
Effectful realizability
MFoCS Seminar

Ties Steijn

Radboud University

January 2026

Papers by Cohen, Grunfeld, Kirst, Miquey, Tate

Ties Steijn (Radboud University) Effectful realizability January 2026 1 / 34

Overview

Realizability: connection between proofs and programs.

Example: program extraction (in Rocq).

Target language is usually pure (no effects).

Effects allow us to find realizers for more statements.

Syntactic approach: EffHOL.
▶ Paper: Syntactic Effectful Realizability in Higher-Order Logic. L.

Cohen, A. Grunfeld, D. Kirst, E. Miquey, 2025.

Semantic approach: Evidenced frames.
▶ Paper: Evidenced Frames: A Unifying Framework Broadening

Realizability Models. L. Cohen, E. Miquey, R. Tate, 2021.

Connection to existing theory: Tripos (and topos) theory.

Ties Steijn (Radboud University) Effectful realizability January 2026 2 / 34

Overview

HOL is like predicate logic with the addition of powerset types.

This lets us describe predicates about propositions, predicates about
predicates, . . .

EffHOL is a system comprised of (higher-order) logic rules and an
effectful programming language.

Evidenced frames are defined by an evidence relation ϕ1
e→ ϕ2.

▶ Essentially a proof relevant ordering on propositions.
▶ The evidence can be taken as effectful programs.

Triposes are category-theoretical models of HOL.
Toposes are more elaborate category-theoretical models of HOL.

▶ The long-time standard.
▶ Beyond the scope of this presentation.

We’ll show that both EffHOL instances and evidenced frames can be
translated to triposes (and hence toposes).

HOL EffHOL
Evidenced
frame Tripos Topos

Syntactic translation Semantics Uniform families tripos-to-topos

Ties Steijn (Radboud University) Effectful realizability January 2026 3 / 34

Overview

HOL is like predicate logic with the addition of powerset types.

This lets us describe predicates about propositions, predicates about
predicates, . . .

EffHOL is a system comprised of (higher-order) logic rules and an
effectful programming language.

Evidenced frames are defined by an evidence relation ϕ1
e→ ϕ2.

▶ Essentially a proof relevant ordering on propositions.
▶ The evidence can be taken as effectful programs.

Triposes are category-theoretical models of HOL.
Toposes are more elaborate category-theoretical models of HOL.

▶ The long-time standard.
▶ Beyond the scope of this presentation.

We’ll show that both EffHOL instances and evidenced frames can be
translated to triposes (and hence toposes).

HOL EffHOL
Evidenced
frame Tripos Topos

Syntactic translation Semantics Uniform families tripos-to-topos

Ties Steijn (Radboud University) Effectful realizability January 2026 3 / 34

Overview

HOL is like predicate logic with the addition of powerset types.

This lets us describe predicates about propositions, predicates about
predicates, . . .

EffHOL is a system comprised of (higher-order) logic rules and an
effectful programming language.

Evidenced frames are defined by an evidence relation ϕ1
e→ ϕ2.

▶ Essentially a proof relevant ordering on propositions.
▶ The evidence can be taken as effectful programs.

Triposes are category-theoretical models of HOL.
Toposes are more elaborate category-theoretical models of HOL.

▶ The long-time standard.
▶ Beyond the scope of this presentation.

We’ll show that both EffHOL instances and evidenced frames can be
translated to triposes (and hence toposes).

HOL EffHOL
Evidenced
frame Tripos Topos

Syntactic translation Semantics Uniform families tripos-to-topos

Ties Steijn (Radboud University) Effectful realizability January 2026 3 / 34

Overview

HOL is like predicate logic with the addition of powerset types.

This lets us describe predicates about propositions, predicates about
predicates, . . .

EffHOL is a system comprised of (higher-order) logic rules and an
effectful programming language.

Evidenced frames are defined by an evidence relation ϕ1
e→ ϕ2.

▶ Essentially a proof relevant ordering on propositions.
▶ The evidence can be taken as effectful programs.

Triposes are category-theoretical models of HOL.
Toposes are more elaborate category-theoretical models of HOL.

▶ The long-time standard.
▶ Beyond the scope of this presentation.

We’ll show that both EffHOL instances and evidenced frames can be
translated to triposes (and hence toposes).

HOL EffHOL
Evidenced
frame Tripos Topos

Syntactic translation Semantics Uniform families tripos-to-topos

Ties Steijn (Radboud University) Effectful realizability January 2026 3 / 34

Overview

HOL is like predicate logic with the addition of powerset types.

This lets us describe predicates about propositions, predicates about
predicates, . . .

EffHOL is a system comprised of (higher-order) logic rules and an
effectful programming language.

Evidenced frames are defined by an evidence relation ϕ1
e→ ϕ2.

▶ Essentially a proof relevant ordering on propositions.
▶ The evidence can be taken as effectful programs.

Triposes are category-theoretical models of HOL.
Toposes are more elaborate category-theoretical models of HOL.

▶ The long-time standard.
▶ Beyond the scope of this presentation.

We’ll show that both EffHOL instances and evidenced frames can be
translated to triposes (and hence toposes).

HOL EffHOL
Evidenced
frame Tripos Topos

Syntactic translation Semantics Uniform families tripos-to-topos

Ties Steijn (Radboud University) Effectful realizability January 2026 3 / 34

Higher-Order Logic

Sorts: s = 9 | s→ 9.
▶ Think of Prop, P(Prop), P(P(Prop)),

Formulas: φ = ∀x : s, φ | φ ⊐ φ | t ∈ t | t.
Terms: t = x | {x : s | φ} | {x}.
Deduction rules:

▶ Usual logic rules (first order).
▶ Rules for comprehension terms:

{φ} ⇐⇒ φ

t ∈ {x : s | φ} ⇐⇒ φ[x := t]

Ties Steijn (Radboud University) Effectful realizability January 2026 4 / 34

Higher-Order Logic

Sorts: s = 9 | s→ 9.
▶ Think of Prop, P(Prop), P(P(Prop)),

Formulas: φ = ∀x : s, φ | φ ⊐ φ | t ∈ t | t.
Terms: t = x | {x : s | φ} | {x}.

