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My Two Papers

e 1st Paper: Theorems for Free! by Philip Wadler (1989)

® 2nd Paper: Proofs for free: Parametricity for dependent types (2012)
by Bernardy, Paterson & Jansson
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Initial Motivation

We like to generalize
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Theorems for Free! by Philip Wadler (1989)

How to derive theorems from parametricity!
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Proofs for Free! (2012)

Parametricity and the Curry-Howard correspondence between Pure Type Systems
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What can we use parametricity for?
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What can we use parametricity for?

® To change our representation
® To go abstract

® To derive theorems in a more generalized setting
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What can we use parametricity for?

For Reynolds, he called it both Representation theorem and Abstraction Theorem
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Theorems for Free! by Philip Wadler (1989)

How to derive theorems from parametricity!
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More Motivation
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More Motivation

Wadler writes:

| co-authored a paper [...], of the nine theorems, five follow immediately [from parametricity]
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Theorems for Free! by Philip Wadler (1989)

What is parametricity?
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Theorems for Free! by Philip Wadler (1989)

What is parametricity?

And how does it rely on System F?

11/56



System F

First, what is system F?
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System F

Also known as

A2 type theory, second-order lambda calculus, polymorhic lambda calculus
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System F

Allows for universal quantification over types
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System F

Allows for universal quantification over types
vX. T

YVXVY X =Y =X
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System F

Types T o= X | T — U|VX.T
Terms t = x| x: U.t|tu|AX.t|ty
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System F

® Terms beginning with a A are called polymorphic
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System F

® Terms beginning with a A are called polymorphic
® A takes in a Type Variable.

® ) instead takes in a individual variable

Examples
AXAY AxAy.x :VXVY X =Y = X
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Parametricity

The Parametricity Theorem depends on polymorphism
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Parametricity

The Parametricity Theorem depends on polymorphism. Why?
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What is parametricity?

Parametricity allows for theorems to be derived from types only
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What is parametricity?

If we derive a theorem for a type of a polymorphic function,
this theorem will hold for every function of that same type
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What is parametricity?

We must be in A2 to have polymorphism
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What is parametricity?

We must be in A2 to have polymorphism

In fact, we must be in A2 or higher !
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Parametricity

Let r : VX.X* — X* be a term of the type Rearrangement
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Naive Set-Theoretic Parametricity

® There exists no set theoretic model for System F
® This was proven by Reynolds
® Yet, a naive set-theoretic notation gives intuition

® Types are sets, functions are set-theoretic functions, etc.

Examples
If A, B are sets, then A — B is the set of functions from set A to set B
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Naive Set-Theoretic Parametricity

Key idea: To read types as relations!
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Naive Set-Theoretic Parametricity

Key idea: To read types as relations!

Let A and A’ be sets. Let A be a relation between A and A’.
We write (x,x") € Aif x € A and x’ € A, and consider x and x’ related by A.

Examples
The list relation A* : A* & A
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Key idea: To read types as relations!

Let A and A’ be sets. Let A be a relation between A and A’.
We write (x,x") € Aif x € A and x’ € A, and consider x and x’ related by A.

Examples

The list relation A* : A* & A™
([x1, - Xa], [Xp5 - X0]) € A* & (x1,x1,) € Aand ... and (x,,X,,) € A
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Naive Set-Theoretic Parametricity

Key idea: To read types as relations!

Let A and A’ be sets. Let A be a relation between A and A’.
We write (x,x’) € Aif x € A and x’ € A, and consider x and x’ related by A.

Examples

The list relation A* : A* & A™
([x1, - Xa], [Xp5 - X0]) € A* & (x1,x1,) € Aand ... and (x,,X,,) € A
i.e. lists are related iff they have the same length and corresponding elements are related.
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Parametricity Proposition

Parametricity Proposition

If ¢t is a term of type T and 7T is the relation corresponding to the type T, then (t,t) € T.
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Parametricity Proposition

Parametricity Proposition

If ¢t is a term of type T and 7T is the relation corresponding to the type T, then (t,t) € T.

r:vXxX.: X* — X*
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Parametricity Proposition

Parametricity Proposition

If ¢t is a term of type T and 7T is the relation corresponding to the type T, then (t,t) € T.

