

Effectful realizability

MFoCS Seminar

Ties Steijn

Radboud University

January 2026

Papers by Cohen, Grunfeld, Kirst, Miquey, Tate

Overview

- Realizability: connection between proofs and programs.
- Example: program extraction (in Rocq).
- Target language is usually pure (no effects).
- Effects allow us to find realizers for more statements.
- Syntactic approach: **EffHOL**.
 - ▶ Paper: *Syntactic Effectful Realizability in Higher-Order Logic*. L. Cohen, A. Grunfeld, D. Kirst, E. Miquey, 2025.
- Semantic approach: **Evidenced frames**.
 - ▶ Paper: *Evidenced Frames: A Unifying Framework Broadening Realizability Models*. L. Cohen, E. Miquey, R. Tate, 2021.
- Connection to existing theory: **Tripos** (and topos) theory.

Overview

- **HOL** is like predicate logic with the addition of powerset types.
- This lets us describe predicates about propositions, predicates about predicates, . . .

Overview

- **HOL** is like predicate logic with the addition of powerset types.
- This lets us describe predicates about propositions, predicates about predicates, ...
- **EffHOL** is a system comprised of (higher-order) logic rules and an effectful programming language.

Overview

- **HOL** is like predicate logic with the addition of powerset types.
- This lets us describe predicates about propositions, predicates about predicates, ...
- **EffHOL** is a system comprised of (higher-order) logic rules and an effectful programming language.
- **Evidenced frames** are defined by an *evidence relation* $\phi_1 \xrightarrow{e} \phi_2$.
 - ▶ Essentially a proof relevant ordering on propositions.
 - ▶ The evidence can be taken as effectful programs.

Overview

- **HOL** is like predicate logic with the addition of powerset types.
- This lets us describe predicates about propositions, predicates about predicates, ...
- **EffHOL** is a system comprised of (higher-order) logic rules and an effectful programming language.
- **Evidenced frames** are defined by an *evidence relation* $\phi_1 \xrightarrow{e} \phi_2$.
 - ▶ Essentially a proof relevant ordering on propositions.
 - ▶ The evidence can be taken as effectful programs.
- **Triposes** are category-theoretical models of **HOL**.
- **Toposes** are more elaborate category-theoretical models of **HOL**.
 - ▶ The long-time standard.
 - ▶ Beyond the scope of this presentation.

Overview

- **HOL** is like predicate logic with the addition of powerset types.
- This lets us describe predicates about propositions, predicates about predicates, ...
- **EffHOL** is a system comprised of (higher-order) logic rules and an effectful programming language.
- **Evidenced frames** are defined by an *evidence relation* $\phi_1 \xrightarrow{e} \phi_2$.
 - ▶ Essentially a proof relevant ordering on propositions.
 - ▶ The evidence can be taken as effectful programs.
- **Triposes** are category-theoretical models of **HOL**.
- **Toposes** are more elaborate category-theoretical models of **HOL**.
 - ▶ The long-time standard.
 - ▶ Beyond the scope of this presentation.

We'll show that both **EffHOL** instances and evidenced frames can be translated to triposes (and hence toposes).

Higher-Order Logic

- Sorts: $s = \star \mid s \rightarrow \star$.
 - ▶ Think of Prop , $\mathcal{P}(\text{Prop})$, $\mathcal{P}(\mathcal{P}(\text{Prop}))$,

Higher-Order Logic

- Sorts: $s = \star \mid s \rightarrow \star$.
 - ▶ Think of Prop , $\mathcal{P}(\text{Prop})$, $\mathcal{P}(\mathcal{P}(\text{Prop}))$, ...
- Formulas: $\varphi = \forall x : s, \varphi \mid \varphi \sqsupseteq \varphi \mid t \in t \mid \bar{t}$.
- Terms: $t = x \mid \{x : s \mid \varphi\} \mid \{x\}$.

Higher-Order Logic

- Sorts: $s = \star \mid s \rightarrow \star$.
 - ▶ Think of Prop , $\mathcal{P}(\text{Prop})$, $\mathcal{P}(\mathcal{P}(\text{Prop}))$, ...
- Formulas: $\varphi = \forall x : s, \varphi \mid \varphi \sqsupseteq \varphi \mid t \in t \mid \bar{t}$.
- Terms: $t = x \mid \{x : s \mid \varphi\} \mid \{x\}$.
- Deduction rules:
 - ▶ Usual logic rules (first order).
 - ▶ Rules for comprehension terms:

$$\overline{\{\varphi\}} \iff \varphi$$

$$t \in \{x : s \mid \varphi\} \iff \varphi[x := t]$$

Overview

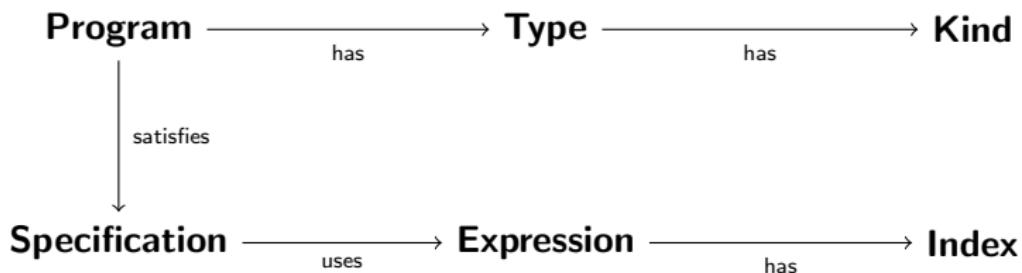
EffHOL: overview

- We would like to translate HOL proofs to programs in some language.
- This language will be an effectful version of $\lambda\omega$.
- **Idea:** for any HOL proposition, the set of programs of the corresponding type are the *potential realizers*.
- The programs that additionally satisfy the corresponding specification are *actual realizers*.
- Note the similarity to Kreisel's *modified realizability*.
- **EffHOL** combines an (effectful) programming language with a logic system.

