

Seminar Presentation

Theorems & Proofs for Free

Sonia
Radboud

January 21, 2026

Overview

1. Overview

2. Theorems For Free

3. Proofs for Free

My Two Papers

- 1st Paper: Theorems for Free! by Philip Wadler (1989)
- 2nd Paper: Proofs for free: Parametricity for dependent types (2012)
by Bernardy, Paterson & Jansson

Initial Motivation

We like to generalize

Theorems for Free! by Philip Wadler (1989)

How to derive theorems from parametricity!

Proofs for Free! (2012)

Parametricity and the Curry-Howard correspondence between Pure Type Systems

What can we use parametricity for?

What can we use parametricity for?

- To change our representation

What can we use parametricity for?

- To change our representation
- To go abstract

What can we use parametricity for?

- To change our representation
- To go abstract
- To derive theorems in a more generalized setting

What can we use parametricity for?

For Reynolds, he called it both *Representation theorem* and *Abstraction Theorem*

Theorems for Free! by Philip Wadler (1989)

How to derive theorems from parametricity!

More Motivation

More Motivation

Wadler writes:

I co-authored a paper [...], of the nine theorems, five follow immediately [from parametricity]

Theorems for Free! by Philip Wadler (1989)

What is parametricity?

Theorems for Free! by Philip Wadler (1989)

What is parametricity?

And how does it rely on System F?

System F

First, what is system F?

System F

Also known as

$\lambda 2$ type theory, second-order lambda calculus, polymorphic lambda calculus

System F

Allows for universal quantification over types

System F

Allows for universal quantification over types

$$\forall X. T$$

System F

Allows for universal quantification over types

$$\forall X. T$$

Examples

$$\forall X. \forall Y. X \rightarrow Y \rightarrow X$$

System F

Types $T ::= X \mid T \rightarrow U \mid \forall X. T$

Terms $t ::= x \mid \lambda x : U. t \mid t u \mid \Lambda X. t \mid t u$

System F

- Terms beginning with a Λ are called polymorphic

System F

- Terms beginning with a Λ are called polymorphic
- Λ takes in a **Type Variable**.

System F

- Terms beginning with a Λ are called polymorphic
- Λ takes in a **Type Variable**.
- λ instead takes in a individual variable

System F

- Terms beginning with a Λ are called polymorphic
- Λ takes in a **Type Variable**.
- λ instead takes in a individual variable

Examples

$$\Lambda X. \Lambda Y. \lambda x. \lambda y. x$$

System F

- Terms beginning with a Λ are called polymorphic
- Λ takes in a **Type Variable**.
- λ instead takes in a individual variable

Examples

$$\Lambda X. \Lambda Y. \lambda x. \lambda y. x : \forall X. \forall Y. X \rightarrow Y \rightarrow X$$

Parametricity

The Parametricity Theorem depends on polymorphism

Parametricity

The Parametricity Theorem depends on polymorphism. **Why?**

What is parametricity?

Parametricity allows for theorems to be derived from types only

What is parametricity?

*If we derive a theorem for a type of a polymorphic function,
this theorem will hold for every function of that same type*

What is parametricity?

We must be in $\lambda 2$ to have polymorphism

What is parametricity?

We must be in $\lambda 2$ to have polymorphism

In fact, we must be in $\lambda 2$ or higher !

Parametricity

Examples

Let $r : \forall X. X^* \rightarrow X^*$ be a term of the type *Rearrangement*

Parametricity

Examples

Let $r : \forall X. X^* \rightarrow X^*$ be a term of the type *Rearrangement*

We can derive the theorem $a^* \circ r_A = r_{A'} \circ a^*$

Parametricity

Examples

Let $r : \forall X. X^* \rightarrow X^*$ be a term of the type *Rearrangement*

We can derive the theorem $a^* \circ r_A = r_{A'} \circ a^*$

Applying a map a to each element of a list and then rearranging

Parametricity

Examples

Let $r : \forall X. X^* \rightarrow X^*$ be a term of the type *Rearrangement*

We can derive the theorem $a^* \circ r_A = r_{A'} \circ a^*$

Applying a map a to each element of a list and then rearranging
= rearranging and then applying a map a to each element

Naive Set-Theoretic Parametricity

- There exists no set theoretic model for System F

Naive Set-Theoretic Parametricity

- There exists no set theoretic model for System F
- This was proven by Reynolds

Naive Set-Theoretic Parametricity

- There exists no set theoretic model for System F
- This was proven by Reynolds
- Yet, a naive set-theoretic notation gives intuition

Naive Set-Theoretic Parametricity

- There exists no set theoretic model for System F
- This was proven by Reynolds
- Yet, a naive set-theoretic notation gives intuition
- Types are sets, functions are set-theoretic functions, etc.

Naive Set-Theoretic Parametricity

- There exists no set theoretic model for System F
- This was proven by Reynolds
- Yet, a naive set-theoretic notation gives intuition
- Types are sets, functions are set-theoretic functions, etc.

Examples

If A, B are sets, then $A \rightarrow B$ is the set of functions from set A to set B

Naive Set-Theoretic Parametricity

Key idea: To read types as relations!

Naive Set-Theoretic Parametricity

Key idea: To read types as relations!

Let A and A' be sets.

Naive Set-Theoretic Parametricity

Key idea: To read types as relations!

Let A and A' be sets. Let \mathcal{A} be a relation between A and A' .

