set
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

Characterising set: W = {x0, x1, x0x0}
We do the checks:
{s0, s1} : x0x0,{s0, s2} : x1, {s0, s3} : x0, {s1, s2} : x1, {s1, s3} : x0,
{s2, s3} : x0

14/44

Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states S ′ ⊆ S is
the node u such that S ′ ⊆ l(u), and for all children v of u:
S ′ ⊈ l(v).

Example

For S ′ := {s0, s2} this is {s0, s1, s2}. And for S ′′ := {s2, s3} this is
{s0, s1, s2, s3}.

15/44

Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states S ′ ⊆ S is
the node u such that S ′ ⊆ l(u), and for all children v of u:
S ′ ⊈ l(v).

Example

For S ′ := {s0, s2}

this is {s0, s1, s2}. And for S ′′ := {s2, s3} this is
{s0, s1, s2, s3}.

15/44

Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states S ′ ⊆ S is
the node u such that S ′ ⊆ l(u), and for all children v of u:
S ′ ⊈ l(v).

Example

For S ′ := {s0, s2} this is {s0, s1, s2}.

And for S ′′ := {s2, s3} this is
{s0, s1, s2, s3}.

15/44

Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states S ′ ⊆ S is
the node u such that S ′ ⊆ l(u), and for all children v of u:
S ′ ⊈ l(v).

Example

For S ′ := {s0, s2} this is {s0, s1, s2}. And for S ′′ := {s2, s3}

this is
{s0, s1, s2, s3}.

15/44

Lowest Common Ancestor

Definition (Lowest Common Ancestor)

The Lowest Common Ancestor (LCA) for a set of states S ′ ⊆ S is
the node u such that S ′ ⊆ l(u), and for all children v of u:
S ′ ⊈ l(v).

Example

For S ′ := {s0, s2} this is {s0, s1, s2}. And for S ′′ := {s2, s3} this is
{s0, s1, s2, s3}.

15/44

Acceptable splitting tree

Definition (acceptable partition)

A partition is acceptable if for all s, t in the same block and for all
a ∈ I , λ(s, a) = λ(t, a)

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1, s2}, {s3}] is not acceptable.
[{s0, s1}, {s2}, {s3}] is acceptable.

16/44

Acceptable splitting tree

Definition (acceptable partition)

A partition is acceptable if for all s, t in the same block and for all
a ∈ I , λ(s, a) = λ(t, a)

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1, s2}, {s3}] is not acceptable.
[{s0, s1}, {s2}, {s3}] is acceptable.

16/44

Acceptable splitting tree

Definition (acceptable partition)

A partition is acceptable if for all s, t in the same block and for all
a ∈ I , λ(s, a) = λ(t, a)

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1, s2}, {s3}] is not acceptable.

[{s0, s1}, {s2}, {s3}] is acceptable.

16/44

Acceptable splitting tree

Definition (acceptable partition)

A partition is acceptable if for all s, t in the same block and for all
a ∈ I , λ(s, a) = λ(t, a)

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1, s2}, {s3}] is not acceptable.
[{s0, s1}, {s2}, {s3}] is acceptable.

16/44

Stable splitting tree

Definition (Stable partition)

A partition is stable if it is acceptable, and for all s, t in the same
block, and all a ∈ I , we have that δ(s, a) and δ(t, a) are in the
same block.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1}, {s2}, {s3}] is not stable.
[{s0}, {s1}, {s2}, {s3}] is stable.

17/44

Stable splitting tree

Definition (Stable partition)

A partition is stable if it is acceptable, and for all s, t in the same
block, and all a ∈ I , we have that δ(s, a) and δ(t, a) are in the
same block.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1}, {s2}, {s3}] is not stable.

[{s0}, {s1}, {s2}, {s3}] is stable.

17/44

Stable splitting tree

Definition (Stable partition)

A partition is stable if it is acceptable, and for all s, t in the same
block, and all a ∈ I , we have that δ(s, a) and δ(t, a) are in the
same block.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1}, {s2}, {s3}] is not stable.
[{s0}, {s1}, {s2}, {s3}] is stable.