EffHOL: overview

Components of **EffHOL**:

- *Kinds*: correspond to HOL sorts.
- *Types and Specifications*: correspond to HOL propositions.
- *Programs*: correspond to HOL proofs.
- *Expressions*: correspond to HOL terms.
- *Indices*: the types of expressions.



EffHOL: overview

- Remember: Haskell implements effects via the Monad typeclass.
- In **EffHOL** we use a similar idea.
- Key difference: there is a primitive computation type $M(\tau)$.
- Programs may use the monadic constructs `return` and `bind`.
- How do we reason about values returned by effectful computations?

EffHOL: overview

- Remember: Haskell implements effects via the Monad typeclass.
- In **EffHOL** we use a similar idea.
- Key difference: there is a primitive computation type $M(\tau)$.
- Programs may use the monadic constructs `return` and `bind`.
- How do we reason about values returned by effectful computations?
- They may not be deterministic, or they may fail altogether.
- Solution: specifications may use **modality** to handle the results of monadic computations.
- If p evaluates to x , then $\varphi(x)$ holds.

EffHOL: syntax

- **Kinds:** same as in HOL.

$$\kappa = \star \mid \kappa \rightarrow \star$$

EffHOL: syntax

- **Kinds:** same as in HOL.

$$\kappa = \star \mid \kappa \rightarrow \star$$

- **Types:** as in $\lambda\omega$, with an additional computation type constructor $M(\tau)$.

$$\tau = X \mid \tau \rightarrow \tau$$

EffHOL: syntax

- **Kinds:** same as in HOL.

$$\kappa = \star \mid \kappa \rightarrow \star$$

- **Types:** as in $\lambda\omega$, with an additional computation type constructor $M(\tau)$.

$$\tau = X \mid \tau \rightarrow \tau \mid \prod X : \kappa. \tau \mid \tau \ \tau$$

EffHOL: syntax

- **Kinds:** same as in HOL.

$$\kappa = \star \mid \kappa \rightarrow \star$$

- **Types:** as in $\lambda\omega$, with an additional computation type constructor $M(\tau)$.

$$\tau = X \mid \tau \rightarrow \tau \mid \prod X : \kappa.\tau \mid \tau\ \tau \mid \overline{\Lambda}X : \kappa.\tau$$

EffHOL: syntax

- **Kinds:** same as in HOL.

$$\kappa = \star \mid \kappa \rightarrow \star$$

- **Types:** as in $\lambda\omega$, with an additional computation type constructor $M(\tau)$.

$$\tau = X \mid \tau \rightarrow \tau \mid \prod X : \kappa.\tau \mid \tau\ \tau \mid \overline{\Lambda} X : \kappa.\tau \mid M(\tau)$$

EffHOL: syntax

- **Kinds:** same as in HOL.

$$\kappa = \star \mid \kappa \rightarrow \star$$

- **Types:** as in $\lambda\omega$, with an additional computation type constructor $M(\tau)$.

$$\tau = X \mid \tau \rightarrow \tau \mid \prod X : \kappa.\tau \mid \tau\ \tau \mid \overline{\Lambda}X : \kappa.\tau \mid M(\tau)$$

- **Programs:** as in $\lambda\omega$, with `return` and `bind`.

$$p = x \mid p\ p \mid \lambda x : \tau. p$$

EffHOL: syntax

- **Kinds:** same as in HOL.

$$\kappa = \star \mid \kappa \rightarrow \star$$

- **Types:** as in $\lambda\omega$, with an additional computation type constructor $M(\tau)$.

$$\tau = X \mid \tau \rightarrow \tau \mid \prod X : \kappa.\tau \mid \tau\ \tau \mid \overline{\Lambda}X : \kappa.\tau \mid M(\tau)$$

- **Programs:** as in $\lambda\omega$, with `return` and `bind`.

$$p = x \mid p\ p \mid \lambda x : \tau.p \mid p\ \tau \mid \Lambda X : \kappa.p$$

EffHOL: syntax

- **Kinds:** same as in HOL.

$$\kappa = \star \mid \kappa \rightarrow \star$$

- **Types:** as in $\lambda\omega$, with an additional computation type constructor $M(\tau)$.

$$\tau = X \mid \tau \rightarrow \tau \mid \prod X : \kappa.\tau \mid \tau\ \tau \mid \overline{\Lambda}X : \kappa.\tau \mid M(\tau)$$

- **Programs:** as in $\lambda\omega$, with `return` and `bind`.

$$p = x \mid p\ p \mid \lambda x : \tau.p \mid p\ \tau \mid \Lambda X : \kappa.p \mid [p] \mid \text{let } x \leftarrow p \text{ in } p$$

Specifications:

- Implication: $\varphi \supset \varphi$.
- Universal quantification over programs/types/expressions:
 $\Pi x : \tau. \varphi \mid \cap X : \kappa. \varphi \mid \forall y : \sigma. \varphi$.

Specifications:

- Implication: $\varphi \supset \varphi$.
- Universal quantification over programs/types/expressions:
 $\exists x : \tau. \varphi \mid \exists X : \kappa. \varphi \mid \forall y : \sigma. \varphi$.
- Expressions are like comprehensions in **HOL**.
- Difference: they additionally depend on a program of a certain type.
- Membership: $p \in e \mid p; e \in e$.

Specifications:

- Implication: $\varphi \supset \varphi$.
- Universal quantification over programs/types/expressions:
 $\exists x : \tau. \varphi \mid \exists X : \kappa. \varphi \mid \forall y : \sigma. \varphi$.
- Expressions are like comprehensions in **HOL**.
- Difference: they additionally depend on a program of a certain type.
- Membership: $p \in e \mid p; e \in e$.
- Modality: $\langle x \leftarrow p \rangle \varphi$.
 - ▶ Intuition: if p evaluates to x , then $\varphi(x)$ holds.