Naive Set-Theoretic Parametricity

Key idea: To read types as relations!

Let A and A' be sets. Let \mathcal{A} be a relation between A and A' .
We write $(x, x') \in \mathcal{A}$ if $x \in A$ and $x' \in A'$,

Naive Set-Theoretic Parametricity

Key idea: To read types as relations!

Let A and A' be sets. Let \mathcal{A} be a relation between A and A' .

We write $(x, x') \in \mathcal{A}$ if $x \in A$ and $x' \in A'$, and consider x and x' related by \mathcal{A} .

Naive Set-Theoretic Parametricity

Key idea: To read types as relations!

Let A and A' be sets. Let \mathcal{A} be a relation between A and A' .

We write $(x, x') \in \mathcal{A}$ if $x \in A$ and $x' \in A'$, and consider x and x' related by \mathcal{A} .

Examples

The list relation $\mathcal{A}^* : A^* \leftrightarrow A'^*$

Naive Set-Theoretic Parametricity

Key idea: To read types as relations!

Let A and A' be sets. Let \mathcal{A} be a relation between A and A' .

We write $(x, x') \in \mathcal{A}$ if $x \in A$ and $x' \in A'$, and consider x and x' related by \mathcal{A} .

Examples

The list relation $\mathcal{A}^* : A^* \leftrightarrow A'^*$

$([x_1, \dots, x_n], [x'_1, \dots, x'_n]) \in \mathcal{A}^* \Leftrightarrow (x_1, x'_1) \in \mathcal{A} \text{ and } \dots \text{ and } (x_n, x'_n) \in \mathcal{A}$

Naive Set-Theoretic Parametricity

Key idea: To read types as relations!

Let A and A' be sets. Let \mathcal{A} be a relation between A and A' .

We write $(x, x') \in \mathcal{A}$ if $x \in A$ and $x' \in A'$, and consider x and x' related by \mathcal{A} .

Examples

The list relation $\mathcal{A}^* : A^* \leftrightarrow A'^*$

$([x_1, \dots, x_n], [x'_1, \dots, x'_n]) \in \mathcal{A}^* \Leftrightarrow (x_1, x'_1) \in \mathcal{A} \text{ and } \dots \text{ and } (x_n, x'_n) \in \mathcal{A}$

i.e. *lists are related iff they have the same length and corresponding elements are related.*

Parametricity Proposition

Parametricity Proposition

If t is a term of type T and \mathcal{T} is the relation corresponding to the type T , then $(t, t) \in \mathcal{T}$.

Parametricity Proposition

Parametricity Proposition

If t is a term of type T and \mathcal{T} is the relation corresponding to the type T , then $(t, t) \in \mathcal{T}$.

Examples

$$r : \forall X : X^* \rightarrow X^*$$

Parametricity Proposition

Parametricity Proposition

If t is a term of type T and \mathcal{T} is the relation corresponding to the type T , then $(t, t) \in \mathcal{T}$.

Examples

$$r : \forall X : X^* \rightarrow X^* \quad \Rightarrow \quad (r, r) \in \forall \mathcal{X}. \mathcal{X}^* \rightarrow \mathcal{X}^*$$

Parametricity under a naive set-theoretic model

Interpret \rightarrow and \forall as relations

Interpret \forall as an operation on relation

Polymorphic functions are related if they take related types into related results

Interpret \forall as an operation on relation

Polymorphic functions are related if they take related types into related results

$$(g, g') \in \forall \mathcal{X}. \mathcal{F}(\mathcal{X}) \Leftrightarrow \text{for all } \mathcal{A}, (g_{\mathcal{A}}, g'_{\mathcal{A}'}) \in \mathcal{F}(\mathcal{A})$$

Interpret \forall as an operation on relation

Polymorphic functions are related if they take related types into related results

$$(g, g') \in \forall \mathcal{X}. \mathcal{F}(\mathcal{X}) \Leftrightarrow \text{for all } \mathcal{A}, (g_{\mathcal{A}}, g'_{\mathcal{A}'}) \in \mathcal{F}(\mathcal{A})$$

Examples

$$(r, r) \in \forall \mathcal{X}. \mathcal{X}^* \rightarrow \mathcal{X}^*$$

Interpret \forall as an operation on relation

Polymorphic functions are related if they take related types into related results

$$(g, g') \in \forall \mathcal{X}. \mathcal{F}(\mathcal{X}) \Leftrightarrow \text{for all } \mathcal{A}, (g_{\mathcal{A}}, g'_{\mathcal{A}'}) \in \mathcal{F}(\mathcal{A})$$

Examples

$$(r, r) \in \forall \mathcal{X}. \mathcal{X}^* \rightarrow \mathcal{X}^* \qquad \Rightarrow \qquad \text{for all } \mathcal{A}, (r_{\mathcal{A}}, r_{\mathcal{A}'}) \in \mathcal{A}^* \rightarrow \mathcal{A}^*$$

Interpret → as a relation

Functions are related if they take related arguments into related results

Interpret → as a relation

Functions are related if they take related arguments into related results

$$(f, f') \in \mathcal{A} \rightarrow \mathcal{B} \Leftrightarrow \text{for all } (x, x') \in \mathcal{A}, (f x, f' x') \in \mathcal{B}$$

Interpret → as a relation

Functions are related if they take related arguments into related results

$$(f, f') \in \mathcal{A} \rightarrow \mathcal{B} \Leftrightarrow \text{for all } (x, x') \in \mathcal{A}, (f x, f' x') \in \mathcal{B}$$