17/44

k-Stable splitting tree

Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block
λ(s, x) = λ(t, x) for all x ∈ I≤k

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1}, {s2}, {s3}] is 1-stable.
[{s0, s1}, {s2}, {s3}] is not 2-stable.
[{s0}, {s1}, {s2}, {s3}] is 2-stable.

18/44

k-Stable splitting tree

Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block
λ(s, x) = λ(t, x) for all x ∈ I≤k

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1}, {s2}, {s3}] is 1-stable.
[{s0, s1}, {s2}, {s3}] is not 2-stable.
[{s0}, {s1}, {s2}, {s3}] is 2-stable.

18/44

k-Stable splitting tree

Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block
λ(s, x) = λ(t, x) for all x ∈ I≤k

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1}, {s2}, {s3}] is 1-stable.

[{s0, s1}, {s2}, {s3}] is not 2-stable.
[{s0}, {s1}, {s2}, {s3}] is 2-stable.

18/44

k-Stable splitting tree

Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block
λ(s, x) = λ(t, x) for all x ∈ I≤k

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1}, {s2}, {s3}] is 1-stable.
[{s0, s1}, {s2}, {s3}] is not 2-stable.

[{s0}, {s1}, {s2}, {s3}] is 2-stable.

18/44

k-Stable splitting tree

Definition (k-stable splitting tree)

A splitting tree is k-stable if for all states s, t in the same block
λ(s, x) = λ(t, x) for all x ∈ I≤k

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

[{s0, s1}, {s2}, {s3}] is 1-stable.
[{s0, s1}, {s2}, {s3}] is not 2-stable.
[{s0}, {s1}, {s2}, {s3}] is 2-stable.

18/44

Minimal splitting tree

Definition (minimal splitting tree)

T is minimal if for all states s, t in different leaves λ(s, x) ̸= λ(t, x)
implies |x | ≥ |σ(lca(s, t))| for all x ∈ I ∗.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

19/44

Minimal splitting tree

Definition (minimal splitting tree)

T is minimal if for all states s, t in different leaves λ(s, x) ̸= λ(t, x)
implies |x | ≥ |σ(lca(s, t))| for all x ∈ I ∗.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

19/44

How to get a Minimal splitting tree
▶ Get an acceptable splitting tree

▶ Go from a k-stable to k + 1-stable tree.
▶ u ∈ T , a ∈ I , lca(δ({u}, a))
▶ σ(u) = aσ(v), v := δ({u}, a)

▶ Note: an acceptable splitting tree is a 1-stable tree.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Note that this example is small, so it yields no difference.

20/44

How to get a Minimal splitting tree
▶ Get an acceptable splitting tree
▶ Go from a k-stable to k + 1-stable tree.

▶ u ∈ T , a ∈ I , lca(δ({u}, a))
▶ σ(u) = aσ(v), v := δ({u}, a)

▶ Note: an acceptable splitting tree is a 1-stable tree.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Note that this example is small, so it yields no difference.

20/44

How to get a Minimal splitting tree
▶ Get an acceptable splitting tree
▶ Go from a k-stable to k + 1-stable tree.

▶ u ∈ T , a ∈ I , lca(δ({u}, a))
▶ σ(u) = aσ(v), v := δ({u}, a)

▶ Note: an acceptable splitting tree is a 1-stable tree.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Note that this example is small, so it yields no difference.

20/44

How to get a Minimal splitting tree
▶ Get an acceptable splitting tree
▶ Go from a k-stable to k + 1-stable tree.

▶ u ∈ T , a ∈ I , lca(δ({u}, a))
▶ σ(u) = aσ(v), v := δ({u}, a)

▶ Note: an acceptable splitting tree is a 1-stable tree.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Note that this example is small, so it yields no difference.

20/44

How to get a Minimal splitting tree
▶ Get an acceptable splitting tree
▶ Go from a k-stable to k + 1-stable tree.

▶ u ∈ T , a ∈ I , lca(δ({u}, a))
▶ σ(u) = aσ(v), v := δ({u}, a)

▶ Note: an acceptable splitting tree is a 1-stable tree.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Note that this example is small, so it yields no difference.

20/44

How to get a Minimal splitting tree
▶ Get an acceptable splitting tree
▶ Go from a k-stable to k + 1-stable tree.