EffHOL: syntax

- **Expressions:** like the comprehensions in **HOL**.
- Since specifications are about programs, they also depend on a program of a given type.

$$e = y \mid \{x : \tau \mid \varphi\} \mid \{x : \tau, y : \sigma \mid \varphi\}$$

EffHOL: syntax

- **Expressions:** like the comprehensions in **HOL**.
- Since specifications are about programs, they also depend on a program of a given type.

$$e = y \mid \{x : \tau \mid \varphi\} \mid \{x : \tau, y : \sigma \mid \varphi\} \mid \wedge X : \kappa. e \mid e \tau$$

Polymorphic expressions are needed to handle higher-order comprehensions in **HOL**.

EffHOL: syntax

- **Expressions:** like the comprehensions in **HOL**.
- Since specifications are about programs, they also depend on a program of a given type.

$$e = y \mid \{x : \tau \mid \varphi\} \mid \{x : \tau, y : \sigma \mid \varphi\} \mid \wedge X : \kappa. e \mid e \tau$$

Polymorphic expressions are needed to handle higher-order comprehensions in **HOL**.

- **Indices:**

- ▶ Intuition: read R_τ as $\mathcal{P}(\tau)$.
- ▶ R_τ : type of $\{x : \tau \mid \varphi\}$.
- ▶ $R_\tau(\sigma)$: type of $\{x : \tau, y : \sigma \mid \varphi\}$.
- ▶ $\wedge X : \kappa. \sigma$: type of $\wedge X : \kappa. e$.

EffHOL: deduction rules

- Rules for assumption, introduction/elimination of \supset and all three quantifiers.
- Introduction/elimination rules for comprehensions.
- Conversion rules for programs/types.
- Rules to handle monadic computation:

EffHOL: deduction rules

- Rules for assumption, introduction/elimination of \supset and all three quantifiers.
- Introduction/elimination rules for comprehensions.
- Conversion rules for programs/types.
- Rules to handle monadic computation:
 - ▶ Rule for `return`:
 $\varphi[x := p] \implies \langle x \leftarrow [p] \rangle \varphi.$

EffHOL: deduction rules

- Rules for assumption, introduction/elimination of \supset and all three quantifiers.
- Introduction/elimination rules for comprehensions.
- Conversion rules for programs/types.
- Rules to handle monadic computation:
 - ▶ Rule for **return**:
 $\varphi[x := p] \implies \langle x \leftarrow [p] \rangle \varphi.$
 - ▶ Rule for **bind**:
 $\langle x_1 \leftarrow p_1 \rangle \langle x_2 \leftarrow p_2 \rangle \varphi \implies \langle x_2 \leftarrow \text{let } x_1 \leftarrow p_1 \text{ in } p_2 \rangle \varphi.$

EffHOL: deduction rules

- Rules for assumption, introduction/elimination of \supset and all three quantifiers.
- Introduction/elimination rules for comprehensions.
- Conversion rules for programs/types.
- Rules to handle monadic computation:
 - ▶ Rule for **return**:
 $\varphi[x := p] \implies \langle x \leftarrow [p] \rangle \varphi.$
 - ▶ Rule for **bind**:
 $\langle x_1 \leftarrow p_1 \rangle \langle x_2 \leftarrow p_2 \rangle \varphi \implies \langle x_2 \leftarrow \text{let } x_1 \leftarrow p_1 \text{ in } p_2 \rangle \varphi.$
 - ▶ \supset -elim inside modality:
 $\varphi_1 \supset \varphi_2, \langle x \leftarrow p \rangle \varphi_1 \implies \langle x \leftarrow p \rangle \varphi_2.$

Translating HOL to EffHOL

Components of the translation:

- $\llbracket _ \rrbracket^K : \text{sort} \rightarrow \text{kind}$
- $\llbracket _ \rrbracket^I : \text{sort} \rightarrow \text{type} \rightarrow \text{index}$
- $\llbracket _ \rrbracket^T : \text{prop} \rightarrow \text{type}$
 - ▶ $\llbracket _ \rrbracket^t : \text{term} \rightarrow \text{type}$
- $\llbracket _ \rrbracket^S : \text{prop} \rightarrow \text{prog} \rightarrow \text{spec}$
 - ▶ $\llbracket _ \rrbracket^e : \text{term} \rightarrow \text{expr}$

We'll only look at the type and specification translations.

Translating HOL to EffHOL

Translation of implication:

$$[\![\psi_1 \supset \psi_2]\!]^T = [\![\psi_1]\!]^T \rightarrow M([\![\psi_2]\!]^T)$$

$$[\![\psi_1 \supset \psi_2]\!]_p^S = \sqcap x_1 : [\![\psi_1]\!]^T. [\![\psi_1]\!]_{x_1}^S \supset \langle x_2 \leftarrow p \ x_1 \rangle \ [\![\psi_2]\!]_{x_2}^S$$

Translating HOL to EffHOL

Translation of implication:

$$[\![\psi_1 \supset \psi_2]\!]^T = [\![\psi_1]\!]^T \rightarrow M([\![\psi_2]\!]^T)$$

$$[\![\psi_1 \supset \psi_2]\!]_p^S = \sqcap x_1 : [\![\psi_1]\!]^T. [\![\psi_1]\!]_{x_1}^S \supset \langle x_2 \leftarrow p x_1 \rangle [\![\psi_2]\!]_{x_2}^S$$

Translation of universal quantification:

$$[\![\forall x : s. \psi]\!]^T = \prod X_x : [\![s]\!]^K. M([\![\psi]\!]^T)$$

$$[\![\forall x : s. \psi]\!]_p^S = \cap X_x : [\![s]\!]^K. \forall y_x : [\![s]\!]_{X_x}^I. \langle x_0 \leftarrow p X_x \rangle [\![\psi]\!]_{x_0}^S$$

The quantification over y_x is needed to handle occurrences of x in ψ : a base case translates these to y_x .

