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My Two Papers

• 1st Paper: Theorems for Free! by Philip Wadler (1989)

• 2nd Paper: Proofs for free: Parametricity for dependent types (2012)
by Bernardy, Paterson & Jansson
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Initial Motivation

We like to generalize
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Theorems for Free! by Philip Wadler (1989)

How to derive theorems from parametricity!
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Proofs for Free! (2012)

Parametricity and the Curry-Howard correspondence between Pure Type Systems
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What can we use parametricity for?

• To change our representation

• To go abstract

• To derive theorems in a more generalized setting
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What can we use parametricity for?

For Reynolds, he called it both Representation theorem and Abstraction Theorem
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Theorems for Free! by Philip Wadler (1989)

How to derive theorems from parametricity!
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More Motivation

Wadler writes:

I co-authored a paper [...], of the nine theorems, five follow immediately [from parametricity]
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Theorems for Free! by Philip Wadler (1989)

What is parametricity?

And how does it rely on System F?
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System F

First, what is system F?
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System F

Also known as

λ2 type theory, second-order lambda calculus, polymorhic lambda calculus
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System F

Allows for universal quantification over types

∀X .T

Examples

∀X .∀Y .X → Y → X
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System F

Types T ::= X |T → U | ∀X .T
Terms t ::= x |λx : U. t | t u |ΛX .t | t U
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System F

• Terms beginning with a Λ are called polymorphic

• Λ takes in a Type Variable.

• λ instead takes in a individual variable

Examples

ΛX .ΛY .λx .λy .x : ∀X .∀Y .X → Y → X
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Parametricity

The Parametricity Theorem depends on polymorphism

. Why?
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What is parametricity?

Parametricity allows for theorems to be derived from types only
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What is parametricity?

If we derive a theorem for a type of a polymorphic function,
this theorem will hold for every function of that same type
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What is parametricity?

We must be in λ2 to have polymorphism

In fact, we must be in λ2 or higher !
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Parametricity

Examples

Let r : ∀X .X ∗ → X ∗ be a term of the type Rearrangement

We can derive the theorem a∗ ◦ rA = rA′ ◦ a∗

Applying a map a to each element of a list and then rearranging
= rearranging and then applying a map a to each element
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Naive Set-Theoretic Parametricity

• There exists no set theoretic model for System F

• This was proven by Reynolds

• Yet, a naive set-theoretic notation gives intuition

• Types are sets, functions are set-theoretic functions, etc.

Examples

If A,B are sets, then A → B is the set of functions from set A to set B
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Naive Set-Theoretic Parametricity

Key idea: To read types as relations!

Let A and A′ be sets. Let A be a relation between A and A′.
We write (x , x ′) ∈ A if x ∈ A and x ′ ∈ A′, and consider x and x ′ related by A.

Examples

The list relation A∗ : A∗ ⇔ A′∗

([x1, ...xn], [x
′
1, ...x

′
n]) ∈ A∗ ⇔ (x1, x

′
1, ) ∈ A and ... and (xn, x

′
n, ) ∈ A

i.e. lists are related iff they have the same length and corresponding elements are related.
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Parametricity Proposition

Parametricity Proposition

If t is a term of type T and T is the relation corresponding to the type T , then (t, t) ∈ T .

Examples

r : ∀X : X ∗ → X ∗ ⇒ (r , r) ∈ ∀X .X ∗ → X ∗
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Parametricity under a naive set-theoretic model

Interpret → and ∀ as relations
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Interpret ∀ as an operation on relation

Polymorphic functions are related if they take related types into related results

(g , g ′) ∈ ∀X .F(X ) ⇔ for all A, (gA, g
′
A′) ∈ F(A)

Examples

(r , r) ∈ ∀X .X ∗ → X ∗ ⇒ for all A, (rA, rA′ ) ∈ A∗ → A∗
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Interpret → as a relation

Functions are related if they take related arguments into related results

(f , f ′) ∈ A → B ⇔ for all (x , x
′
) ∈ A , (f x , f ′ x ′) ∈ B

Examples

for all A, for all A,
(rA, rA

′ ) ∈ A∗ → A∗ ⇒ for all (x, x ′) ∈ A∗, (rA x, rA
′ x ′) ∈ A∗
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Example for Rearrangements