▶ u ∈ T , a ∈ I , lca(δ({u}, a))
▶ σ(u) = aσ(v), v := δ({u}, a)

▶ Note: an acceptable splitting tree is a 1-stable tree.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Note that this example is small, so it yields no difference.
20/44

Complexity of the algorithm

Speed up improvements:

▶ Building the split-state parts bottom up

▶ Adding a data structure

Complexity of the splitting tree algorithm with speed up
improvements: O(m log n).
It was O(mn) in Moore’s version.

21/44

Complexity of the algorithm

Speed up improvements:

▶ Building the split-state parts bottom up

▶ Adding a data structure

Complexity of the splitting tree algorithm with speed up
improvements: O(m log n).
It was O(mn) in Moore’s version.

21/44

Complexity of the algorithm

Speed up improvements:

▶ Building the split-state parts bottom up

▶ Adding a data structure

Complexity of the splitting tree algorithm with speed up
improvements: O(m log n).
It was O(mn) in Moore’s version.

21/44

Complexity of the algorithm

Speed up improvements:

▶ Building the split-state parts bottom up

▶ Adding a data structure

Complexity of the splitting tree algorithm with speed up
improvements: O(m log n).

It was O(mn) in Moore’s version.

21/44

Complexity of the algorithm

Speed up improvements:

▶ Building the split-state parts bottom up

▶ Adding a data structure

Complexity of the splitting tree algorithm with speed up
improvements: O(m log n).
It was O(mn) in Moore’s version.

21/44

Efficient state identification for finite state machine-based
testing

▶ Redundant Characterizing set

▶ Identification path

▶ (B)O-Wset

▶ Complexity of the (B)O-Wset problem

22/44

Efficient state identification for finite state machine-based
testing

▶ Redundant Characterizing set

▶ Identification path

▶ (B)O-Wset

▶ Complexity of the (B)O-Wset problem

22/44

Redundant Characterizing set

Definition (Redundant Characterizing set)

A characterizing set W is redundant if either:

▶ W \ {w} is a characterizing set for some w ∈ W .

▶ W ∪ {w ′} \ {w} is a characterizing set for some w ∈ W and
a proper prefix w ′ of w .

23/44

Redundant Characterizing set Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

W1 = {x0x0x0, x2} is redundant: x0x0 separates s0, s2 and s1 and
s3.

W2 = {x2, x0x0} is non-redundant.

24/44

Redundant Characterizing set Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

W1 = {x0x0x0, x2} is redundant: x0x0 separates s0, s2 and s1 and
s3.
W2 = {x2, x0x0} is non-redundant.

24/44

Identification path

▶ Transfer-free identification path

▶ State identification path with transfers

▶ Why transfer-free?
▶ Transfers are often manual
▶ Transfers are costly

Example

An example of a transfer is when we have a sequence x1bx2, and
b /∈ W .

25/44

Identification path

▶ Transfer-free identification path

▶ State identification path with transfers
▶ Why transfer-free?

▶ Transfers are often manual
▶ Transfers are costly

Example

An example of a transfer is when we have a sequence x1bx2, and
b /∈ W .

25/44

Identification path

▶ Transfer-free identification path

▶ State identification path with transfers
▶ Why transfer-free?

▶ Transfers are often manual
▶ Transfers are costly

Example

An example of a transfer is when we have a sequence x1bx2, and
b /∈ W .

25/44

Identification path

▶ Transfer-free identification path

▶ State identification path with transfers
▶ Why transfer-free?

▶ Transfers are often manual
▶ Transfers are costly

Example

An example of a transfer is when we have a sequence x1bx2, and
b /∈ W .

25/44

Transfer-free identification path

Definition (Transfer-free identification path)

This is a path α1α2 . . . αk starting in the initial state, such that
input(αi) ∈ W . Furthermore, for all w ∈ W , and for all states s,
there is an αi such that it corresponds with (s,w).

Example

a/0
s0 s1

s2

a/1
a/2

W = {a} s0 →a s1 →a s2 →a s0

26/44

Transfer-free identification path

Definition (Transfer-free identification path)

This is a path α1α2 . . . αk starting in the initial state, such that
input(αi) ∈ W . Furthermore, for all w ∈ W , and for all states s,
there is an αi such that it corresponds with (s,w).