VX XY o X* = (r,r) € VX.X* = X*
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Parametricity under a naive set-theoretic model

Interpret — and V as relations
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Interpret V as an operation on relation

Polymorphic functions are related if they take related types into related results
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Interpret V as an operation on relation

Polymorphic functions are related if they take related types into related results

(g.8") eVX.F(X) & forall A, (ga,gh) € F(A)

Examples
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Interpret V as an operation on relation

Polymorphic functions are related if they take related types into related results

(g.8") eVX.F(X) & forall A, (ga,gh) € F(A)

Examples
(r,r) eVX.X* - X* = for all A, (ra,ry) € A* — A
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Interpret — as a relation

Functions are related if they take related arguments into related results
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Interpret — as a relation

Functions are related if they take related arguments into related results

(f,f) e A= B s forall (x,x)€ A, (fx,f'x')€B

Examples

for all A, for all A,
(I’A, rA/) €A —» A*
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Interpret — as a relation

Functions are related if they take related arguments into related results

(f,f) e A= B s forall (x,x)€ A, (fx,f'x')€B

Examples

for all A, for all A,
(rasry) € A" — A = forall (x,x') € A%, (rax,r, x') € A*
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Example for Rearrangements

for all A, for all (x,x") € A*,(rax,ry x') € A*
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Examples
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Specializing relation A as a function a: A — A’,we get
1) for all (x,x") € A* = a*x = X’
2) forall (rax,ry x') € A" = a*(rax) =ry X
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Example for Rearrangements

Examples
for all A, for all (x,x") € A*,(rax,ry x') € A*

Specializing relation A as a function a: A — A’,we get
1) for all (x,x") € A* = a*x = X’
2) forall (rax,ry x') € A" = a*(rax) =ry X

a* (rax) =ry x' from 2)
a*(rax)=ry x’
a*(rax)=ry(a*x)use 1) = a*ora=ry oa*
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Example

Examples

Let r : VX.X* — X* be a term of the type Rearrangement
We can derive the theorem, for a: A — A’, a* ory = ry 0 a*
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Example

Examples

Let r : VX.X* — X* be a term of the type Rearrangement
We can derive the theorem, for a: A — A’, a* ory = ry 0 a*

Applying a map a to each element of a list and then rearranging
= rearranging and then applying a map a to each element
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Generalization

Examples
Let t : T be a term of a specific type

We can derive a theorem ...t... = ...

t..
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Generalization

Examples

Let t : T be a term of a specific type
We can derive a theorem ...t... = ... t...

Then this theorem then holds for all terms t of type T
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More examples

Assume a: A— A'and b: B — B'.

head : VX, X* — X
o heady = headyr o a*

tail : VX. X* — X*
a* o taily = taily 0 a®
() VX X* = X* = X*
a* (s ys) = (a* zs) Har (a* ys)

concat : VX. X** — X*
a* o concaty = concatas o a**

Jt VXYY, Xx ¥ = X
o fotan = fotarps o (a x b)

;md :VXVY. XX Y = Y
bosndp = sndyips o (ax b)

2ip VX VY. (X* x ¥*) = (X x Y)*
(a X b)* 0 zipap = ziparps o (a* X b*)
fiter : VX. (X — Bool) — X* — X*
a* o filtery (p' 0 a) = filteras p' o a*

sort : VX, (X — X — Bool) — X* — X*

ifforallz,y €4, (z<y)=(cz<'ay)then

a* o sorty (<) = sortpr (<) o a*

Jold :VEVY. (X2 Y+ ¥) = ¥ - X" > ¥
ifforalls€A,y€B, b(:@y)=(az)®(by)and bu=u' then

bo foldap (®) v = foldarz: (B) u' o a*
VX XX
aoly=Ipoa

K:¥YX VY. XY X
o (Kap zy)=Kup (az) (by)

Figure 1: Examples of theorems from types
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Proofs for Free! (2012)

Parametricity and the Curry-Howard correspondence between Pure Type Systems
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Proofs for Free! (2012)

For a Pure Type System used as a programming language,
there is a Pure Type System that can be used as a logic for Parametricity
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Proofs for Free