Deduction rules:
▶ Usual logic rules (first order).
▶ Rules for comprehension terms:

{φ} ⇐⇒ φ

t ∈ {x : s | φ} ⇐⇒ φ[x := t]

Ties Steijn (Radboud University) Effectful realizability January 2026 4 / 34

Higher-Order Logic

Sorts: s = 9 | s→ 9.
▶ Think of Prop, P(Prop), P(P(Prop)),

Formulas: φ = ∀x : s, φ | φ ⊐ φ | t ∈ t | t.
Terms: t = x | {x : s | φ} | {x}.
Deduction rules:

▶ Usual logic rules (first order).
▶ Rules for comprehension terms:

{φ} ⇐⇒ φ

t ∈ {x : s | φ} ⇐⇒ φ[x := t]

Ties Steijn (Radboud University) Effectful realizability January 2026 4 / 34

Overview

HOL EffHOL
Evidenced
frame Tripos

Syntactic translation Semantics Uniform families

Ties Steijn (Radboud University) Effectful realizability January 2026 5 / 34

EffHOL: overview

We would like to translate HOL proofs to programs in some language.

This language will be an effectful version of λω.

Idea: for any HOL proposition, the set of programs of the
corresponding type are the potential realizers.

The programs that additionally satisfy the corresponding specification
are actual realizers.

Note the similarity to Kreisel’s modified realizability.

EffHOL combines an (effectful) programming language with a logic
system.

Ties Steijn (Radboud University) Effectful realizability January 2026 6 / 34

EffHOL: overview

Components of EffHOL:

Kinds: correspond to HOL sorts.

Types and Specifications: correspond to HOL propositions.

Programs: correspond to HOL proofs.

Expressions: correspond to HOL terms.

Indices: the types of expressions.

KindTypeProgram

IndexExpressionSpecification

has has

uses has

satisfies

Ties Steijn (Radboud University) Effectful realizability January 2026 7 / 34

EffHOL: overview

Remember: Haskell implements effects via the Monad typeclass.

In EffHOL we use a similar idea.

Key difference: there is a primitive computation type M(τ).

Programs may use the monadic constructs return and bind.

How do we reason about values returned by effectful computations?

They may not be deterministic, or they may fail altogether.

Solution: specifications may use modality to handle the results of
monadic computations.

If p evaluates to x, then φ(x) holds.

Ties Steijn (Radboud University) Effectful realizability January 2026 8 / 34

EffHOL: overview

Remember: Haskell implements effects via the Monad typeclass.

In EffHOL we use a similar idea.

Key difference: there is a primitive computation type M(τ).

Programs may use the monadic constructs return and bind.

How do we reason about values returned by effectful computations?

They may not be deterministic, or they may fail altogether.

Solution: specifications may use modality to handle the results of
monadic computations.

If p evaluates to x, then φ(x) holds.

Ties Steijn (Radboud University) Effectful realizability January 2026 8 / 34

EffHOL: syntax

Kinds: same as in HOL.

κ = ⋆ | κ→ ⋆

Types: as in λω, with an additional computation type constructor
M(τ).

τ = X | τ → τ |
∏

X : κ.τ | τ τ | ΛX : κ.τ |M(τ)

Programs: as in λω, with return and bind.

p = x | p p | λx : τ.p | p τ | ΛX : κ.p | [p] | let x← p in p

Ties Steijn (Radboud University) Effectful realizability January 2026 9 / 34

EffHOL: syntax

Kinds: same as in HOL.

κ = ⋆ | κ→ ⋆

Types: as in λω, with an additional computation type constructor
M(τ).

τ = X | τ → τ

|
∏

X : κ.τ | τ τ | ΛX : κ.τ |M(τ)

Programs: as in λω, with return and bind.

p = x | p p | λx : τ.p | p τ | ΛX : κ.p | [p] | let x← p in p

Ties Steijn (Radboud University) Effectful realizability January 2026 9 / 34

EffHOL: syntax

Kinds: same as in HOL.

κ = ⋆ | κ→ ⋆

Types: as in λω, with an additional computation type constructor
M(τ).

τ = X | τ → τ |
∏

X : κ.τ | τ τ

| ΛX : κ.τ |M(τ)

Programs: as in λω, with return and bind.

p = x | p p | λx : τ.p | p τ | ΛX : κ.p | [p] | let x← p in p

Ties Steijn (Radboud University) Effectful realizability January 2026 9 / 34

EffHOL: syntax

Kinds: same as in HOL.

κ = ⋆ | κ→ ⋆

Types: as in λω, with an additional computation type constructor
M(τ).

τ = X | τ → τ |
∏

X : κ.τ | τ τ | ΛX : κ.τ

|M(τ)

Programs: as in λω, with return and bind.

p = x | p p | λx : τ.p | p τ | ΛX : κ.p | [p] | let x← p in p

Ties Steijn (Radboud University) Effectful realizability January 2026 9 / 34

EffHOL: syntax

Kinds: same as in HOL.

κ = ⋆ | κ→ ⋆

Types: as in λω, with an additional computation type constructor
M(τ).

τ = X | τ → τ |
∏

X : κ.τ | τ τ | ΛX : κ.τ |M(τ)

Programs: as in λω, with return and bind.

p = x | p p | λx : τ.p | p τ | ΛX : κ.p | [p] | let x← p in p

Ties Steijn (Radboud University) Effectful realizability January 2026 9 / 34

EffHOL: syntax

Kinds: same as in HOL.