Translating HOL to EffHOL: example

Consider the following **HOL** proposition:

$$\forall a : \star. \bar{a} \sqsupseteq \bar{a}$$

The corresponding **EffHOL** type is:

$$\prod A : \star. M(A \rightarrow M(A))$$

Translating HOL to EffHOL: example

Consider the following **HOL** proposition:

$$\forall a : \star. \bar{a} \sqsupseteq \bar{a}$$

The corresponding **EffHOL** type is:

$$\prod A : \star. M(A \rightarrow M(A))$$

Programs p of this type should satisfy this **EffHOL** specification:

$$\cap A : \star. \forall S : R_A. \langle f \leftarrow p A \rangle \cap_{x:A} x \in S \supset \langle y \leftarrow f x \rangle y \in S.$$

(Approximate) meaning: p is a polymorphic computation that transforms programs $x : A$ that are in S into programs $y : A$ also in S .

Translating HOL to EffHOL: proofs

Theorem (Soundness)

For any **HOL** proof of a theorem ψ , we can construct a program p such that

- $p : M[\![\psi]\!]^T$,
- $\langle x_r \leftarrow p \rangle [\![\psi]\!]_{x_r}^S$.

Proof: A rule-by-rule construction of p from the proof of ψ .

Instances of **EffHOL**

- Define **EffHOL**[−] as the fragment of **EffHOL** with all monad-related constructs removed.
- A *pure instance* of **EffHOL** is an interpretation of **EffHOL** in **EffHOL**[−] that
 - ▶ gives an interpretation of the monadic constructs that does not use $M(\tau)$, `return`, `bind`,
 - ▶ possibly extends the reduction relation on programs.

Example: memoization and Countable Choice

- Consider the axiom of Countable Choice (CC):
Any total relation $u \subseteq \mathbb{N} \times \tau$ has a deterministic total subrelation.
- CC is true if computations are deterministic.
- CC may be false if computations are nondeterministic.

Example: memoization and Countable Choice

- Consider the axiom of Countable Choice (CC):
Any total relation $u \subseteq \mathbb{N} \times \tau$ has a deterministic total subrelation.
- CC is true if computations are deterministic.
- CC may be false if computations are nondeterministic.
- Now suppose computations are nondeterministic, but we keep track of a program $p : \tau$ for every natural number.
- $M(\tau)$ includes a state of the form $\mathbb{N} \rightarrow \tau$.
- Let $\text{lookup}_n p$ be a program that looks up the program stored at n and
 - ▶ Returns it if it exists.
 - ▶ Returns and sets p if it does not exist.

Example: memoization and Countable Choice

- Consider the axiom of Countable Choice (CC):
Any total relation $u \subseteq \mathbb{N} \times \tau$ has a deterministic total subrelation.
- CC is true if computations are deterministic.
- CC may be false if computations are nondeterministic.
- Now suppose computations are nondeterministic, but we keep track of a program $p : \tau$ for every natural number.
- $M(\tau)$ includes a state of the form $\mathbb{N} \rightarrow \tau$.
- Let $\text{lookup}_n p$ be a program that looks up the program stored at n and
 - ▶ Returns it if it exists.
 - ▶ Returns and sets p if it does not exist.
- Use the state to keep track of the first program we find that realizes $(n, x) \in u$ (using lookup) and always return that program.
- We can now realize CC, even if computations are nondeterministic.

Overview

Evidenced frame: overview

- **Idea:** View entailment as an ordering.
- The ordering is proof relevant: we have an *evidence relation* $\phi_1 \xrightarrow{e} \phi_2$.
- What should we take as evidence?

Evidenced frame: overview

- **Idea:** View entailment as an ordering.
- The ordering is proof relevant: we have an *evidence relation* $\phi_1 \xrightarrow{e} \phi_2$.
- What should we take as evidence?
- A natural choice would be elements of a PCA, but we would like effects.
- *Computational systems* are an effectful version of PCAs.

Evidenced frame: definition

An evidenced frame is a triple $(\Phi, E, \cdot \rightarrow \cdot)$ with the following properties:

- **Reflexivity:** Evidence e_{id} such that $\phi \xrightarrow{e_{\text{id}}} \phi$.
- **Transitivity:** An operator $\cdot \in E \rightarrow E \rightarrow E$ such that:
If $\phi_1 \xrightarrow{e} \phi_2$ and $\phi_2 \xrightarrow{e'} \phi_3$, then $\phi_1 \xrightarrow{e;e'} \phi_3$.
- **Top:** A proposition \top and evidence e_{\top} such that $\phi \xrightarrow{e_{\top}} \top$.

Evidenced frame: definition

An evidenced frame is a triple $(\Phi, E, \cdot \rightarrow \cdot)$ with the following properties:

- **Reflexivity:** Evidence e_{id} such that $\phi \xrightarrow{e_{\text{id}}} \phi$.
- **Transitivity:** An operator $;\in E \rightarrow E \rightarrow E$ such that:
If $\phi_1 \xrightarrow{e} \phi_2$ and $\phi_2 \xrightarrow{e'} \phi_3$, then $\phi_1 \xrightarrow{e;e'} \phi_3$.
- **Top:** A proposition \top and evidence e_{\top} such that $\phi \xrightarrow{e_{\top}} \top$.
- **Conjunction:** Operators $\langle \cdot, \cdot \rangle \in E \rightarrow E \rightarrow E$, $\wedge \in \Phi \rightarrow \Phi \rightarrow \Phi$ and evidence $e_{\text{fst}}, e_{\text{snd}}$ such that:

$$\phi_1 \wedge \phi_2 \xrightarrow{e_{\text{fst}}} \phi_1, \quad \phi_1 \wedge \phi_2 \xrightarrow{e_{\text{snd}}} \phi_2$$

If $\phi \xrightarrow{e_1} \phi_1$ and $\phi \xrightarrow{e_2} \phi_2$, then $\phi \xrightarrow{\langle e_1, e_2 \rangle} \phi_1 \wedge \phi_2$

Evidenced frame: definition

- **Universal implication:** A combination of implication and universal quantification.