APw

APw

Aw——————————

A2 —t— AP2

Aw 4" w
AP

Figure: Pure type systems
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Pure Type Systems (PTS)

e T=C
TT

AV T.T
YV :T.T
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Pure Type Systems (PTS)

T=C
\%

TT

AV T.T
YV :T.T

® Specification (S, A, R)

e S C C sorts

A C C x S axioms

RCS xS xS typing rules
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Typing rules for PTS

—c:scA rTFA:s r-A:B r-cC:s
Fers Fx:AFx:A [x:C-A:B
AXIOM START WEAKING

rFA:s Mx:AFB:s N=F:(Vx:A:B) NlFa:A

(s1,5,83) €R

MN=(vx:AB):s3 M- Fa:Bx— 4]

PRODUCT APPLICATION
Mx:AFb:B N=(vx:A:B):s r'-A:B B :s B =3B
N=(A\x:AB):(Vx:A:B) rcA:B
ABSTRACTION CONVERSION

The rule (s1, 52, 52) is often written as s1 ~~ s2.
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Family of \-calculi

® |, is a PTS with sort hierarchies
o S = {x]i e N}
o A={x; %4 €N}
*R= {(*ia *ja*max(i,j))“vj € N}
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Family of \-calculi

® |, is a PTS with sort hierarchies
e S— {*,|I S N}
° AZ{*;Z*,’.HGN}
*R= {(*ia *ja*max(i,j))“vj € N}
e CC, is a PTS with kind hierarchies
e S={x}uU{0]i e N}
o A= {* : Do}U {D, : |:|,'+1|i € N}
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Family of A\-calculi

® |, is a PTS with sort hierarchies

S = {*,|I S N}

o A={x; %4 €N}

* R= {(*i; *j,*max(i,j))“vj € N}
e CC, is a PTS with kind hierarchies

e S={x}uU{0]i e N}

o A= {* : Do}U {D, : |:|,'+1‘I- € N}

© R = {x~ s, %~ 0,0 ~ «|i € N}U{(T;, 0, Omaxiip)lirs € N}
e CCC CC, and I, C CC,,

37/56



Logical Framework

® Types correspond to propositions
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Logical Framework

® Source and target PTS
® This is familiar from Type Theory study group!
® Proof Language & Programming Language

Proof Language AC
Programming Language = A\w

~
~
~
~

Rocq
Haskell /Ocaml
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Source and Target

SOURCE | Programming Language
TARGET | Proof Language
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Source and Target

® The target PTS must include the source PTS
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Source and Target

® The target PTS must include the source PTS

® Then all the source terms can be expressed
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Reflecting System

The target must reflect the source
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Reflective

CC,, reflects each of the systems in the A-cube
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Reflective

CC,, reflects each of the systems in the A-cube

CC, and [, are both self-reflective
we can write programs -+ derive valid statements about them within the same PTS
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Translations

[-1
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Translations

[—] turns types into relations
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Translations

[—] turns types into relations and terms into proofs
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Function Types (\ —)

A-calculus ‘ R
[ ]

Simply Typed ‘ Ry = { ~ x}

45 /56



Function Types (A —)

A-calculus ‘ R

Simply Typed | Ry = { ~ %}

A—B:(A— B) & (A — B') is defined by
(Ff.f e A= B forall (x,x)e A, (fx,f'x)eB

i.e. functions are related if they take related arguments into related results.
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Function Types (A —)

A-calculus ‘ R

Simply Typed | Ry = { ~ %}

A—B:(A— B) & (A — B') is defined by
(Ff.f e A= B forall (x,x)e A, (fx,f'x)eB
i.e. functions are related if they take related arguments into related results.

[A— B]:[«](A— B)(A— B)
[[A — B]] fl f2 = Val : A.Vaz DA [[A]] a; ap — [[B]] (fl al) (f2 32)
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Type Schemes (System F)

A-calculus \ R

Simply Typed | Ry = {* ~» x}
System F R =RyuU{O~ %}
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Type Schemes (System F)

A-calculus \ R

Simply Typed | Ry = {* ~» x}
System F R =RyuU{O~ %}

The relation VX .F(X) : VX.F(X) < VX'.F'(X’) is defined by
(g,8) eVX.F(X) & forall A: A A, (ga, gh) € F(A)
l.e. polymorphic functions are related if they take related types into related results.