Examples

$$\text{for all } \mathcal{A}, \\ (r_A, r_{A'}) \in \mathcal{A}^* \rightarrow \mathcal{A}^*$$

$$\text{for all } \mathcal{A},$$

Interpret → as a relation

Functions are related if they take related arguments into related results

$$(f, f') \in \mathcal{A} \rightarrow \mathcal{B} \Leftrightarrow \text{for all } (x, x') \in \mathcal{A}, (f x, f' x') \in \mathcal{B}$$

Examples

$$\begin{array}{c} \text{for all } \mathcal{A}, \\ (r_A, r_{A'}) \in \mathcal{A}^* \rightarrow \mathcal{A}^* \end{array} \Rightarrow \begin{array}{c} \text{for all } \mathcal{A}, \\ \text{for all } (x, x') \in \mathcal{A}^*, (r_A x, r_{A'} x') \in \mathcal{A}^* \end{array}$$

Example for Rearrangements

Examples

for all \mathcal{A} , for all $(x, x') \in \mathcal{A}^*$, $(r_A x, r_{A'} x') \in \mathcal{A}^*$

Example for Rearrangements

Examples

for all \mathcal{A} , for all $(x, x') \in \mathcal{A}^*$, $(r_A x, r_{A'} x') \in \mathcal{A}^*$

Specializing relation \mathcal{A} as a function $a : A \rightarrow A'$,

Example for Rearrangements

Examples

for all \mathcal{A} , for all $(x, x') \in \mathcal{A}^*$, $(r_A x, r_{A'} x') \in \mathcal{A}^*$

Specializing relation \mathcal{A} as a function $a : A \rightarrow A'$, we get

1) for all $(x, x') \in \mathcal{A}^*$

Example for Rearrangements

Examples

for all \mathcal{A} , for all $(x, x') \in \mathcal{A}^*$, $(r_A x, r_{A'} x') \in \mathcal{A}^*$

Specializing relation \mathcal{A} as a function $a : A \rightarrow A'$, we get

1) for all $(x, x') \in \mathcal{A}^* \Rightarrow a^* x = x'$

Example for Rearrangements

Examples

for all \mathcal{A} , for all $(x, x') \in \mathcal{A}^*$, $(r_A x, r_{A'} x') \in \mathcal{A}^*$

Specializing relation \mathcal{A} as a function $a : A \rightarrow A'$, we get

- 1) for all $(x, x') \in \mathcal{A}^* \Rightarrow a^* x = x'$
- 2) for all $(r_A x, r_{A'} x') \in \mathcal{A}^*$

Example for Rearrangements

Examples

for all \mathcal{A} , for all $(x, x') \in \mathcal{A}^*$, $(r_A x, r_{A'} x') \in \mathcal{A}^*$

Specializing relation \mathcal{A} as a function $a : A \rightarrow A'$, we get

- 1) for all $(x, x') \in \mathcal{A}^* \Rightarrow a^* x = x'$
- 2) for all $(r_A x, r_{A'} x') \in \mathcal{A}^* \Rightarrow a^*(r_A x) = r_{A'} x'$

Example for Rearrangements

Examples

for all \mathcal{A} , for all $(x, x') \in \mathcal{A}^*, (r_A x, r_{A'} x') \in \mathcal{A}^*$

Specializing relation \mathcal{A} as a function $a : A \rightarrow A'$, we get

- 1) for all $(x, x') \in \mathcal{A}^* \Rightarrow a^* x = x'$
- 2) for all $(r_A x, r_{A'} x') \in \mathcal{A}^* \Rightarrow a^*(r_A x) = r_{A'} x'$

$a^*(r_A x) = r_{A'} x'$ from 2)

Example for Rearrangements

Examples

for all \mathcal{A} , for all $(x, x') \in \mathcal{A}^*, (r_A x, r_{A'} x') \in \mathcal{A}^*$

Specializing relation \mathcal{A} as a function $a : A \rightarrow A'$, we get

- 1) for all $(x, x') \in \mathcal{A}^* \Rightarrow a^* x = x'$
- 2) for all $(r_A x, r_{A'} x') \in \mathcal{A}^* \Rightarrow a^*(r_A x) = r_{A'} x'$

$$a^*(r_A x) = r_{A'} x' \text{ from 2)}$$

$$a^*(r_A x) = r_{A'} x'$$

Example for Rearrangements

Examples

for all \mathcal{A} , for all $(x, x') \in \mathcal{A}^*, (r_A x, r_{A'} x') \in \mathcal{A}^*$

Specializing relation \mathcal{A} as a function $a : A \rightarrow A'$, we get

- 1) for all $(x, x') \in \mathcal{A}^* \Rightarrow a^* x = x'$
- 2) for all $(r_A x, r_{A'} x') \in \mathcal{A}^* \Rightarrow a^*(r_A x) = r_{A'} x'$

$$a^*(r_A x) = r_{A'} x' \text{ from 2)}$$

$$a^*(r_A x) = r_{A'} x'$$

$$a^*(r_A x) = r_{A'} (a^* x) \text{ use 1)}$$

Example for Rearrangements

Examples

for all \mathcal{A} , for all $(x, x') \in \mathcal{A}^*, (r_A x, r_{A'} x') \in \mathcal{A}^*$