κ = ⋆ | κ→ ⋆

Types: as in λω, with an additional computation type constructor
M(τ).

τ = X | τ → τ |
∏

X : κ.τ | τ τ | ΛX : κ.τ |M(τ)

Programs: as in λω, with return and bind.

p = x | p p | λx : τ.p

| p τ | ΛX : κ.p | [p] | let x← p in p

Ties Steijn (Radboud University) Effectful realizability January 2026 9 / 34

EffHOL: syntax

Kinds: same as in HOL.

κ = ⋆ | κ→ ⋆

Types: as in λω, with an additional computation type constructor
M(τ).

τ = X | τ → τ |
∏

X : κ.τ | τ τ | ΛX : κ.τ |M(τ)

Programs: as in λω, with return and bind.

p = x | p p | λx : τ.p | p τ | ΛX : κ.p

| [p] | let x← p in p

Ties Steijn (Radboud University) Effectful realizability January 2026 9 / 34

EffHOL: syntax

Kinds: same as in HOL.

κ = ⋆ | κ→ ⋆

Types: as in λω, with an additional computation type constructor
M(τ).

τ = X | τ → τ |
∏

X : κ.τ | τ τ | ΛX : κ.τ |M(τ)

Programs: as in λω, with return and bind.

p = x | p p | λx : τ.p | p τ | ΛX : κ.p | [p] | let x← p in p

Ties Steijn (Radboud University) Effectful realizability January 2026 9 / 34

EffHOL: syntax

Specifications:

Implication: φ ⊃ φ.
Universal quantification over programs/types/expressions:
⊓x : τ.φ | ∩X : κ.φ | ∀y : σ.φ.

Expressions are like comprehensions in HOL.

Difference: they additionally depend on a program of a certain type.

Membership: p A e | p; e A e.

Modality: ⟨x← p⟩ φ.
▶ Intuition: if p evaluates to x, then φ(x) holds.

Ties Steijn (Radboud University) Effectful realizability January 2026 10 / 34

EffHOL: syntax

Specifications:

Implication: φ ⊃ φ.
Universal quantification over programs/types/expressions:
⊓x : τ.φ | ∩X : κ.φ | ∀y : σ.φ.

Expressions are like comprehensions in HOL.

Difference: they additionally depend on a program of a certain type.

Membership: p A e | p; e A e.

Modality: ⟨x← p⟩ φ.
▶ Intuition: if p evaluates to x, then φ(x) holds.

Ties Steijn (Radboud University) Effectful realizability January 2026 10 / 34

EffHOL: syntax

Specifications:

Implication: φ ⊃ φ.
Universal quantification over programs/types/expressions:
⊓x : τ.φ | ∩X : κ.φ | ∀y : σ.φ.

Expressions are like comprehensions in HOL.

Difference: they additionally depend on a program of a certain type.

Membership: p A e | p; e A e.

Modality: ⟨x← p⟩ φ.
▶ Intuition: if p evaluates to x, then φ(x) holds.

Ties Steijn (Radboud University) Effectful realizability January 2026 10 / 34

EffHOL: syntax

Expressions: like the comprehensions in HOL.

Since specifications are about programs, they also depend on a
program of a given type.

e = y | {x : τ | φ} | {x : τ, y : σ | φ}

| ∧X : κ.e | e τ

Polymorphic expressions are needed to handle higher-order
comprehensions in HOL.

Indices:
▶ Intuition: read Rτ as P(τ).
▶ Rτ : type of {x : τ | φ}.
▶ Rτ (σ): type of {x : τ, y : σ | φ}.
▶

∧
X : κ. σ: type of ∧X : κ. e.

Ties Steijn (Radboud University) Effectful realizability January 2026 11 / 34

EffHOL: syntax

Expressions: like the comprehensions in HOL.

Since specifications are about programs, they also depend on a
program of a given type.

e = y | {x : τ | φ} | {x : τ, y : σ | φ} | ∧X : κ.e | e τ

Polymorphic expressions are needed to handle higher-order
comprehensions in HOL.

Indices:
▶ Intuition: read Rτ as P(τ).
▶ Rτ : type of {x : τ | φ}.
▶ Rτ (σ): type of {x : τ, y : σ | φ}.
▶

∧
X : κ. σ: type of ∧X : κ. e.

Ties Steijn (Radboud University) Effectful realizability January 2026 11 / 34

EffHOL: syntax

Expressions: like the comprehensions in HOL.

Since specifications are about programs, they also depend on a
program of a given type.

e = y | {x : τ | φ} | {x : τ, y : σ | φ} | ∧X : κ.e | e τ

Polymorphic expressions are needed to handle higher-order
comprehensions in HOL.

Indices:
▶ Intuition: read Rτ as P(τ).
▶ Rτ : type of {x : τ | φ}.
▶ Rτ (σ): type of {x : τ, y : σ | φ}.
▶

∧
X : κ. σ: type of ∧X : κ. e.

Ties Steijn (Radboud University) Effectful realizability January 2026 11 / 34

EffHOL: deduction rules

Rules for assumption, introduction/elimination of ⊃ and all three
quantifiers.

Introduction/elimination rules for comprehensions.

Conversion rules for programs/types.

Rules to handle monadic computation:

▶ Rule for return:
φ[x := p] =⇒ ⟨x← [p]⟩ φ.

▶ Rule for bind:
⟨x1 ← p1⟩ ⟨x2 ← p2⟩ φ =⇒ ⟨x2 ← let x1 ← p1 in p2⟩ φ.