There are operators $\supset \in \Phi \times \mathcal{P}(\Phi) \rightarrow \Phi$, $\lambda \in E \rightarrow E$ and evidence e_{eval} such that:

- ▶ If for all $\phi \in \overrightarrow{\phi}$ we have $\phi_1 \wedge \phi_2 \xrightarrow{e} \phi$, then $\phi_1 \xrightarrow{\lambda e} \phi_2 \supset \overrightarrow{\phi}$.
- ▶ For all $\phi \in \overrightarrow{\phi}$ we have $(\phi_1 \supset \overrightarrow{\phi}) \wedge \phi_1 \xrightarrow{e_{\text{eval}}} \phi$.

How do we get regular implication and universal quantification?

Evidenced frame: definition

- **Universal implication:** A combination of implication and universal quantification.

There are operators $\supset \in \Phi \times \mathcal{P}(\Phi) \rightarrow \Phi$, $\lambda \in E \rightarrow E$ and evidence e_{eval} such that:

- ▶ If for all $\phi \in \vec{\phi}$ we have $\phi_1 \wedge \vec{\phi_2} \xrightarrow{e} \phi$, then $\phi_1 \xrightarrow{\lambda e} \phi_2 \supset \vec{\phi}$.
- ▶ For all $\phi \in \vec{\phi}$ we have $(\phi_1 \supset \vec{\phi}) \wedge \phi_1 \xrightarrow{e_{\text{eval}}} \phi$.

How do we get regular implication and universal quantification?

- Implication: $\phi_1 \supset \{\phi_2\}$.
- Universal quantification: $\top \supset \vec{\phi}$.
 - ▶ The *variable condition* is hidden: holds because the same evidence must work for all $\phi \in \vec{\phi}$.

Computational systems

- The definition suggests that we would like codes behaving like λ terms.
- As an example we will consider *computational systems*: an effectful generalization of PCAs.

Computational systems

- The definition suggests that we would like codes behaving like λ -terms.
- As an example we will consider *computational systems*: an effectful generalization of PCAs.
- Partial applicative structure: set with a partial application operation, i.e. either $c \cdot c' \uparrow$ or $c \cdot c' \downarrow d$.
- Partial combinatory algebra: PAS that has elements behaving like λ -terms.
- Example: \mathbb{N} with Kleene application: $n \cdot m$ is the n -th Turing machine applied to m .

Computational systems

- Instead of one partial reduction relation \downarrow , have **stateful** termination and reduction relations:
 - ▶ $\sigma \leq \sigma'$: σ' is a possible future of σ .
 - ▶ $c \downarrow^\sigma$: c terminates in state σ .
 - ▶ $c \downarrow_{\sigma'}^\sigma, c'$: c reduces to c' in state σ , changing it to σ' .
- A code may reduce to multiple different codes from the same state, or no codes at all: we may have nondeterminism, failure.

Computational systems

- Instead of one partial reduction relation \downarrow , have **stateful** termination and reduction relations:
 - ▶ $\sigma \leq \sigma'$: σ' is a possible future of σ .
 - ▶ $c \downarrow^\sigma$: c terminates in state σ .
 - ▶ $c \downarrow_{\sigma'}^\sigma, c'$: c reduces to c' in state σ , changing it to σ' .
- A code may reduce to multiple different codes from the same state, or no codes at all: we may have nondeterminism, failure.
- Example:

$$\text{lookup}_n \cdot c \downarrow^\sigma$$
$$\text{lookup}_n \cdot c \downarrow_{\sigma}^{\sigma'} c' \quad \text{if } n \mapsto c' \in \sigma$$
$$\text{lookup}_n \cdot c \downarrow_{\sigma, n \mapsto c}^{\sigma} c \quad \text{if there is no } c' \text{ such that } n \mapsto c' \in \sigma$$

$\text{lookup}_n \cdot c$ looks up the code stored at n and returns it, or if that fails, returns and sets c .

Evidenced frame for a computational system

- Let (C, Σ) be a computational system.
- Propositions are stateful predicates, $\phi \subseteq \Sigma \times C$ that are **future-stable**.
- Suppose for now that C is the set of evidence.
 - ▶ In reality, we have to be careful with the codes we include: some may make the evidenced frame inconsistent.
- We say that $\phi_1 \xrightarrow{e} \phi_2$ if the following holds:
If $(\sigma, c) \in \phi_1$, then:
 - ▶ $e \cdot c \downarrow^\sigma$.
 - ▶ If $e \cdot c \downarrow_\sigma^\sigma c'$, then $(\sigma', c') \in \phi_2$.

Evidenced frame for a computational system

- Let (C, Σ) be a computational system.
- Propositions are stateful predicates, $\phi \subseteq \Sigma \times C$ that are **future-stable**.
- Suppose for now that C is the set of evidence.
 - ▶ In reality, we have to be careful with the codes we include: some may make the evidenced frame inconsistent.
- We say that $\phi_1 \xrightarrow{e} \phi_2$ if the following holds:
If $(\sigma, c) \in \phi_1$, then:
 - ▶ $e \cdot c \downarrow^\sigma$.
 - ▶ If $e \cdot c \downarrow_\sigma^\sigma c'$, then $(\sigma', c') \in \phi_2$.
- $\phi_1 \wedge \phi_2$ consists of pairs of codes.
- $\phi_1 \supset \overrightarrow{\phi}$ consists of codes that work as evidence $\phi_1 \xrightarrow{c} \phi$ for all $\phi \in \overrightarrow{\phi}$.