Example

a/0
s0 s1

s2

a/1
a/2

W = {a}

s0 →a s1 →a s2 →a s0

26/44

Transfer-free identification path

Definition (Transfer-free identification path)

This is a path α1α2 . . . αk starting in the initial state, such that
input(αi) ∈ W . Furthermore, for all w ∈ W , and for all states s,
there is an αi such that it corresponds with (s,w).

Example

a/0
s0 s1

s2

a/1
a/2

W = {a} s0 →a s1 →a s2 →a s0

26/44

State identification path with transfers

Definition (Identification path with transfers)

This is a path α1β1α2β2 . . . αk starting in the initial state, such
that input(αi) ∈ W Furthermore, for all w ∈ W , and for all states
s, there is an αi such that it corresponds with (s,w), and βj is a
transfer sequence.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

W = {x1, x2x2}, s0 →x1 s1 →x1 s1 →∗
x2x2 s2 →x1 s3 →x1 s2 →∗

x2x2
s2 →x0 s0 →∗

x2x2 s2→
∗
x0x1x0s3 →

∗
x2x2 s2

27/44

State identification path with transfers

Definition (Identification path with transfers)

This is a path α1β1α2β2 . . . αk starting in the initial state, such
that input(αi) ∈ W Furthermore, for all w ∈ W , and for all states
s, there is an αi such that it corresponds with (s,w), and βj is a
transfer sequence.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

W = {x1, x2x2}

, s0 →x1 s1 →x1 s1 →∗
x2x2 s2 →x1 s3 →x1 s2 →∗

x2x2
s2 →x0 s0 →∗

x2x2 s2→
∗
x0x1x0s3 →

∗
x2x2 s2

27/44

State identification path with transfers

Definition (Identification path with transfers)

This is a path α1β1α2β2 . . . αk starting in the initial state, such
that input(αi) ∈ W Furthermore, for all w ∈ W , and for all states
s, there is an αi such that it corresponds with (s,w), and βj is a
transfer sequence.

Example

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

W = {x1, x2x2}, s0 →x1 s1 →x1 s1 →∗
x2x2 s2 →x1 s3 →x1 s2 →∗

x2x2
s2 →x0 s0 →∗

x2x2 s2→
∗
x0x1x0s3 →

∗
x2x2 s2

27/44

(B)O-Wset

▶ Minimal characterising set

▶ O-Wset

▶ BO-Wset

28/44

Minimal characterising set

Definition (Minimal characterising set)

A characterising set W is called minimal if for all s, s ′ ∈ S where
s ̸= s ′ there is a prefix w ′ of a sequence w ∈ W such that:

▶ w ′ separates s and s ′

▶ no shorter sequence separates s and s ′

29/44

Minimal Characterizing set - Example 1

a/0
s0 s1

s2

a/1
a/2

Example

▶ a separates s0, s1, s2

▶ No shorter sequence separates the states

▶ So W = {a} is minimal

30/44

Minimal Characterizing set - Example 1

a/0
s0 s1

s2

a/1
a/2

Example

▶ a separates s0, s1, s2
▶ No shorter sequence separates the states

▶ So W = {a} is minimal

30/44

Minimal Characterizing set - Example 1

a/0
s0 s1

s2

a/1
a/2

Example

▶ a separates s0, s1, s2
▶ No shorter sequence separates the states

▶ So W = {a} is minimal

30/44

Minimal Characterizing set - Example 2
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

W = {x1, x2x2}.

▶ x1 separates s2 from s0, s1, s3, and no shorter sequence does.

▶ x2 separates s3 from s0 and s1, and is a prefix of x2x2, no
shorter sequence does.

▶ x2x2 separates s0 and s1 and no shorter sequence does.

▶ So W = {x1, x2x2} is minimal.

31/44

Minimal Characterizing set - Example 2
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

W = {x1, x2x2}.
▶ x1 separates s2 from s0, s1, s3, and no shorter sequence does.

▶ x2 separates s3 from s0 and s1, and is a prefix of x2x2, no
shorter sequence does.