▶ ⊃-elim inside modality:
φ1 ⊃ φ2, ⟨x← p⟩ φ1 =⇒ ⟨x← p⟩ φ2.

Ties Steijn (Radboud University) Effectful realizability January 2026 12 / 34

EffHOL: deduction rules

Rules for assumption, introduction/elimination of ⊃ and all three
quantifiers.

Introduction/elimination rules for comprehensions.

Conversion rules for programs/types.

Rules to handle monadic computation:
▶ Rule for return:
φ[x := p] =⇒ ⟨x← [p]⟩ φ.

▶ Rule for bind:
⟨x1 ← p1⟩ ⟨x2 ← p2⟩ φ =⇒ ⟨x2 ← let x1 ← p1 in p2⟩ φ.

▶ ⊃-elim inside modality:
φ1 ⊃ φ2, ⟨x← p⟩ φ1 =⇒ ⟨x← p⟩ φ2.

Ties Steijn (Radboud University) Effectful realizability January 2026 12 / 34

EffHOL: deduction rules

Rules for assumption, introduction/elimination of ⊃ and all three
quantifiers.

Introduction/elimination rules for comprehensions.

Conversion rules for programs/types.

Rules to handle monadic computation:
▶ Rule for return:
φ[x := p] =⇒ ⟨x← [p]⟩ φ.

▶ Rule for bind:
⟨x1 ← p1⟩ ⟨x2 ← p2⟩ φ =⇒ ⟨x2 ← let x1 ← p1 in p2⟩ φ.

▶ ⊃-elim inside modality:
φ1 ⊃ φ2, ⟨x← p⟩ φ1 =⇒ ⟨x← p⟩ φ2.

Ties Steijn (Radboud University) Effectful realizability January 2026 12 / 34

EffHOL: deduction rules

Rules for assumption, introduction/elimination of ⊃ and all three
quantifiers.

Introduction/elimination rules for comprehensions.

Conversion rules for programs/types.

Rules to handle monadic computation:
▶ Rule for return:
φ[x := p] =⇒ ⟨x← [p]⟩ φ.

▶ Rule for bind:
⟨x1 ← p1⟩ ⟨x2 ← p2⟩ φ =⇒ ⟨x2 ← let x1 ← p1 in p2⟩ φ.

▶ ⊃-elim inside modality:
φ1 ⊃ φ2, ⟨x← p⟩ φ1 =⇒ ⟨x← p⟩ φ2.

Ties Steijn (Radboud University) Effectful realizability January 2026 12 / 34

Translating HOL to EffHOL

Components of the translation:

J KK : sort→ kind

J KI : sort→ type→ index

J KT : prop→ type
▶ J Kt : term→ type

J KS : prop→ prog→ spec
▶ J Ke : term→ expr

We’ll only look at the type and specification translations.

Ties Steijn (Radboud University) Effectful realizability January 2026 13 / 34

Translating HOL to EffHOL

Translation of implication:

Jψ1 ⊐ ψ2KT = Jψ1KT →M(Jψ2KT)

Jψ1 ⊐ ψ2KSp = ⊓x1 : Jψ1KT . Jψ1KSx1
⊃ ⟨x2 ← p x1⟩ Jψ2KSx2

Translation of universal quantification:

J∀x : s.ψKT =
∏

Xx : JsKK . M(JψKT)

J∀x : s.ψKSp = ∩Xx : JsKK . ∀yx : JsKIXx
. ⟨x0 ← p Xx⟩ JψKSx0

The quantification over yx is needed to handle occurrences of x in ψ: a
base case translates these to yx.

Ties Steijn (Radboud University) Effectful realizability January 2026 14 / 34

Translating HOL to EffHOL

Translation of implication:

Jψ1 ⊐ ψ2KT = Jψ1KT →M(Jψ2KT)

Jψ1 ⊐ ψ2KSp = ⊓x1 : Jψ1KT . Jψ1KSx1
⊃ ⟨x2 ← p x1⟩ Jψ2KSx2

Translation of universal quantification:

J∀x : s.ψKT =
∏

Xx : JsKK . M(JψKT)

J∀x : s.ψKSp = ∩Xx : JsKK . ∀yx : JsKIXx
. ⟨x0 ← p Xx⟩ JψKSx0

The quantification over yx is needed to handle occurrences of x in ψ: a
base case translates these to yx.

Ties Steijn (Radboud University) Effectful realizability January 2026 14 / 34

Translating HOL to EffHOL: example

Consider the following HOL proposition:

∀a : 9. a ⊐ a

The corresponding EffHOL type is:∏
A : ⋆. M(A→M(A))

Programs p of this type should satisfy this EffHOL specification:
∩A : ⋆. ∀S : RA. ⟨f ← p A⟩ ⊓x:A. x A S ⊃ ⟨y ← f x⟩ y A S.

(Approximate) meaning: p is a polymorphic computation that
transforms programs x : A that are in S into programs y : A also in S.

Ties Steijn (Radboud University) Effectful realizability January 2026 15 / 34

Translating HOL to EffHOL: example

Consider the following HOL proposition:

∀a : 9. a ⊐ a

The corresponding EffHOL type is:∏
A : ⋆. M(A→M(A))

Programs p of this type should satisfy this EffHOL specification:
∩A : ⋆. ∀S : RA. ⟨f ← p A⟩ ⊓x:A. x A S ⊃ ⟨y ← f x⟩ y A S.

(Approximate) meaning: p is a polymorphic computation that
transforms programs x : A that are in S into programs y : A also in S.

Ties Steijn (Radboud University) Effectful realizability January 2026 15 / 34

Translating HOL to EffHOL: proofs

Theorem (Soundness)

For any HOL proof of a theorem ψ, we can construct a program p such
that

p :MJψKT ,
⟨xr ← p⟩ JψKSxr

.