Evidenced frame for EffHOL instances

- Consider a pure instance of **EffHOL**.
- Idea: A **HOL** proposition φ is realized by the set of closed programs $p : \llbracket \varphi \rrbracket^T$ such that $\llbracket \varphi \rrbracket^S_p$ holds.
- The evidence relation will resemble
$$\forall p : \llbracket \varphi \rrbracket^T. \llbracket \varphi \rrbracket^S_p \rightarrow \langle x \leftarrow e p \rangle \llbracket \psi \rrbracket^S_x.$$

Evidenced frame for **EffHOL** instances

- Consider a pure instance of **EffHOL**.
- Idea: A **HOL** proposition φ is realized by the set of closed programs $p : \llbracket \varphi \rrbracket^T$ such that $\llbracket \varphi \rrbracket_p^S$ holds.
- The evidence relation will resemble $\forall p : \llbracket \varphi \rrbracket^T. \llbracket \varphi \rrbracket_p^S \rightarrow \langle x \leftarrow e p \rangle \llbracket \psi \rrbracket_x^S$.
- We cannot get a tripos (and hence an evidenced frame) unless we erase all types [Lietz, Streicher, 2002].
- Let $\lfloor p \rfloor$ be the program p with all type annotations, type abstractions and type applications removed.
- Define \mathcal{P} as the set of all (closed) programs in **EffHOL**.
- Define $\Lambda = \{\lfloor p \rfloor \mid p \in \mathcal{P}\}$.
- Define \mathcal{V} as the set of *values* in Λ .

Evidenced frame for EffHOL instances

- Define $\Phi_{\text{ef}} = \{\lfloor P \rfloor \mid P \subseteq \mathcal{P}, \lfloor P \rfloor \subseteq \mathcal{V}\}$.
- Define $E_{\text{ef}} = \Lambda$.
- For $\phi_1 \xrightarrow{e} \phi_2$, we would like to write $\forall p \in \phi_1. \langle x \leftarrow e \ p \rangle \ x \in \phi_2$.
- We need to **lift** sets of values to sets of programs that evaluate to those values.

Evidenced frame for EffHOL instances

- Define $\Phi_{\text{ef}} = \{\lfloor P \rfloor \mid P \subseteq \mathcal{P}, \lfloor P \rfloor \subseteq \mathcal{V}\}$.
- Define $E_{\text{ef}} = \Lambda$.
- For $\phi_1 \xrightarrow{e} \phi_2$, we would like to write $\forall p \in \phi_1. \langle x \leftarrow e \ p \rangle \ x \in \phi_2$.
- We need to **lift** sets of values to sets of programs that evaluate to those values.
- Pure instance, so the modality is just a (pure) specification.
- We can perform the lifting by replacing all the logical constructs to their meta counterparts.

Theorem

$(\Phi_{\text{ef}}, E_{\text{ef}}, \cdot \xrightarrow{\cdot} \cdot)$ is an evidenced frame.

Overview

Tripos: overview

- Model of **HOL** based on category theory.
- Highly abstract.
- The propositional part of the logic is similar to an evidenced frame: entailment is an ordering.
- **Difference:** the ordering is proof irrelevant.

Tripos: overview

- Model of **HOL** based on category theory.
- Highly abstract.
- The propositional part of the logic is similar to an evidenced frame: entailment is an ordering.
- **Difference:** the ordering is proof irrelevant.
- This construction is known as a **Heyting algebra**.
 - ▶ Ordering \leq represents entailment.
 - ▶ Operations $\wedge, \vee, \Rightarrow$, elements \top, \perp .

Tripos: overview

- Model of **HOL** based on category theory.
- Highly abstract.
- The propositional part of the logic is similar to an evidenced frame: entailment is an ordering.
- **Difference:** the ordering is proof irrelevant.
- This construction is known as a **Heyting algebra**.
 - ▶ Ordering \leq represents entailment.
 - ▶ Operations $\wedge, \vee, \Rightarrow$, elements \top, \perp .
- Triposes are generally defined using Heyting prealgebras: \leq is not antisymmetric.
- Other components:
 - ▶ Predicate logic and quantifiers.
 - ▶ Higher-order logic.

Tripos: definition

- Propositional logic is implemented through Heyting prealgebras.
- Predicate logic is implemented through a functor $\mathcal{T} : \mathbf{Set}^{\mathbf{op}} \rightarrow \mathbf{pHA}$.
 - ▶ $\mathcal{T}(\Gamma)$: predicates in context Γ .
 - ▶ Types interpreted as sets, terms are functions $\Gamma \rightarrow A$.
 - ▶ Functions $\Gamma \rightarrow \Gamma'$ induce a substitution on predicates
 $s^* : \mathcal{T}(\Gamma') \rightarrow \mathcal{T}(\Gamma)$.
 - ▶ Quantifiers are defined using a category-theoretical trick: **adjoints**.

Tripos: definition

- Propositional logic is implemented through Heyting prealgebras.
- Predicate logic is implemented through a functor $\mathcal{T} : \mathbf{Set}^{\text{op}} \rightarrow \mathbf{pHA}$.
 - ▶ $\mathcal{T}(\Gamma)$: predicates in context Γ .
 - ▶ Types interpreted as sets, terms are functions $\Gamma \rightarrow A$.
 - ▶ Functions $\Gamma \rightarrow \Gamma'$ induce a substitution on predicates
 $s^* : \mathcal{T}(\Gamma') \rightarrow \mathcal{T}(\Gamma)$.
 - ▶ Quantifiers are defined using a category-theoretical trick: **adjoints**.
- Higher order logic is implemented through a *generic predicate*.
 - ▶ $\Omega \in \mathbf{Set}$: functions like Prop .
 - ▶ Power set type: $A \rightarrow \Omega$.
 - ▶ $\chi_\phi : A \rightarrow \Omega$: corresponds to the comprehension $\{x : A \mid \phi\}$.
 - ▶ $\text{holds} \in \mathcal{T}(\Omega)$: implements membership, $\text{holds}(p(x))$ corresponds to $x \in p$.