Specializing relation \mathcal{A} as a function $a : A \rightarrow A'$, we get

- 1) for all $(x, x') \in \mathcal{A}^* \Rightarrow a^* x = x'$
- 2) for all $(r_A x, r_{A'} x') \in \mathcal{A}^* \Rightarrow a^*(r_A x) = r_{A'} x'$

$$a^*(r_A x) = r_{A'} x' \text{ from 2)}$$

$$a^*(r_A x) = r_{A'} x'$$

$$a^*(r_A x) = r_{A'} (a^* x) \text{ use 1)} \Rightarrow a^* \circ r_A = r_{A'} \circ a^*$$

Example

Examples

Let $r : \forall X. X^* \rightarrow X^*$ be a term of the type *Rearrangement*

We can derive the theorem, for $a : A \rightarrow A'$, $a^* \circ r_A = r_{A'} \circ a^*$

Example

Examples

Let $r : \forall X. X^* \rightarrow X^*$ be a term of the type *Rearrangement*

We can derive the theorem, for $a : A \rightarrow A'$, $a^* \circ r_A = r_{A'} \circ a^*$

Applying a map a to each element of a list and then rearranging
= rearranging and then applying a map a to each element

Generalization

Examples

Let $t : T$ be a term of a specific type

We can derive a theorem $\dots t \dots = \dots t \dots$

Generalization

Examples

Let $t : T$ be a term of a specific type

We can derive a theorem $\dots t \dots = \dots t \dots$

Then this theorem then holds for all terms t of type T

More examples

Assume $a : A \rightarrow A'$ and $b : B \rightarrow B'$.

$$\begin{aligned} \text{head} &: \forall X. X^* \rightarrow X \\ a \circ \text{head}_A &= \text{head}_{A'} \circ a^* \end{aligned}$$

$$\begin{aligned} \text{tail} &: \forall X. X^* \rightarrow X^* \\ a^* \circ \text{tail}_A &= \text{tail}_{A'} \circ a^* \end{aligned}$$

$$\begin{aligned} (\text{++}) &: \forall X. X^* \rightarrow X^* \rightarrow X^* \\ a^* (xs \text{++}_A ys) &= (a^* xs) \text{++}_{A'} (a^* ys) \end{aligned}$$

$$\begin{aligned} \text{concat} &: \forall X. X^{**} \rightarrow X^* \\ a^* \circ \text{concat}_A &= \text{concat}_{A'} \circ a^{**} \end{aligned}$$

$$\begin{aligned} \text{fst} &: \forall X. \forall Y. X \times Y \rightarrow X \\ a \circ \text{fst}_{AB} &= \text{fst}_{A'B'} \circ (a \times b) \end{aligned}$$

$$\begin{aligned} \text{snd} &: \forall X. \forall Y. X \times Y \rightarrow Y \\ b \circ \text{snd}_{AB} &= \text{snd}_{A'B'} \circ (a \times b) \end{aligned}$$

$$\begin{aligned} \text{zip} &: \forall X. \forall Y. (X^* \times Y^*) \rightarrow (X \times Y)^* \\ (a \times b)^* \circ \text{zip}_{AB} &= \text{zip}_{A'B'} \circ (a^* \times b^*) \end{aligned}$$

$$\begin{aligned} \text{filter} &: \forall X. (X \rightarrow \text{Bool}) \rightarrow X^* \rightarrow X^* \\ a^* \circ \text{filter}_A (p' \circ a) &= \text{filter}_{A'} (p' \circ a^*) \end{aligned}$$

$$\begin{aligned} \text{sort} &: \forall X. (X \rightarrow X \rightarrow \text{Bool}) \rightarrow X^* \rightarrow X^* \\ \text{if for all } z, y \in A, (x < y) = (a z <' a y) \text{ then} \\ a^* \circ \text{sort}_A (<) &= \text{sort}_{A'} (<) \circ a^* \end{aligned}$$

$$\begin{aligned} \text{fold} &: \forall X. \forall Y. (X \rightarrow Y \rightarrow Y) \rightarrow Y \rightarrow X^* \rightarrow Y \\ \text{if for all } z \in A, y \in B, b (z \oplus y) = (a z) \otimes (b y) \text{ and } b u = u' \text{ then} \\ b \circ \text{fold}_{AB} (\otimes) u &= \text{fold}_{A'B'} (\otimes) u' \circ a^* \end{aligned}$$

$$\begin{aligned} I &: \forall X. X \rightarrow X \\ a \circ I_A &= I_{A'} \circ a \end{aligned}$$

$$\begin{aligned} K &: \forall X. \forall Y. X \rightarrow Y \rightarrow X \\ a (K_{AB} z y) &= K_{A'B'} (a z) (b y) \end{aligned}$$

Figure 1: Examples of theorems from types

Proofs for Free! (2012)

Parametricity and the Curry-Howard correspondence between Pure Type Systems

Proofs for Free! (2012)

For a Pure Type System used as a programming language,
there is a Pure Type System that can be used as a logic for Parametricity

Proofs for Free

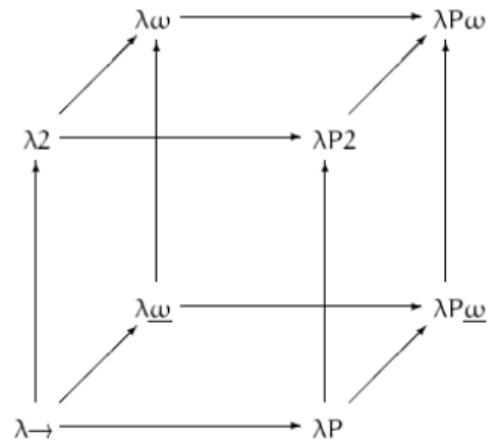


Figure: Pure type systems

Pure Type Systems (PTS)