Proof: A rule-by-rule construction of p from the proof of ψ.

Ties Steijn (Radboud University) Effectful realizability January 2026 16 / 34

Instances of EffHOL

Define EffHOL− as the fragment of EffHOL with all monad-related
constructs removed.

A pure instance of EffHOL is an interpretation of EffHOL in
EffHOL− that

▶ gives an interpretation of the monadic constructs that does not use
M(τ), return, bind,

▶ possibly extends the reduction relation on programs.

Ties Steijn (Radboud University) Effectful realizability January 2026 17 / 34

Example: memoization and Countable Choice

Consider the axiom of Countable Choice (CC):
Any total relation u ⊆ N× τ has a deterministic total subrelation.

CC is true if computations are deterministic.

CC may be false if computations are nondeterministic.

Now suppose computations are nondeterministic, but we keep track of
a program p : τ for every natural number.

M(τ) includes a state of the form N→ τ .

Let lookupn p be a program that looks up the program stored at n
and

▶ Returns it if it exists.
▶ Returns and sets p if it does not exist.

Use the state to keep track of the first program we find that realizes
(n, x) ∈ u (using lookup) and always return that program.

We can now realize CC, even if computations are nondeterministic.

Ties Steijn (Radboud University) Effectful realizability January 2026 18 / 34

Example: memoization and Countable Choice

Consider the axiom of Countable Choice (CC):
Any total relation u ⊆ N× τ has a deterministic total subrelation.

CC is true if computations are deterministic.

CC may be false if computations are nondeterministic.

Now suppose computations are nondeterministic, but we keep track of
a program p : τ for every natural number.

M(τ) includes a state of the form N→ τ .

Let lookupn p be a program that looks up the program stored at n
and

▶ Returns it if it exists.
▶ Returns and sets p if it does not exist.

Use the state to keep track of the first program we find that realizes
(n, x) ∈ u (using lookup) and always return that program.

We can now realize CC, even if computations are nondeterministic.

Ties Steijn (Radboud University) Effectful realizability January 2026 18 / 34

Example: memoization and Countable Choice

Consider the axiom of Countable Choice (CC):
Any total relation u ⊆ N× τ has a deterministic total subrelation.

CC is true if computations are deterministic.

CC may be false if computations are nondeterministic.

Now suppose computations are nondeterministic, but we keep track of
a program p : τ for every natural number.

M(τ) includes a state of the form N→ τ .

Let lookupn p be a program that looks up the program stored at n
and

▶ Returns it if it exists.
▶ Returns and sets p if it does not exist.

Use the state to keep track of the first program we find that realizes
(n, x) ∈ u (using lookup) and always return that program.

We can now realize CC, even if computations are nondeterministic.

Ties Steijn (Radboud University) Effectful realizability January 2026 18 / 34

Overview

HOL EffHOL
Evidenced
frame Tripos

Syntactic translation Semantics Uniform families

Ties Steijn (Radboud University) Effectful realizability January 2026 19 / 34

Evidenced frame: overview

Idea: View entailment as an ordering.

The ordering is proof relevant: we have an evidence relation ϕ1
e→ ϕ2.

What should we take as evidence?

A natural choice would be elements of a PCA, but we would like
effects.

Computational systems are an effectful version of PCAs.

Ties Steijn (Radboud University) Effectful realizability January 2026 20 / 34

Evidenced frame: overview

Idea: View entailment as an ordering.

The ordering is proof relevant: we have an evidence relation ϕ1
e→ ϕ2.

What should we take as evidence?

A natural choice would be elements of a PCA, but we would like
effects.

Computational systems are an effectful version of PCAs.

Ties Steijn (Radboud University) Effectful realizability January 2026 20 / 34

Evidenced frame: definition

An evidenced frame is a triple (Φ, E, · ·→ ·) with the following properties:

Reflexivity: Evidence eid such that ϕ
eid→ ϕ.

Transitivity: An operator ;∈ E → E → E such that:

If ϕ1
e→ ϕ2 and ϕ2

e′→ ϕ3, then ϕ1
e;e′→ ϕ3.

Top: A proposition ⊤ and evidence e⊤ such that ϕ
e⊤→ ⊤.

Conjunction: Operators ⟨·, ·⟩ ∈ E → E → E, ∧ ∈ Φ→ Φ→ Φ and
evidence efst, esnd such that:

ϕ1 ∧ ϕ2
efst→ ϕ1, ϕ1 ∧ ϕ2

esnd→ ϕ2

If ϕ
e1→ ϕ1 and ϕ

e2→ ϕ2, then ϕ
⟨e1,e2⟩→ ϕ1 ∧ ϕ2

Ties Steijn (Radboud University) Effectful realizability January 2026 21 / 34

Evidenced frame: definition

An evidenced frame is a triple (Φ, E, · ·→ ·) with the following properties:

Reflexivity: Evidence eid such that ϕ
eid→ ϕ.

Transitivity: An operator ;∈ E → E → E such that:

If ϕ1
e→ ϕ2 and ϕ2

e′→ ϕ3, then ϕ1
e;e′→ ϕ3.

Top: A proposition ⊤ and evidence e⊤ such that ϕ
e⊤→ ⊤.

Conjunction: Operators ⟨·, ·⟩ ∈ E → E → E, ∧ ∈ Φ→ Φ→ Φ and
evidence efst, esnd such that:

ϕ1 ∧ ϕ2
efst→ ϕ1, ϕ1 ∧ ϕ2

esnd→ ϕ2

If ϕ
e1→ ϕ1 and ϕ

e2→ ϕ2, then ϕ
⟨e1,e2⟩→ ϕ1 ∧ ϕ2

Ties Steijn (Radboud University) Effectful realizability January 2026 21 / 34

Evidenced frame: definition

Universal implication: A combination of implication and universal
quantification.
There are operators ⊃∈ Φ× P(Φ)→ Φ, λ ∈ E → E and evidence
eeval such that:

▶ If for all ϕ ∈
−→
ϕ we have ϕ1 ∧ ϕ2

e→ ϕ, then ϕ1
λe→ ϕ2 ⊃

−→
ϕ .