▶ x2x2 separates s0 and s1 and no shorter sequence does.

▶ So W = {x1, x2x2} is minimal.

31/44

Minimal Characterizing set - Example 2
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

W = {x1, x2x2}.
▶ x1 separates s2 from s0, s1, s3, and no shorter sequence does.

▶ x2 separates s3 from s0 and s1, and is a prefix of x2x2, no
shorter sequence does.

▶ x2x2 separates s0 and s1 and no shorter sequence does.

▶ So W = {x1, x2x2} is minimal.

31/44

Minimal Characterizing set - Example 2
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

W = {x1, x2x2}.
▶ x1 separates s2 from s0, s1, s3, and no shorter sequence does.

▶ x2 separates s3 from s0 and s1, and is a prefix of x2x2, no
shorter sequence does.

▶ x2x2 separates s0 and s1 and no shorter sequence does.

▶ So W = {x1, x2x2} is minimal.

31/44

Minimal Characterizing set - Example 2
x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

W = {x1, x2x2}.
▶ x1 separates s2 from s0, s1, s3, and no shorter sequence does.

▶ x2 separates s3 from s0 and s1, and is a prefix of x2x2, no
shorter sequence does.

▶ x2x2 separates s0 and s1 and no shorter sequence does.

▶ So W = {x1, x2x2} is minimal.
31/44

O-Wset

Definition
W is an O-Wset if

▶ W is a minimal characterizing set

▶ There exists a transfer-free state identification path for W .

a/0
s0 s1

s2

a/1
a/2

Example

W = {a} is an O-Wset:W is minimal and s0 →a s1 →a s2 →a s0 is
a transfer-free path.

32/44

O-Wset

Definition
W is an O-Wset if

▶ W is a minimal characterizing set

▶ There exists a transfer-free state identification path for W .

a/0
s0 s1

s2

a/1
a/2

Example

W = {a} is an O-Wset:

W is minimal and s0 →a s1 →a s2 →a s0 is
a transfer-free path.

32/44

O-Wset

Definition
W is an O-Wset if

▶ W is a minimal characterizing set

▶ There exists a transfer-free state identification path for W .

a/0
s0 s1

s2

a/1
a/2

Example

W = {a} is an O-Wset:W is minimal

and s0 →a s1 →a s2 →a s0 is
a transfer-free path.

32/44

O-Wset

Definition
W is an O-Wset if

▶ W is a minimal characterizing set

▶ There exists a transfer-free state identification path for W .

a/0
s0 s1

s2

a/1
a/2

Example

W = {a} is an O-Wset:W is minimal and s0 →a s1 →a s2 →a s0 is
a transfer-free path.

32/44

BO-Wset

Definition
W is a BO-Wset if there exists a k such that:

▶ W is minimal

▶ There exists a state identification path with at most k
transfers.

33/44

BO-Wset, k = 0

a/0
s0 s1

s2

a/1
a/2

Example

W = {a} is a BO-Wset:

W is minimal and s0 →a s1 →a s2 →a s0
is a transfer-free path, so there are at most k = 0 transfers.

34/44

BO-Wset, k = 0

a/0
s0 s1

s2

a/1
a/2

Example

W = {a} is a BO-Wset:W is minimal

and s0 →a s1 →a s2 →a s0
is a transfer-free path, so there are at most k = 0 transfers.

34/44

BO-Wset, k = 0

a/0
s0 s1

s2

a/1
a/2

Example

W = {a} is a BO-Wset:W is minimal and s0 →a s1 →a s2 →a s0
is a transfer-free path, so there are at most k = 0 transfers.

34/44

BO-Wset, k = 4

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

W = {x1, x2x2} is a BO-Wset:

W is minimal and
s0 →x1 s1 →x1 s1 →∗

x2x2 s2 →x1 s3 →x1 s2 →∗
x2x2 s2 →x0 s0 →∗

x2x2
s2→∗

x0x1x0s3 →
∗
x2x2 s2 has at most k = 4 transfers.

35/44

BO-Wset, k = 4

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

W = {x1, x2x2} is a BO-Wset:W is minimal

and
s0 →x1 s1 →x1 s1 →∗

x2x2 s2 →x1 s3 →x1 s2 →∗
x2x2 s2 →x0 s0 →∗

x2x2
s2→∗

x0x1x0s3 →
∗
x2x2 s2 has at most k = 4 transfers.