- $\mathbb{T} = \mathbb{C}$

\mathbb{V}

$\mathbb{T}\mathbb{T}$

$\lambda\mathbb{V} : \mathbb{T}.\mathbb{T}$

$\forall\mathbb{V} : \mathbb{T}.\mathbb{T}$

Pure Type Systems (PTS)

- $\mathbb{T} = \mathbb{C}$
 \mathbb{V}
 $\mathbb{T}\mathbb{T}$
 $\lambda\mathbb{V} : \mathbb{T}.\mathbb{T}$
 $\forall\mathbb{V} : \mathbb{T}.\mathbb{T}$
- Specification $(\mathbb{S}, \mathbb{A}, \mathbb{R})$

Pure Type Systems (PTS)

- $\mathbb{T} = \mathbb{C}$
 \mathbb{V}
 $\mathbb{T}\mathbb{T}$
 $\lambda\mathbb{V} : \mathbb{T}.\mathbb{T}$
 $\forall\mathbb{V} : \mathbb{T}.\mathbb{T}$
- Specification $(\mathbb{S}, \mathbb{A}, \mathbb{R})$
- $\mathbb{S} \subseteq \mathbb{C}$ sorts
- $\mathbb{A} \subseteq \mathbb{C} \times \mathbb{S}$ axioms
- $\mathbb{R} \subseteq \mathbb{S} \times \mathbb{S} \times \mathbb{S}$ typing rules

Typing rules for PTS

$$\frac{}{\vdash c : s} c : s \in \mathbb{A}$$

AXIOM

$$\frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A}$$

START

$$\frac{\Gamma \vdash A : B \quad \Gamma \vdash C : s}{\Gamma, x : C \vdash A : B}$$

WEAKING

$$\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\forall x : A. B) : s_3} (s_1, s_2, s_3) \in \mathbb{R}$$

PRODUCT

$$\frac{\Gamma \vdash F : (\forall x : A : B) \quad \Gamma \vdash a : A}{\Gamma \vdash Fa : B[x \mapsto a]}$$

APPLICATION

$$\frac{\Gamma, x : A \vdash b : B \quad \Gamma \vdash (\forall x : A : B) : s}{\Gamma \vdash (\lambda x : A. B) : (\forall x : A : B)}$$

ABSTRACTION

$$\frac{\Gamma \vdash A : B \quad \Gamma \vdash B' : s \quad B =_{\beta} B'}{\Gamma \vdash A : B'}$$

CONVERSION

The rule (s_1, s_2, s_3) is often written as $s1 \rightsquigarrow s2$.

Family of λ -calculi

- I_ω is a PTS with sort hierarchies
 - $\mathbb{S} = \{*_i \mid i \in \mathbb{N}\}$
 - $\mathbb{A} = \{*_i : *_i \in \mathbb{N}\}$
 - $\mathbb{R} = \{(*_i, *_j, *_i \cup *_j) \mid i, j \in \mathbb{N}\}$

Family of λ -calculi

- I_ω is a PTS with sort hierarchies
 - $\mathbb{S} = \{*_i \mid i \in \mathbb{N}\}$
 - $\mathbb{A} = \{*_i : *_i \in \mathbb{N}\}$
 - $\mathbb{R} = \{(*_i, *_j, *_i \max(i,j)) \mid i, j \in \mathbb{N}\}$
- CC_ω is a PTS with kind hierarchies
 - $\mathbb{S} = \{*\} \cup \{\square_i \mid i \in \mathbb{N}\}$
 - $\mathbb{A} = \{* : \square_0\} \cup \{\square_i : \square_i \max(i+1) \mid i \in \mathbb{N}\}$
 - $\mathbb{R} = \{* \rightsquigarrow *, * \rightsquigarrow \square_i, \square_i \rightsquigarrow * \mid i \in \mathbb{N}\} \cup \{(\square_i, \square_j, \square_i \max(i,j)) \mid i, j \in \mathbb{N}\}$

Family of λ -calculi

- I_ω is a PTS with sort hierarchies
 - $\mathbb{S} = \{*_i \mid i \in \mathbb{N}\}$
 - $\mathbb{A} = \{*_i : *_i \in \mathbb{N}\}$
 - $\mathbb{R} = \{(*_i, *_j, *_i \max(i,j)) \mid i, j \in \mathbb{N}\}$
- CC_ω is a PTS with kind hierarchies
 - $\mathbb{S} = \{*\} \cup \{\square_i \mid i \in \mathbb{N}\}$
 - $\mathbb{A} = \{* : \square_0\} \cup \{\square_i : \square_i \max(i+1) \mid i \in \mathbb{N}\}$
 - $\mathbb{R} = \{* \rightsquigarrow *, * \rightsquigarrow \square_i, \square_i \rightsquigarrow * \mid i \in \mathbb{N}\} \cup \{(\square_i, \square_j, \square_i \max(i,j)) \mid i, j \in \mathbb{N}\}$
- $CC \subseteq CC_\omega$ and $I_\omega \subseteq CC_\omega$

Logical Framework

- Types correspond to propositions

Logical Framework

- Types correspond to propositions
- Terms correspond to proofs

Logical Framework

- Types correspond to propositions
- Terms correspond to proofs

Logical Framework

- Source and target PTS

Logical Framework

- Source and target PTS
- This is familiar from Type Theory study group!