▶ For all ϕ ∈
−→
ϕ we have (ϕ1 ⊃

−→
ϕ) ∧ ϕ1

eeval→ ϕ.

How do we get regular implication and universal quantification?

Implication: ϕ1 ⊃ {ϕ2}.
Universal quantification: ⊤ ⊃

−→
ϕ .

▶ The variable condition is hidden: holds because the same evidence
must work for all ϕ ∈

−→
ϕ .

Ties Steijn (Radboud University) Effectful realizability January 2026 22 / 34

Evidenced frame: definition

Universal implication: A combination of implication and universal
quantification.
There are operators ⊃∈ Φ× P(Φ)→ Φ, λ ∈ E → E and evidence
eeval such that:

▶ If for all ϕ ∈
−→
ϕ we have ϕ1 ∧ ϕ2

e→ ϕ, then ϕ1
λe→ ϕ2 ⊃

−→
ϕ .

▶ For all ϕ ∈
−→
ϕ we have (ϕ1 ⊃

−→
ϕ) ∧ ϕ1

eeval→ ϕ.

How do we get regular implication and universal quantification?

Implication: ϕ1 ⊃ {ϕ2}.
Universal quantification: ⊤ ⊃

−→
ϕ .

▶ The variable condition is hidden: holds because the same evidence
must work for all ϕ ∈

−→
ϕ .

Ties Steijn (Radboud University) Effectful realizability January 2026 22 / 34

Computational systems

The definition suggests that we would like codes behaving like λ
terms.

As an example we will consider computational systems: an effectful
generalization of PCAs.

Partial applicative structure: set with a partial application operation,
i.e. either c · c′ ↑ or c · c′ ↓ d.
Partial combinatory algebra: PAS that has elements behaving like
λ-terms.

Example: N with Kleene application: n ·m is the n-th Turing
machine applied to m.

Ties Steijn (Radboud University) Effectful realizability January 2026 23 / 34

Computational systems

The definition suggests that we would like codes behaving like λ
terms.

As an example we will consider computational systems: an effectful
generalization of PCAs.

Partial applicative structure: set with a partial application operation,
i.e. either c · c′ ↑ or c · c′ ↓ d.
Partial combinatory algebra: PAS that has elements behaving like
λ-terms.

Example: N with Kleene application: n ·m is the n-th Turing
machine applied to m.

Ties Steijn (Radboud University) Effectful realizability January 2026 23 / 34

Computational systems

Instead of one partial reduction relation ↓, have stateful termination
and reduction relations:

▶ σ ≤ σ′: σ′ is a possible future of σ.
▶ c ↓σ: c terminates in state σ.
▶ c ↓σσ′ c′: c reduces to c′ in state σ, changing it to σ′.

A code may reduce to multiple different codes from the same state, or
no codes at all: we may have nondeterminism, failure.

Example:

lookupn · c ↓σ

lookupn · c ↓σσ c′ if n 7→ c′ ∈ σ
lookupn · c ↓σσ,n7→c c if there is no c′ such that n 7→ c′ ∈ σ

lookupn · c looks up the code stored at n and returns it, or if that
fails, returns and sets c.

Ties Steijn (Radboud University) Effectful realizability January 2026 24 / 34

Computational systems

Instead of one partial reduction relation ↓, have stateful termination
and reduction relations:

▶ σ ≤ σ′: σ′ is a possible future of σ.
▶ c ↓σ: c terminates in state σ.
▶ c ↓σσ′ c′: c reduces to c′ in state σ, changing it to σ′.

A code may reduce to multiple different codes from the same state, or
no codes at all: we may have nondeterminism, failure.

Example:

lookupn · c ↓σ

lookupn · c ↓σσ c′ if n 7→ c′ ∈ σ
lookupn · c ↓σσ,n7→c c if there is no c′ such that n 7→ c′ ∈ σ

lookupn · c looks up the code stored at n and returns it, or if that
fails, returns and sets c.

Ties Steijn (Radboud University) Effectful realizability January 2026 24 / 34

Evidenced frame for a computational system

Let (C,Σ) be a computational system.

Propositions are stateful predicates, ϕ ⊆ Σ× C that are
future-stable.

Suppose for now that C is the set of evidence.
▶ In reality, we have to be careful with the codes we include: some may

make the evidenced frame inconsistent.

We say that ϕ1
e→ ϕ2 if the following holds:

If (σ, c) ∈ ϕ1, then:
▶ e · c ↓σ.
▶ If e · c ↓σσ′ c′, then (σ′, c′) ∈ ϕ2.

ϕ1 ∧ ϕ2 consists of pairs of codes.

ϕ1 ⊃
−→
ϕ consists of codes that work as evidence ϕ1

c→ ϕ for all

ϕ ∈
−→
ϕ .

Ties Steijn (Radboud University) Effectful realizability January 2026 25 / 34

Evidenced frame for a computational system

Let (C,Σ) be a computational system.

Propositions are stateful predicates, ϕ ⊆ Σ× C that are
future-stable.

Suppose for now that C is the set of evidence.
▶ In reality, we have to be careful with the codes we include: some may

make the evidenced frame inconsistent.

We say that ϕ1
e→ ϕ2 if the following holds:

If (σ, c) ∈ ϕ1, then:
▶ e · c ↓σ.
▶ If e · c ↓σσ′ c′, then (σ′, c′) ∈ ϕ2.