35/44

BO-Wset, k = 4

x0/y1

x0/y1 x0/y1

x2/y0

x2/y0

x1/y2

x1/y2

x0/y2

x1/y0

x1/y2, x2/y0
x2/y2

s0 s1

s2 s3

Example

W = {x1, x2x2} is a BO-Wset:W is minimal and
s0 →x1 s1 →x1 s1 →∗

x2x2 s2 →x1 s3 →x1 s2 →∗
x2x2 s2 →x0 s0 →∗

x2x2
s2→∗

x0x1x0s3 →
∗
x2x2 s2 has at most k = 4 transfers.

35/44

Complexity of finding a (B)O-WSet

▶ NP-complete

▶ X3C

▶ Mapping X3C to O-WSet

36/44

Complexity of finding a (B)O-WSet

▶ NP-complete

▶ X3C

▶ Mapping X3C to O-WSet

36/44

Complexity of finding a (B)O-WSet

▶ NP-complete

▶ X3C

▶ Mapping X3C to O-WSet

36/44

X3C

▶ Set of elements U

▶ Finite set of subsets of the elements (of size 3): C
▶ Find C ⊆ C

▶
⋃

ei∈C ei = U
▶ for ei , ej ∈ C with i ̸= j : ei ∩ ej = ∅

▶ Complexity: NP-complete

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
Yes C = {{1, 2, 3}, {4, 5, 6}}

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 3, 5}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
No.

37/44

X3C

▶ Set of elements U

▶ Finite set of subsets of the elements (of size 3): C

▶ Find C ⊆ C
▶

⋃
ei∈C ei = U

▶ for ei , ej ∈ C with i ̸= j : ei ∩ ej = ∅
▶ Complexity: NP-complete

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
Yes C = {{1, 2, 3}, {4, 5, 6}}

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 3, 5}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
No.

37/44

X3C

▶ Set of elements U

▶ Finite set of subsets of the elements (of size 3): C
▶ Find C ⊆ C

▶
⋃

ei∈C ei = U
▶ for ei , ej ∈ C with i ̸= j : ei ∩ ej = ∅

▶ Complexity: NP-complete

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
Yes C = {{1, 2, 3}, {4, 5, 6}}

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 3, 5}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
No.

37/44

X3C

▶ Set of elements U

▶ Finite set of subsets of the elements (of size 3): C
▶ Find C ⊆ C

▶
⋃

ei∈C ei = U

▶ for ei , ej ∈ C with i ̸= j : ei ∩ ej = ∅
▶ Complexity: NP-complete

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
Yes C = {{1, 2, 3}, {4, 5, 6}}

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 3, 5}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
No.

37/44

X3C

▶ Set of elements U

▶ Finite set of subsets of the elements (of size 3): C
▶ Find C ⊆ C

▶
⋃

ei∈C ei = U
▶ for ei , ej ∈ C with i ̸= j : ei ∩ ej = ∅

▶ Complexity: NP-complete

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
Yes C = {{1, 2, 3}, {4, 5, 6}}

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 3, 5}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
No.

37/44

X3C

▶ Set of elements U

▶ Finite set of subsets of the elements (of size 3): C
▶ Find C ⊆ C

▶
⋃

ei∈C ei = U
▶ for ei , ej ∈ C with i ̸= j : ei ∩ ej = ∅

▶ Complexity: NP-complete

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
Yes C = {{1, 2, 3}, {4, 5, 6}}

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 3, 5}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
No.

37/44

X3C

▶ Set of elements U

▶ Finite set of subsets of the elements (of size 3): C
▶ Find C ⊆ C

▶
⋃

ei∈C ei = U
▶ for ei , ej ∈ C with i ̸= j : ei ∩ ej = ∅

▶ Complexity: NP-complete

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?

Yes C = {{1, 2, 3}, {4, 5, 6}}

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 3, 5}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
No.