Logical Framework

- Source and target PTS
- This is familiar from Type Theory study group!
- Proof Language & Programming Language

Logical Framework

- Source and target PTS
- This is familiar from Type Theory study group!
- Proof Language & Programming Language

Proof Language	$= \lambda C$	\approx Rocq
Programming Language	$= \lambda \omega$	\approx Haskell/Ocaml

Source and Target

SOURCE	Programming Language
TARGET	Proof Language

Source and Target

- The target PTS must include the source PTS

Source and Target

- The target PTS must include the source PTS
- Then all the source terms can be expressed

Reflecting System

The target must *reflect* the source

Reflective

CC_ω reflects each of the systems in the λ -cube

Reflective

CC_ω reflects each of the systems in the λ -cube

CC_ω and I_ω are both self-reflective

Reflective

CC_ω reflects each of the systems in the λ -cube

CC_ω and I_ω are both self-reflective

we can write programs + derive valid statements about them within the same PTS

Translations

[-]

Translations

`[-]` turns types into relations

Translations

$[-]$ turns types into relations and terms into proofs

Function Types ($\lambda \rightarrow$)

- $$\frac{\lambda\text{-calculus} \quad | \quad \mathbb{R}}{\text{Simply Typed} \quad | \quad \mathbb{R}_\lambda = \{ * \rightsquigarrow * \}}$$

Function Types ($\lambda \rightarrow$)

$$\frac{\lambda\text{-calculus} \quad | \quad \mathbb{R}}{\text{Simply Typed} \quad | \quad \mathbb{R}_\lambda = \{ * \rightsquigarrow * \}}$$

$\mathcal{A} \rightarrow \mathcal{B} : (A \rightarrow B) \Leftrightarrow (A' \rightarrow B')$ is defined by
 $(f, f') \in \mathcal{A} \rightarrow \mathcal{B} \Leftrightarrow \text{for all } (x, x') \in \mathcal{A}, (f x, f' x') \in \mathcal{B}$
i.e. functions are related if they take related arguments into related results.

Function Types ($\lambda \rightarrow$)

$$\frac{\lambda\text{-calculus} \quad | \quad \mathbb{R}}{\text{Simply Typed} \quad | \quad \mathbb{R}_\lambda = \{ * \rightsquigarrow * \}}$$

$A \rightarrow B : (A \rightarrow B) \Leftrightarrow (A' \rightarrow B')$ is defined by

$(f, f') \in A \rightarrow B \Leftrightarrow \text{for all } (x, x') \in A, (f x, f' x') \in B$

i.e. functions are related if they take related arguments into related results.

$\llbracket A \rightarrow B \rrbracket : \llbracket * \rrbracket (A \rightarrow B) (A \rightarrow B)$

$\llbracket A \rightarrow B \rrbracket f_1 f_2 = \forall a_1 : A. \forall a_2 : A. \llbracket A \rrbracket a_1 a_2 \rightarrow \llbracket B \rrbracket (f_1 a_1) (f_2 a_2)$

Type Schemes (System F)

λ-calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{ * \rightsquigarrow * \}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{ \Box \rightsquigarrow * \}$

Type Schemes (System F)

λ-calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{ * \rightsquigarrow * \}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{ \Box \rightsquigarrow * \}$

The relation $\forall \mathcal{X}. \mathcal{F}(\mathcal{X}) : \forall X. F(X) \Leftrightarrow \forall X'. F'(X')$ is defined by

$(g, g') \in \forall \mathcal{X}. \mathcal{F}(\mathcal{X}) \Leftrightarrow$ for all $\mathcal{A} : A \Leftrightarrow A'$, $(g_A, g'_{A'}) \in \mathcal{F}(\mathcal{A})$

I.e. polymorphic functions are related if they take related types into related results.

Type Schemes (System F)

λ -calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{ * \rightsquigarrow * \}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{ \Box \rightsquigarrow * \}$

The relation $\forall \mathcal{X}. \mathcal{F}(\mathcal{X}) : \forall X. F(X) \Leftrightarrow \forall X'. F'(X')$ is defined by

$(g, g') \in \forall \mathcal{X}. \mathcal{F}(\mathcal{X}) \Leftrightarrow$ for all $\mathcal{A} : A \Leftrightarrow A'$, $(g_A, g'_{A'}) \in \mathcal{F}(\mathcal{A})$

i.e. polymorphic functions are related if they take related types into related results.