ϕ1 ∧ ϕ2 consists of pairs of codes.

ϕ1 ⊃
−→
ϕ consists of codes that work as evidence ϕ1

c→ ϕ for all

ϕ ∈
−→
ϕ .

Ties Steijn (Radboud University) Effectful realizability January 2026 25 / 34

Evidenced frame for EffHOL instances

Consider a pure instance of EffHOL.

Idea: A HOL proposition φ is realized by the set of closed programs
p : JφKT such that JφKSp holds.

The evidence relation will resemble
∀p : JφKT . JφKSp → ⟨x← e p⟩ JψKSx .

We cannot get a tripos (and hence an evidenced frame) unless we
erase all types [Lietz, Streicher, 2002].

Let ⌊p⌋ be the program p with all type annotations, type abstractions
and type applications removed.

Define P as the set of all (closed) programs in EffHOL.

Define Λ = {⌊p⌋ | p ∈ P}.
Define V as the set of values in Λ.

Ties Steijn (Radboud University) Effectful realizability January 2026 26 / 34

Evidenced frame for EffHOL instances

Consider a pure instance of EffHOL.

Idea: A HOL proposition φ is realized by the set of closed programs
p : JφKT such that JφKSp holds.

The evidence relation will resemble
∀p : JφKT . JφKSp → ⟨x← e p⟩ JψKSx .
We cannot get a tripos (and hence an evidenced frame) unless we
erase all types [Lietz, Streicher, 2002].

Let ⌊p⌋ be the program p with all type annotations, type abstractions
and type applications removed.

Define P as the set of all (closed) programs in EffHOL.

Define Λ = {⌊p⌋ | p ∈ P}.
Define V as the set of values in Λ.

Ties Steijn (Radboud University) Effectful realizability January 2026 26 / 34

Evidenced frame for EffHOL instances

Define Φef = {⌊P ⌋ | P ⊆ P, ⌊P ⌋ ⊆ V}.
Define Eef = Λ.

For ϕ1
e→ ϕ2, we would like to write ∀p ∈ ϕ1. ⟨x← e p⟩ x ∈ ϕ2.

We need to lift sets of values to sets of programs that evaluate to
those values.

Pure instance, so the modality is just a (pure) specification.

We can perform the lifting by replacing all the logical constructs to
their meta counterparts.

Theorem

(Φef, Eef, ·
·→ ·) is an evidenced frame.

Ties Steijn (Radboud University) Effectful realizability January 2026 27 / 34

Evidenced frame for EffHOL instances

Define Φef = {⌊P ⌋ | P ⊆ P, ⌊P ⌋ ⊆ V}.
Define Eef = Λ.

For ϕ1
e→ ϕ2, we would like to write ∀p ∈ ϕ1. ⟨x← e p⟩ x ∈ ϕ2.

We need to lift sets of values to sets of programs that evaluate to
those values.

Pure instance, so the modality is just a (pure) specification.

We can perform the lifting by replacing all the logical constructs to
their meta counterparts.

Theorem

(Φef, Eef, ·
·→ ·) is an evidenced frame.

Ties Steijn (Radboud University) Effectful realizability January 2026 27 / 34

Overview

HOL EffHOL
Evidenced
frame Tripos

Syntactic translation Semantics Uniform families

Ties Steijn (Radboud University) Effectful realizability January 2026 28 / 34

Tripos: overview

Model of HOL based on category theory.

Highly abstract.

The propositional part of the logic is similar to an evidenced frame:
entailment is an ordering.

Difference: the ordering is proof irrelevant.

This construction is known as a Heyting algebra.
▶ Ordering ≤ represents entailment.
▶ Operations ∧,∨,⇒, elements ⊤,⊥.

Triposes are generally defined using Heyting prealgebras: ≤ is not
antisymmetric.

Other components:
▶ Predicate logic and quantifiers.
▶ Higher-order logic.

Ties Steijn (Radboud University) Effectful realizability January 2026 29 / 34

Tripos: overview

Model of HOL based on category theory.

Highly abstract.

The propositional part of the logic is similar to an evidenced frame:
entailment is an ordering.

Difference: the ordering is proof irrelevant.

This construction is known as a Heyting algebra.
▶ Ordering ≤ represents entailment.
▶ Operations ∧,∨,⇒, elements ⊤,⊥.

Triposes are generally defined using Heyting prealgebras: ≤ is not
antisymmetric.

Other components:
▶ Predicate logic and quantifiers.
▶ Higher-order logic.

Ties Steijn (Radboud University) Effectful realizability January 2026 29 / 34

Tripos: overview

Model of HOL based on category theory.

Highly abstract.

The propositional part of the logic is similar to an evidenced frame:
entailment is an ordering.

Difference: the ordering is proof irrelevant.

This construction is known as a Heyting algebra.
▶ Ordering ≤ represents entailment.
▶ Operations ∧,∨,⇒, elements ⊤,⊥.

Triposes are generally defined using Heyting prealgebras: ≤ is not
antisymmetric.

Other components:
▶ Predicate logic and quantifiers.
▶ Higher-order logic.

Ties Steijn (Radboud University) Effectful realizability January 2026 29 / 34

Tripos: definition

Propositional logic is implemented through Heyting prealgebras.

Predicate logic is implemented through a functor T : Setop → pHA.
▶ T (Γ): predicates in context Γ.
▶ Types interpreted as sets, terms are functions Γ→ A.
▶ Functions Γ→ Γ′ induce a substitution on predicates
s∗ : T (Γ′)→ T (Γ).

▶ Quantifiers are defined using a category-theoretical trick: adjoints.