37/44

X3C

▶ Set of elements U

▶ Finite set of subsets of the elements (of size 3): C
▶ Find C ⊆ C

▶
⋃

ei∈C ei = U
▶ for ei , ej ∈ C with i ̸= j : ei ∩ ej = ∅

▶ Complexity: NP-complete

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
Yes C = {{1, 2, 3}, {4, 5, 6}}

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 3, 5}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
No.

37/44

X3C

▶ Set of elements U

▶ Finite set of subsets of the elements (of size 3): C
▶ Find C ⊆ C

▶
⋃

ei∈C ei = U
▶ for ei , ej ∈ C with i ̸= j : ei ∩ ej = ∅

▶ Complexity: NP-complete

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
Yes C = {{1, 2, 3}, {4, 5, 6}}

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 3, 5}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?

No.

37/44

X3C

▶ Set of elements U

▶ Finite set of subsets of the elements (of size 3): C
▶ Find C ⊆ C

▶
⋃

ei∈C ei = U
▶ for ei , ej ∈ C with i ̸= j : ei ∩ ej = ∅

▶ Complexity: NP-complete

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
Yes C = {{1, 2, 3}, {4, 5, 6}}

Example

U := {1, 2, 3, 4, 5, 6}, C := {{1, 3, 5}, {2, 3, 4}, {4, 5, 6}}.
Is there a satisfying assignment?
No.

37/44

X3C to O-Wset

Theorem
There is a satisfying assignment C for a given X3C problem iff
there is a transfer-free path in the FSM M.

M is defined by the
mapping S := {si |ui ∈ U} ∪ {s|U|+1}, I := {xi |ci ∈ C},

O := {yi |ui ∈ U} ∪ {0}, and λ(si , xj) =

{
yi if ui ∈ ej

0 otherwise
, and

δ(si , xj) =

{
si+1 if ui ∈ ej

si otherwise
.

Example

U = {u1, u2, u3}, C = {e1} = {{u1, u2, u3}}.

38/44

X3C to O-Wset

Theorem
There is a satisfying assignment C for a given X3C problem iff
there is a transfer-free path in the FSM M. M is defined by the
mapping S := {si |ui ∈ U} ∪ {s|U|+1}, I := {xi |ci ∈ C},

O := {yi |ui ∈ U} ∪ {0},

and λ(si , xj) =

{
yi if ui ∈ ej

0 otherwise
, and

δ(si , xj) =

{
si+1 if ui ∈ ej

si otherwise
.

Example

U = {u1, u2, u3}, C = {e1} = {{u1, u2, u3}}.

38/44

X3C to O-Wset

Theorem
There is a satisfying assignment C for a given X3C problem iff
there is a transfer-free path in the FSM M. M is defined by the
mapping S := {si |ui ∈ U} ∪ {s|U|+1}, I := {xi |ci ∈ C},

O := {yi |ui ∈ U} ∪ {0}, and λ(si , xj) =

{
yi if ui ∈ ej

0 otherwise
,

and

δ(si , xj) =

{
si+1 if ui ∈ ej

si otherwise
.

Example

U = {u1, u2, u3}, C = {e1} = {{u1, u2, u3}}.

38/44

X3C to O-Wset

Theorem
There is a satisfying assignment C for a given X3C problem iff
there is a transfer-free path in the FSM M. M is defined by the
mapping S := {si |ui ∈ U} ∪ {s|U|+1}, I := {xi |ci ∈ C},

O := {yi |ui ∈ U} ∪ {0}, and λ(si , xj) =

{
yi if ui ∈ ej

0 otherwise
, and

δ(si , xj) =

{
si+1 if ui ∈ ej

si otherwise
.

Example

U = {u1, u2, u3}, C = {e1} = {{u1, u2, u3}}.

38/44

X3C to O-Wset

Theorem
There is a satisfying assignment C for a given X3C problem iff
there is a transfer-free path in the FSM M. M is defined by the
mapping S := {si |ui ∈ U} ∪ {s|U|+1}, I := {xi |ci ∈ C},

O := {yi |ui ∈ U} ∪ {0}, and λ(si , xj) =

{
yi if ui ∈ ej

0 otherwise
, and

δ(si , xj) =

{
si+1 if ui ∈ ej

si otherwise
.