Tripos: quantifiers as adjoints

For any $s : \Gamma \rightarrow \Gamma'$, there is a **pHA**-morphism $\Pi_s : \mathcal{T}(\Gamma) \rightarrow \mathcal{T}(\Gamma')$ such that

$$s^*(\varphi) \leq \psi \iff \varphi \leq \Pi_s(\psi).$$

Tripos: quantifiers as adjoints

For any $s : \Gamma \rightarrow \Gamma'$, there is a **pHA**-morphism $\Pi_s : \mathcal{T}(\Gamma) \rightarrow \mathcal{T}(\Gamma')$ such that

$$s^*(\varphi) \leq \psi \iff \varphi \leq \Pi_s(\psi).$$

Think of $\Pi_s(\varphi)(\vec{y})$ as

$$\forall \vec{x}. s(\vec{x}) = \vec{y} \implies \varphi(\vec{x}).$$

Tripos: quantifiers as adjoints

For any $s : \Gamma \rightarrow \Gamma'$, there is a **pHA**-morphism $\Pi_s : \mathcal{T}(\Gamma) \rightarrow \mathcal{T}(\Gamma')$ such that

$$s^*(\varphi) \leq \psi \iff \varphi \leq \Pi_s(\psi).$$

Think of $\Pi_s(\varphi)(\vec{y})$ as

$$\forall \vec{x}. s(\vec{x}) = \vec{y} \implies \varphi(\vec{x}).$$

In particular, if $s : \Gamma \times X \rightarrow \Gamma$ is a projection, we get the normal \forall :

$$\varphi(\vec{y}, x) \leq \psi(\vec{y}, x) \iff \varphi(\vec{y}) \leq \forall x. \psi(\vec{y}, x)$$

Similar construction for existential quantification.

Tripos for an evidenced frame: UFam

- Let $\mathcal{EF} = (\Phi, E, \cdot \dot{\rightarrow} \cdot)$ be an evidenced frame.
- **Idea:** Make a Heyting prealgebra of functions $\Gamma \rightarrow \Phi$. $\phi \leq \phi'$ if there is an evidence that works for every $\gamma \in \Gamma$ (uniform families).

Tripos for an evidenced frame: UFam

- Let $\mathcal{EF} = (\Phi, E, \cdot \dot{\rightarrow} \cdot)$ be an evidenced frame.
- **Idea:** Make a Heyting prealgebra of functions $\Gamma \rightarrow \Phi$. $\phi \leq \phi'$ if there is an evidence that works for every $\gamma \in \Gamma$ (uniform families).
- Define $\mathcal{T}(\Gamma) = \Gamma \rightarrow \Phi$.
- Heyting algebraic structure is given by applying the operations of \mathcal{EF} pointwise.
- Define $\phi \leq \phi' = \exists e. \forall \gamma. \phi(\gamma) \xrightarrow{e} \phi'(\gamma)$.

Tripos for an evidenced frame: UFam

- Let $\mathcal{EF} = (\Phi, E, \cdot \dot{\rightarrow} \cdot)$ be an evidenced frame.
- **Idea:** Make a Heyting prealgebra of functions $\Gamma \rightarrow \Phi$. $\phi \leq \phi'$ if there is an evidence that works for every $\gamma \in \Gamma$ (uniform families).
- Define $\mathcal{T}(\Gamma) = \Gamma \rightarrow \Phi$.
- Heyting algebraic structure is given by applying the operations of \mathcal{EF} pointwise.
- Define $\phi \leq \phi' = \exists e. \forall \gamma. \phi(\gamma) \xrightarrow{e} \phi'(\gamma)$.
- Substitution: $s^*(f) = f \circ s$.

Tripos for an evidenced frame: UFam

- Let $\mathcal{EF} = (\Phi, E, \cdot \dot{\rightarrow} \cdot)$ be an evidenced frame.
- **Idea:** Make a Heyting prealgebra of functions $\Gamma \rightarrow \Phi$. $\phi \leq \phi'$ if there is an evidence that works for every $\gamma \in \Gamma$ (uniform families).
- Define $\mathcal{T}(\Gamma) = \Gamma \rightarrow \Phi$.
- Heyting algebraic structure is given by applying the operations of \mathcal{EF} pointwise.
- Define $\phi \leq \phi' = \exists e. \forall \gamma. \phi(\gamma) \xrightarrow{e} \phi'(\gamma)$.
- Substitution: $s^*(f) = f \circ s$.
- Quantifiers: $\Pi_s(\phi)(\gamma') = \top \supset \{\phi(\gamma) \mid \gamma \in \Gamma \wedge s(\gamma) = \gamma'\}$.

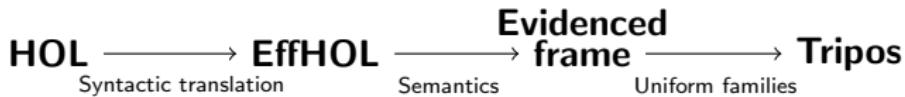
Tripos for an evidenced frame: UFam

- Let $\mathcal{EF} = (\Phi, E, \cdot \dot{\rightarrow} \cdot)$ be an evidenced frame.
- **Idea:** Make a Heyting prealgebra of functions $\Gamma \rightarrow \Phi$. $\phi \leq \phi'$ if there is an evidence that works for every $\gamma \in \Gamma$ (uniform families).
- Define $\mathcal{T}(\Gamma) = \Gamma \rightarrow \Phi$.
- Heyting algebraic structure is given by applying the operations of \mathcal{EF} pointwise.
- Define $\phi \leq \phi' = \exists e. \forall \gamma. \phi(\gamma) \xrightarrow{e} \phi'(\gamma)$.
- Substitution: $s^*(f) = f \circ s$.
- Quantifiers: $\Pi_s(\phi)(\gamma') = \top \supset \{\phi(\gamma) \mid \gamma \in \Gamma \wedge s(\gamma) = \gamma'\}$.
- Generic predicate: $\Omega = \Phi$, holds = id , $\chi_\phi = \phi$.