Examples

for all A, for all (x , x ′) ∈ A∗, (rA x , rA′ x ′) ∈ A∗

Specializing relation A as a function a : A → A′,we get
1) for all (x , x ′) ∈ A∗ ⇒ a∗x = x ′

2) for all (rA x , rA′ x ′) ∈ A∗ ⇒ a∗(rA x) = rA′ x ′

a∗ (rA x) = rA′ x ′ from 2)
a∗ (rA x) = rA′ x ′

a∗ (rA x) = rA′ (a∗ x) use 1) ⇒ a∗ ◦ rA = rA′ ◦ a∗
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Example

Examples

Let r : ∀X .X ∗ → X ∗ be a term of the type Rearrangement
We can derive the theorem, for a : A → A′, a∗ ◦ rA = rA′ ◦ a∗

Applying a map a to each element of a list and then rearranging
= rearranging and then applying a map a to each element
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Generalization

Examples

Let t : T be a term of a specific type
We can derive a theorem ... t ... = ... t ...

Then this theorem then holds for all terms t of type T
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More examples
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Proofs for Free! (2012)

Parametricity and the Curry-Howard correspondence between Pure Type Systems
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Proofs for Free! (2012)

For a Pure Type System used as a programming language,
there is a Pure Type System that can be used as a logic for Parametricity
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Proofs for Free

Figure: Pure type systems
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Pure Type Systems (PTS)

• T = C
V
TT
λV : T.T
∀V : T.T

• Specification (S,A,R)
• S ⊆ C sorts

• A ⊆ C× S axioms

• R ⊆ S× S× S typing rules
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Typing rules for PTS

c : s ∈ A⊢ c : s
AXIOM

Γ ⊢ A : s
Γ, x : A ⊢ x : A

START

Γ ⊢ A : B Γ ⊢ C : s
Γ, x : C ⊢ A : B

WEAKING

Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 (s1, s2, s3) ∈ R
Γ ⊢ (∀x : A.B) : s3

PRODUCT

Γ ⊢ F : (∀x : A : B) Γ ⊢ a : A

Γ ⊢ F a : B[x 7→ a]

APPLICATION

Γ, x : A ⊢ b : B Γ ⊢ (∀x : A : B) : s

Γ ⊢ (λx : A.B) : (∀x : A : B)

ABSTRACTION

Γ ⊢ A : B Γ ⊢ B ′ : s B =β B ′

Γ ⊢ A : B ′

CONVERSION

The rule (s1, s2, s2) is often written as s1⇝ s2.
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Family of λ-calculi

• Iω is a PTS with sort hierarchies
• S = {∗i |i ∈ N}
• A = {∗i : ∗i+1 ∈ N}
• R = {(∗i , ∗j , ∗max(i,j))|i , j ∈ N}

• CCω is a PTS with kind hierarchies
• S = {∗} ∪ {□i |i ∈ N}
• A = {∗ : □0} ∪ {□i : □i+1|i ∈ N}
• R = {∗⇝ ∗, ∗⇝ □i ,□i ⇝ ∗|i ∈ N} ∪ {(□i ,□j ,□max(i,j))|i , j ∈ N}

• CC⊆ CCω and Iω ⊆ CCω
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Logical Framework

• Types correspond to propositions

• Terms correspond to proofs
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Logical Framework

• Source and target PTS

• This is familiar from Type Theory study group!

• Proof Language & Programming Language

Proof Language = λC ≈ Rocq
Programming Language = λω ≈ Haskell/Ocaml
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Source and Target

SOURCE Programming Language
TARGET Proof Language
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Source and Target

• The target PTS must include the source PTS

• Then all the source terms can be expressed
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Reflecting System

The target must reflect the source
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Reflective

CCω reflects each of the systems in the λ-cube

CCω and Iω are both self-reflective
we can write programs + derive valid statements about them within the same PTS
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Translations

J−K

turns types into relations and terms into proofs
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Function Types (λ →)

•••
λ-calculus R

Simply Typed Rλ = {∗⇝ ∗}

A → B : (A → B) ⇔ (A′ → B ′) is defined by
(f , f ′) ∈ A → B ⇔ for all (x , x

′
) ∈ A , (f x , f ′ x ′) ∈ B

i.e. functions are related if they take related arguments into related results.