$\llbracket \forall A : *. B \rrbracket : \llbracket * \rrbracket (\forall A : *. B) (\forall A : *. B)$

$\llbracket \forall A : *. B \rrbracket g_1 g_2 = \forall A_1 : *. \forall A_2 : *. \forall A_R : \llbracket * \rrbracket A_1 A_2. \llbracket B \rrbracket (g_1 A_1) (g_2 A_2)$

Type Constructors (System F_ω)

λ -calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{ * \rightsquigarrow * \}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{ \Box \rightsquigarrow * \}$
System F_ω	$\mathbb{R}_{F_\omega} = \mathbb{R}_F \cup \{ \Box \rightsquigarrow \Box \}$

Type Constructors (System F_ω)

λ -calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{ * \rightsquigarrow * \}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{ \Box \rightsquigarrow * \}$
System F_ω	$\mathbb{R}_{F_\omega} = \mathbb{R}_F \cup \{ \Box \rightsquigarrow \Box \}$

Types can depend on types

Type Constructors (System F_ω)

λ -calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{ * \rightsquigarrow * \}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{ \Box \rightsquigarrow * \}$
System F_ω	$\mathbb{R}_{F_\omega} = \mathbb{R}_F \cup \{ \Box \rightsquigarrow \Box \}$

Types can depend on types

Types constructors are related iff they take related input types into related output types

Type Constructors (System F_ω)

λ -calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{ * \rightsquigarrow * \}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{ \Box \rightsquigarrow * \}$
System F_ω	$\mathbb{R}_{F_\omega} = \mathbb{R}_F \cup \{ \Box \rightsquigarrow \Box \}$

Types can depend on types

Types constructors are related iff they take related input types into related output types

$$[\![* \rightarrow *]\!] : [\![\Box]\!] (* \rightarrow *) (* \rightarrow *)$$

$$[\![* \rightarrow *]\!] F_1 F_2 = \forall A_1 : *. \forall A_2 : *. [\![*]\!] A_1 A_2 \rightarrow [\![*]\!] (F_1 A_1) (F_2 A_2)$$

Dependent Functions (CC)

λ -calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{ * \rightsquigarrow * \}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{ \Box \rightsquigarrow * \}$
System F_ω	$\mathbb{R}_{F_\omega} = \mathbb{R}_F \cup \{ \Box \rightsquigarrow \Box \}$
Calculus of Constructions (CC)	$\mathbb{R}_{CC} = \mathbb{R}_{F_\omega} \cup \{ * \rightsquigarrow \Box \},$

Dependent Functions (CC)

λ -calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{ * \rightsquigarrow * \}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{ \Box \rightsquigarrow * \}$
System F_ω	$\mathbb{R}_{F_\omega} = \mathbb{R}_F \cup \{ \Box \rightsquigarrow \Box \}$
Calculus of Constructions (CC)	$\mathbb{R}_{CC} = \mathbb{R}_{F_\omega} \cup \{ * \rightsquigarrow \Box \},$

Types can depend on terms

Dependent Functions (CC)

λ -calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{ * \rightsquigarrow * \}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{ \Box \rightsquigarrow * \}$
System F_ω	$\mathbb{R}_{F_\omega} = \mathbb{R}_F \cup \{ \Box \rightsquigarrow \Box \}$
Calculus of Constructions (CC)	$\mathbb{R}_{CC} = \mathbb{R}_{F_\omega} \cup \{ * \rightsquigarrow \Box \},$

Types can depend on terms

Dependent functions are related iff they take related value variables into related types

Dependent Functions (CC)

λ -calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{ * \rightsquigarrow * \}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{ \Box \rightsquigarrow * \}$
System F_ω	$\mathbb{R}_{F_\omega} = \mathbb{R}_F \cup \{ \Box \rightsquigarrow \Box \}$
Calculus of Constructions (CC)	$\mathbb{R}_{CC} = \mathbb{R}_{F_\omega} \cup \{ * \rightsquigarrow \Box \},$

Types can depend on terms

Dependent functions are related iff they take related value variables into related types

$$[\![\forall x : A. B]\!] : [\![*]\!] (\forall x : A. B) (\forall x : A. B)$$

$$[\![\forall x : A. B]\!] f_1 f_2 = \forall x_1 : A. \forall x_2 : A. \forall x_R : [\![A]\!] x_1 x_2. [\![B]\!] (f_1 x_1) (f_2 x_2)$$

λ cube

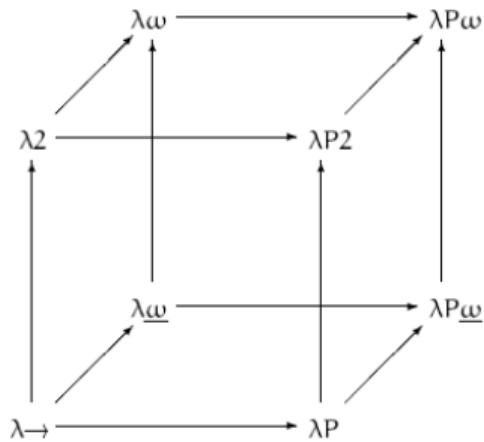


Figure: Pure type systems

Conclusions on Proofs for Free

Conclusions on Proofs for Free

We love to generalize

Conclusions on Proofs for Free

Conclusions on Proofs for Free

- Proofs for Free! expands on the ideas of Theorems for Free!