Tripos for an evidenced frame: UFam

- Let $\mathcal{EF} = (\Phi, E, \cdot \dot{\rightarrow} \cdot)$ be an evidenced frame.
- **Idea:** Make a Heyting prealgebra of functions $\Gamma \rightarrow \Phi$. $\phi \leq \phi'$ if there is an evidence that works for every $\gamma \in \Gamma$ (uniform families).
- Define $\mathcal{T}(\Gamma) = \Gamma \rightarrow \Phi$.
- Heyting algebraic structure is given by applying the operations of \mathcal{EF} pointwise.
- Define $\phi \leq \phi' = \exists e. \forall \gamma. \phi(\gamma) \xrightarrow{e} \phi'(\gamma)$.
- Substitution: $s^*(f) = f \circ s$.
- Quantifiers: $\Pi_s(\phi)(\gamma') = \top \supset \{\phi(\gamma) \mid \gamma \in \Gamma \wedge s(\gamma) = \gamma'\}$.
- Generic predicate: $\Omega = \Phi$, holds = id , $\chi_\phi = \phi$.
- It is also possible to construct an evidenced frame from a tripos.
- This essentially means that any tripos can be described as an evidenced frame.

Conclusion



- We defined two different models of **HOL** that allow for effectful realizers.
- **EffHOL** is a system consisting of an effectful programming language and a logic system with modality.
 - ▶ Effects are achieved via a monadic type former.
 - ▶ **HOL** theorems are translated to types and specifications, proofs to programs.
- Evidenced frames are defined as a proof relevant ordering.
 - ▶ The evidence can be effectful, e.g. computational systems.
- Triposes are category-theoretical models of **HOL**.
 - ▶ Propositional logic is implemented through Heyting prealgebras.
 - ▶ Predicate logic is implemented through a functor $\mathbf{Set}^{\text{op}} \rightarrow \mathbf{pHA}$.

Questions

Bonus: translating HOL to EffHOL: complicated example

Consider the following **HOL** proposition:

$$\forall x : \star. \forall y : \star. (\forall p : \star \rightarrow \star. x \in p \sqsupseteq y \in p) \sqsupseteq \bar{x} \sqsupseteq \bar{y}$$

The corresponding **EffHOL** type is:

$$\begin{aligned} \prod X : \star. M(\prod Y : \star. M((\prod P : \star \rightarrow \star. M(P X \rightarrow M(P Y)))) \\ \rightarrow M(X \rightarrow M(Y)))) \end{aligned}$$

The corresponding **EffHOL** specification is:

$$p \mapsto \cap X : \star. \forall x : R_X. \langle x_0 \leftarrow p \mid X \rangle \cap Y : \star. \forall y : R_Y.$$

$$\langle x_1 \leftarrow x_0 \mid Y \rangle \sqcap x_2 : \prod P : \star \rightarrow \star. M(P X \rightarrow M(P Y)).$$

$$(\cap P : \star \rightarrow \star. \forall p : \wedge X_0 : \star. R_{P \mid X_0}(R_{X_0}). \langle x_6 \leftarrow x_2 \mid P \rangle$$

$$\sqcap x_7 : P \mid X. x_7; x \in p \mid X \supset \langle x_8 \leftarrow x_6 \mid x_7 \rangle \ x_8; y \in p \mid Y)$$

$$\supset \langle x_3 \leftarrow x_1 \mid x_2 \rangle \ \sqcap x_4 : X. x_4 \in x \supset \langle x_5 \leftarrow x_3 \mid x_4 \rangle \ x_5 \in y$$

Bonus: proof of the soundness theorem

We translate each proof rule to an operation on **EffHOL** programs.

- Id: $[p]$.
- Imp-I: $\lambda x : \llbracket \varphi_1 \rrbracket^T. p$.
- Imp-E: let $x_0 \leftarrow p_0$ in let $x_1 \leftarrow p_1$ in $x_0\ x_1$.
- Uni-I: $\Lambda X : \llbracket s \rrbracket^K. p$.
- Uni-E: let $x \leftarrow p$ in $x\ \llbracket t \rrbracket^t$.
- Rules for comprehensions: do nothing.

Example

A realizer for $\forall x : \star. \forall y : \star. (\forall p : \star \rightarrow \star. x \in p \sqsupseteq y \in p) \sqsupseteq \bar{x} \sqsupseteq \bar{y}$ is

$$\begin{aligned} \Lambda X : \star. \Lambda Y : \star. \lambda h_1 : \prod P : \star \rightarrow \star. M(PX \rightarrow M(PY)). \lambda h_2 : X. \\ \text{let } x_1 \leftarrow h_1 (\bar{\Lambda} a : \star. a) \text{ in let } x_2 \leftarrow [h_2] \text{ in } x_1\ x_2. \end{aligned}$$

Bonus: evidenced frame for a computational system, elaborated

Define $c_1 \cdot c_2 \Downarrow^\sigma \phi$ as $\forall c, \sigma' \geq \sigma. c_1 \cdot c_2 \wedge c_1 \cdot c_2 \Downarrow_{\sigma'}^\sigma c \implies (\sigma', c) \in \phi$. Given a computational system (C, Σ) with a separator \mathcal{S} , define an evidenced frame $(\Phi, E, \cdot \dot{\rightarrow} \cdot)$ as follows:

$$\begin{aligned}\Phi &= \{\phi \in \mathcal{P}(\Sigma \times C) \mid \forall \sigma, \sigma', c. \sigma' \geq \sigma \\ &\quad \implies (\sigma, c) \in \phi \implies (\sigma', c) \in \phi\}\end{aligned}$$

$$E = \mathcal{S}$$

$$\top = \Sigma \times C$$

$$\phi_1 \wedge \phi_2 = \{(\sigma, c) \mid \forall \sigma'. \sigma' \geq \sigma \implies \pi_1 c \Downarrow^{\sigma'} \phi_1 \wedge \pi_2 c \Downarrow^{\sigma'} \phi_2\}$$

$$\begin{aligned}\phi_1 \supset \overrightarrow{\phi} &= \{(\sigma, c) \mid \forall \sigma', c', \phi \in \overrightarrow{\phi}. \sigma' \geq \sigma \\ &\quad \implies (\sigma', c') \in \phi_1 \implies c \cdot c' \Downarrow^{\sigma'} \phi\}\end{aligned}$$