JA → BK : J∗K (A → B) (A → B)
JA → BK f1 f2 = ∀a1 : A.∀a2 : A. JAK a1 a2 → JBK (f1 a1) (f2 a2)
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Type Schemes (System F)

λ-calculus R

Simply Typed Rλ = {∗⇝ ∗}
System F RF = Rλ ∪ {□ ⇝ ∗}

The relation ∀X .F(X ) : ∀X .F (X ) ⇔ ∀X ′.F ′(X ′) is defined by
(g , g ′) ∈ ∀X .F(X ) ⇔ for all A : A ⇔ A′, (gA, g

′
A′) ∈ F(A)

I.e. polymorphic functions are related if they take related types into related results.

J∀A : ∗.BK : J∗K (∀A : ∗.B) (∀A : ∗.B)
J∀A : ∗.BK g1 g2 = ∀A1 : ∗.∀A2 : ∗.∀AR : J∗KA1 A2. JBK (g1 A1) (g2 A2)
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Type Constructors (System Fω)

λ-calculus R

Simply Typed Rλ = {∗⇝ ∗}
System F RF = Rλ ∪ {□ ⇝ ∗}
System Fω RFω = RF ∪ {□ ⇝ □}

Types can depend on types

Types constructors are related iff they take related input types into related output types

J∗ → ∗K : J□K (∗ → ∗) (∗ → ∗)
J∗ → ∗KF1 F2 = ∀A1 : ∗.∀A2 : ∗.J∗KA1 A2 → J∗K (F1 A1) (F2 A2)
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Dependent Functions (CC)

λ-calculus R

Simply Typed Rλ = {∗⇝ ∗}
System F RF = Rλ ∪ {□ ⇝ ∗}
System Fω RFω = RF ∪ {□ ⇝ □}
Calculus of Constructions (CC) RCC = RFω ∪ {∗⇝ □},

Types can depend on terms

Dependent functions are related iff they take related value variables into related types

J∀x : A.BK : J∗K (∀x : A.B) (∀x : A.B)
J∀x : A.BK f1 f2 = ∀x1 : A.∀x2 : A.∀xR : JAK x1 x2. JBK (f1 x1) (f2 x2)
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λ cube

Figure: Pure type systems
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Conclusions on Proofs for Free

We love to generalize
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Conclusions on Proofs for Free

• Proofs for Free! expands on the ideas of Theorems for Free!

• It allows us to consider all the λ−calculi
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Conclusions on Proofs for Free

• Curry-Howard correspondence
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Conclusions

• Parametricity allows us to

• Derive theorems that holds for all terms of a given type (Wadler)
• Terms evaluated in related environments yield related values (Reynolds)

• Using the Curry-Howard correspondence:

For a PTS used as a programming language,
there is a PTS that can be used as a logic for parametricity
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Q&A
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Reflecting System

A PTS S r = (Sr ,Ar ,Rr ) reflects a PTS S = (S,A,R) if S is a subsystem of S r and

• for each sort s ∈ S,
• Sr contains s̃, s1, s2, s3
• Ar contains s : s1, s̃ : s2, and s2 : s3.
• Rr contains s ⇝ s2 and s1 ⇝ s3.

• For each axiom s : t ∈ A, s2 = t̃

• For each rule (s ′, s ′′, s ′′′) ∈ R, Rr contains rules (s̃ ′, s̃ ′′, ˜s ′′′) and s ′ ⇝ ˜s ′′′.

• CCω reflects each of the systems in the λ-cube with s = s̃.

• S is reflective if S reflects itself with s = s̃.
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Family of λ-calculi

S = {∗,□} (types, kinds), A = {∗ : □}

λ-calculus R

Simply Typed Rλ = {∗⇝ ∗}

System F RF = Rλ ∪ {□ ⇝ ∗}
System Fω RFω = RF ∪ {□ ⇝ □}
Calculus of Constructions (CC) RCC = RFω ∪ {∗⇝ □},

Rλ ⊆ RF ⊆ RFω ⊆ RCC
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