Conclusions on Proofs for Free

- Proofs for Free! expands on the ideas of Theorems for Free!
- It allows us to consider all the λ –calculi

Conclusions on Proofs for Free

- Curry-Howard correspondence

Conclusions

- Parametricity allows us to

Conclusions

- Parametricity allows us to
 - Derive theorems that holds for all terms of a given type (Wadler)

Conclusions

- Parametricity allows us to
 - Derive theorems that holds for all terms of a given type (Wadler)
 - Terms evaluated in related environments yield related values (Reynolds)

Conclusions

- Parametricity allows us to
 - Derive theorems that holds for all terms of a given type (Wadler)
 - Terms evaluated in related environments yield related values (Reynolds)
- Using the Curry-Howard correspondence:

Conclusions

- Parametricity allows us to
 - Derive theorems that holds for all terms of a given type (Wadler)
 - Terms evaluated in related environments yield related values (Reynolds)
- Using the Curry-Howard correspondence:

For a PTS used as a programming language,
there is a PTS that can be used as a logic for parametricity

Q&A

Reflecting System

A PTS $S^r = (\mathbb{S}^r, \mathbb{A}^r, \mathbb{R}^r)$ reflects a PTS $S = (\mathbb{S}, \mathbb{A}, \mathbb{R})$ if S is a subsystem of S^r and

- for each sort $s \in \mathbb{S}$,
 - \mathbb{S}^r contains \tilde{s}, s_1, s_2, s_3
 - \mathbb{A}^r contains $s : s_1, \tilde{s} : s_2$, and $s_2 : s_3$.
 - \mathbb{R}^r contains $s \rightsquigarrow s_2$ and $s_1 \rightsquigarrow s_3$.
- For each axiom $s : t \in \mathbb{A}$, $s_2 = \tilde{t}$
- For each rule $(s', s'', s''') \in \mathbb{R}$, \mathbb{R}^r contains rules $(\tilde{s}', \tilde{s}'', \tilde{s''''})$ and $s' \rightsquigarrow \tilde{s''''}$.

Reflecting System

A PTS $S^r = (\mathbb{S}^r, \mathbb{A}^r, \mathbb{R}^r)$ reflects a PTS $S = (\mathbb{S}, \mathbb{A}, \mathbb{R})$ if S is a subsystem of S^r and

- for each sort $s \in \mathbb{S}$,
 - \mathbb{S}^r contains \tilde{s}, s_1, s_2, s_3
 - \mathbb{A}^r contains $s : s_1, \tilde{s} : s_2$, and $s_2 : s_3$.
 - \mathbb{R}^r contains $s \rightsquigarrow s_2$ and $s_1 \rightsquigarrow s_3$.
- For each axiom $s : t \in \mathbb{A}$, $s_2 = \tilde{t}$
- For each rule $(s', s'', s''') \in \mathbb{R}$, \mathbb{R}^r contains rules $(\tilde{s}', \tilde{s}'', \tilde{s''''})$ and $s' \rightsquigarrow \tilde{s''''}$.
- CC_ω reflects each of the systems in the λ -cube with $s = \tilde{s}$.

Reflecting System

A PTS $S^r = (\mathbb{S}^r, \mathbb{A}^r, \mathbb{R}^r)$ reflects a PTS $S = (\mathbb{S}, \mathbb{A}, \mathbb{R})$ if S is a subsystem of S^r and

- for each sort $s \in \mathbb{S}$,
 - \mathbb{S}^r contains \tilde{s}, s_1, s_2, s_3
 - \mathbb{A}^r contains $s : s_1, \tilde{s} : s_2$, and $s_2 : s_3$.
 - \mathbb{R}^r contains $s \rightsquigarrow s_2$ and $s_1 \rightsquigarrow s_3$.
- For each axiom $s : t \in \mathbb{A}, s_2 = \tilde{t}$
- For each rule $(s', s'', s''') \in \mathbb{R}, \mathbb{R}^r$ contains rules $(\tilde{s}', \tilde{s}'', \tilde{s}''')$ and $s' \rightsquigarrow \tilde{s}'''$.
- CC_ω reflects each of the systems in the λ -cube with $s = \tilde{s}$.
- S is reflective if S reflects itself with $s = \tilde{s}$.

Family of λ -calculi

$$\mathbb{S} = \{*, \square\} \text{ (types, kinds)}, \mathbb{A} = \{* : \square\}$$

λ-calculus		\mathbb{R}
Simply Typed		$\mathbb{R}_\lambda = \{* \rightsquigarrow *\}$

Family of λ -calculi

$$\mathbb{S} = \{*, \square\} \text{ (types, kinds)}, \mathbb{A} = \{* : \square\}$$

λ -calculus	\mathbb{R}
Simply Typed System F	$\mathbb{R}_\lambda = \{* \rightsquigarrow *\}$ $\mathbb{R}_F = \mathbb{R}_\lambda \cup \{\square \rightsquigarrow *\}$

Family of λ -calculi

$$\mathbb{S} = \{*, \square\} \text{ (types, kinds)}, \mathbb{A} = \{* : \square\}$$

λ -calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{* \rightsquigarrow *\}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{\square \rightsquigarrow *\}$
System F_ω	$\mathbb{R}_{F_\omega} = \mathbb{R}_F \cup \{\square \rightsquigarrow \square\}$

Family of λ -calculi

$$\mathbb{S} = \{*, \square\} \text{ (types, kinds)}, \mathbb{A} = \{* : \square\}$$

λ -calculus	\mathbb{R}
Simply Typed	$\mathbb{R}_\lambda = \{* \rightsquigarrow *\}$
System F	$\mathbb{R}_F = \mathbb{R}_\lambda \cup \{\square \rightsquigarrow *\}$
System F_ω	$\mathbb{R}_{F_\omega} = \mathbb{R}_F \cup \{\square \rightsquigarrow \square\}$
Calculus of Constructions (CC)	$\mathbb{R}_{CC} = \mathbb{R}_{F_\omega} \cup \{* \rightsquigarrow \square\},$

$$\mathbb{R}_\lambda \subseteq \mathbb{R}_F \subseteq \mathbb{R}_{F_\omega} \subseteq \mathbb{R}_{CC}$$