[VA : *.B] : [*] (VA : .B) (VA : %.B)
[[VA . *B]] g1 82 = VAl . *.VAz . *.VAR . [[*]] Al A2. [[B]] (g1 Al) (gg A2)
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Type Constructors (System F,)

A-calculus ‘ R

Simply Typed | Ry = {* ~ %}
System F R =Ry U {0 ~ %}
System Fw Re, = ReU {0~ O}
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Type Constructors (System F,)

A-calculus ‘ R

Simply Typed | Ry = {* ~ %}
System F R =Ry U {0 ~ %}
System Fw Re, = ReU {0~ O}

Types can depend on types
Types constructors are related iff they take related input types into related output types

[ — %] F1 Fo = VA; : %A, : +.[¥] A1 Ay — [*] (F1 A1) (F2 A2)
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Dependent Functions (CC)

A-calculus ‘ R

Simply Typed Ry = {* ~ *}

System F Re =Ry U{O ~ %}
System Fw Re, =Rpu{O~ O}

Calculus of Constructions (CC) | Rec = Rp, U {x ~ O},
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Dependent Functions (CC)

A-calculus ‘ R

Simply Typed Ry = {* ~ *}

System F Re =Ry U{O ~ %}
System Fw Re, =Rpu{O~ O}

Calculus of Constructions (CC) | Rec = Rp, U {x ~ O},

Types can depend on terms
Dependent functions are related iff they take related value variables into related types

[Vx: A.B] : [] (vx : A.B) (¥x : A.B)
[Vx : A.B] f1fa = Vxq : AV¥xp 1 AVxR : [A] x1 x2. [B] (f1x1) (f2x2)
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A cube

Ao ———————————— ?\Pu;
A2 4*—
Aw 4" APw

.X—:

Figure: Pure type systems
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Conclusions

® Parametricity allows us to

® Derive theorems that holds for all terms of a given type (Wadler)
® Terms evaluated in related environments yield related values (Reynolds)

® Using the Curry-Howard correspondence:

For a PTS used as a programming language,
there is a PTS that can be used as a logic for parametricity
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Q&A
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Reflecting System

A PTS S" = (S",A",R") reflects a PTS S = (S, A,R) if S is a subsystem of S" and
® for each sort s € S,

® S’ contains §, s1, 52, S3
® A’ contains s:s1,5: 5, and s; : s3.
® R" contains s ~ s, and s; ~ s3.

® For each axiom s:t € A,sp = ¢

® For each rule (s',s”,s"”") € R, R" contains rules (s’,s”,s"") and s’ ~ s""'.
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® for each sort s € S,

® S’ contains §, s1, 52, S3
® A’ contains s:s1,5: 5, and s; : s3.
® R" contains s ~ s, and s; ~ s3.

® For each axiom s:t € A,sp = ¢

® For each rule (s',s”,s"”") € R, R" contains rules (s’,s”,s"") and s’ ~ s""'.

® (C(, reflects each of the systems in the A-cube with s = 3.
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Reflecting System

A PTS S" = (S",A",R") reflects a PTS S = (S, A,R) if S is a subsystem of S" and
® for each sort s € S,

® S’ contains §, s1, 52, S3
® A’ contains s:s1,5: 5, and s; : s3.
® R" contains s ~ s, and s; ~ s3.

® For each axiom s:t € A,sp = ¢

® For each rule (s',s”,s"”") € R, R" contains rules (s’,s”,s"") and s’ ~ s""'.

CC,, reflects each of the systems in the A-cube with s = 3.

S is reflective if S reflects itself with s = 5.
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Family of \-calculi

S = {*,0} (types, kinds), A = {x: O}

A-calculus ‘ R

Simply Typed | Ry = {* ~ *}
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Family of A\-calculi

S = {*,0} (types, kinds), A = {x: O}

-calculus ‘ R

Simply Typed Ry = {* ~ *}

System F Re =Ry U {0~ %}
System Fw Rf, = ReU{O~ O}

Calculus of Constructions (CC) | Rcc = R, U {* ~ O},

Ry € Rr C Rp, € Rec
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