Example

U = {u1, u2, u3}, C = {e1} = {{u1, u2, u3}}.

38/44

Mapping X3C to O-Wset

U = {u1, u2, u3}, S = {s1, s2, s3, s4}, C = {e1} = {{u1, u2, u3}},
I = {x1},
O = {y1, y2, y3, 0}.

s4s1 s2 s3

x1/y1

x1/0

x1/y3x1/y2

Transition for state s1: For x1, u1 in e1 => goes to s2, with output
y1 as it is state 1.
Transition for state s2: For x1, u1 in e1 => goes to s3,with output
y2 as it is state 2.
Transition for state s3: For x1, u1 in e1 => goes to s4,with output
y3 as it is state 3.
Transition for state s4: For x1, u1 not in e1 => goes to s4, with
output 0.

39/44

X3C to O-Wset - path

U = {u1, u2, u3, u4, u5, u6},
C = {e1, e2} = {{u1, u2, u3}, {u4, u5, u6}},
S = {s1, s2, s3, s4, s5, s6, s7},
I = {x1, x2}, O = {y1, y2, y3, y4, y5, y6, 0}

s4s1 s2 s3

x1/y1

x1/0

x1/y3x1/y2

s5

x2/y4

s6

x2/y5

s7

x2/y6

x1/0x1/0

x1/0,
x2/0x2/0x2/0x2/0

W := {x1, x2}.
Path is : s1 →x2 s1 →x1 s2 →x2 s2 →x1 s3 →x2 s3 →x1 s4 →x1

s4 →x2 s5 →x1 s5 →x2 s6 →x1 s6 →x2 s7 →x1 s7 →x2 s7

40/44

X3C to O-Wset - path

U = {u1, u2, u3, u4, u5, u6},
C = {e1, e2} = {{u1, u2, u4}, {u4, u5, u6}},
S = {s1, s2, s3, s4, s5, s6, s7},
I = {x1, x2}, O = {y1, y2, y3, y4, y5, y6, 0}

s4s1 s2 s3

x1/y1

x1/0

x1/y2

s5

x1/y4, x2/y4

s6

x2/y5

s7

x2/y6

x1/0

x1/0,
x2/0x2/0x2/0

x1/0,
x2/0

No path.

41/44

NP completeness for (B)O-Wset

▶ Mapping from X3C to O-Wset

▶ X3C to BO-Wset

42/44

NP completeness for (B)O-Wset

▶ Mapping from X3C to O-Wset

▶ X3C to BO-Wset

42/44

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?

When should we use a splitting tree and when is a (B)O-Wset
better?
Resets needed for splitting tree.
Resets can be costly.
(B)O-Wset yield a long path for all states, splitting tree small ones
for every pair of states.
Is a combination possible?

43/44

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?
When should we use a splitting tree and when is a (B)O-Wset
better?

Resets needed for splitting tree.
Resets can be costly.
(B)O-Wset yield a long path for all states, splitting tree small ones
for every pair of states.
Is a combination possible?

43/44

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?
When should we use a splitting tree and when is a (B)O-Wset
better?
Resets needed for splitting tree.

Resets can be costly.
(B)O-Wset yield a long path for all states, splitting tree small ones
for every pair of states.
Is a combination possible?

43/44

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?
When should we use a splitting tree and when is a (B)O-Wset
better?
Resets needed for splitting tree.
Resets can be costly.

(B)O-Wset yield a long path for all states, splitting tree small ones
for every pair of states.
Is a combination possible?

43/44

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?
When should we use a splitting tree and when is a (B)O-Wset
better?
Resets needed for splitting tree.
Resets can be costly.
(B)O-Wset yield a long path for all states, splitting tree small ones
for every pair of states.

Is a combination possible?

43/44

Comparison of the papers

Recap: Minimal splitting tree or (B)O-Wset?
When should we use a splitting tree and when is a (B)O-Wset
better?
Resets needed for splitting tree.
Resets can be costly.
(B)O-Wset yield a long path for all states, splitting tree small ones
for every pair of states.
Is a combination possible?

43/44

Conclusion

▶ Splitting Tree

▶ Splitting Tree to characterising set

▶ (B)O-Wset

▶ Comparison of methods

44/44