Higher order logic is implemented through a generic predicate.
▶ Ω ∈ Set: functions like Prop.
▶ Power set type: A→ Ω.
▶ χϕ : A→ Ω: corresponds to the comprehension {x : A | ϕ}.
▶ holds ∈ T (Ω): implements membership, holds(p(x)) corresponds to
x ∈ p.

Ties Steijn (Radboud University) Effectful realizability January 2026 30 / 34

Tripos: definition

Propositional logic is implemented through Heyting prealgebras.

Predicate logic is implemented through a functor T : Setop → pHA.
▶ T (Γ): predicates in context Γ.
▶ Types interpreted as sets, terms are functions Γ→ A.
▶ Functions Γ→ Γ′ induce a substitution on predicates
s∗ : T (Γ′)→ T (Γ).

▶ Quantifiers are defined using a category-theoretical trick: adjoints.

Higher order logic is implemented through a generic predicate.
▶ Ω ∈ Set: functions like Prop.
▶ Power set type: A→ Ω.
▶ χϕ : A→ Ω: corresponds to the comprehension {x : A | ϕ}.
▶ holds ∈ T (Ω): implements membership, holds(p(x)) corresponds to
x ∈ p.

Ties Steijn (Radboud University) Effectful realizability January 2026 30 / 34

Tripos: quantifiers as adjoints

For any s : Γ→ Γ′, there is a pHA-morphism Πs : T (Γ)→ T (Γ′) such
that

s∗(φ) ≤ ψ ⇐⇒ φ ≤ Πs(ψ).

Think of Πs(φ)(
−→y) as

∀−→x . s(−→x) = −→y =⇒ φ(−→x).

In particular, if s : Γ×X → Γ is a projection, we get the normal ∀:

φ(−→y , x) ≤ ψ(−→y , x) ⇐⇒ φ(−→y) ≤ ∀x.ψ(−→y , x)

Similar construction for existential quantification.

Ties Steijn (Radboud University) Effectful realizability January 2026 31 / 34

Tripos: quantifiers as adjoints

For any s : Γ→ Γ′, there is a pHA-morphism Πs : T (Γ)→ T (Γ′) such
that

s∗(φ) ≤ ψ ⇐⇒ φ ≤ Πs(ψ).

Think of Πs(φ)(
−→y) as

∀−→x . s(−→x) = −→y =⇒ φ(−→x).

In particular, if s : Γ×X → Γ is a projection, we get the normal ∀:

φ(−→y , x) ≤ ψ(−→y , x) ⇐⇒ φ(−→y) ≤ ∀x.ψ(−→y , x)

Similar construction for existential quantification.

Ties Steijn (Radboud University) Effectful realizability January 2026 31 / 34

Tripos: quantifiers as adjoints

For any s : Γ→ Γ′, there is a pHA-morphism Πs : T (Γ)→ T (Γ′) such
that

s∗(φ) ≤ ψ ⇐⇒ φ ≤ Πs(ψ).

Think of Πs(φ)(
−→y) as

∀−→x . s(−→x) = −→y =⇒ φ(−→x).

In particular, if s : Γ×X → Γ is a projection, we get the normal ∀:

φ(−→y , x) ≤ ψ(−→y , x) ⇐⇒ φ(−→y) ≤ ∀x.ψ(−→y , x)

Similar construction for existential quantification.

Ties Steijn (Radboud University) Effectful realizability January 2026 31 / 34

Tripos for an evidenced frame: UFam

Let EF = (Φ, E, · ·→ ·) be an evidenced frame.

Idea: Make a Heyting prealgebra of functions Γ→ Φ. ϕ ≤ ϕ′ if there
is an evidence that works for every γ ∈ Γ (uniform families).

Define T (Γ) = Γ→ Φ.

Heyting algebraic structure is given by applying the operations of EF
pointwise.

Define ϕ ≤ ϕ′ = ∃e.∀γ.ϕ(γ) e→ ϕ′(γ).

Substitution: s∗(f) = f ◦ s.
Quantifiers: Πs(ϕ)(γ

′) = ⊤ ⊃ {ϕ(γ) | γ ∈ Γ ∧ s(γ) = γ′}.
Generic predicate: Ω = Φ, holds = id, χϕ = ϕ.

It is also possible to construct an evidenced frame from a tripos.

This essentially means that any tripos can be described as an
evidenced frame.

Ties Steijn (Radboud University) Effectful realizability January 2026 32 / 34

Tripos for an evidenced frame: UFam

Let EF = (Φ, E, · ·→ ·) be an evidenced frame.

Idea: Make a Heyting prealgebra of functions Γ→ Φ. ϕ ≤ ϕ′ if there
is an evidence that works for every γ ∈ Γ (uniform families).

Define T (Γ) = Γ→ Φ.

Heyting algebraic structure is given by applying the operations of EF
pointwise.

Define ϕ ≤ ϕ′ = ∃e.∀γ.ϕ(γ) e→ ϕ′(γ).

Substitution: s∗(f) = f ◦ s.
Quantifiers: Πs(ϕ)(γ

′) = ⊤ ⊃ {ϕ(γ) | γ ∈ Γ ∧ s(γ) = γ′}.
Generic predicate: Ω = Φ, holds = id, χϕ = ϕ.

It is also possible to construct an evidenced frame from a tripos.

This essentially means that any tripos can be described as an
evidenced frame.

Ties Steijn (Radboud University) Effectful realizability January 2026 32 / 34

Tripos for an evidenced frame: UFam

Let EF = (Φ, E, · ·→ ·) be an evidenced frame.

Idea: Make a Heyting prealgebra of functions Γ→ Φ. ϕ ≤ ϕ′ if there
is an evidence that works for every γ ∈ Γ (uniform families).

Define T (Γ) = Γ→ Φ.

Heyting algebraic structure is given by applying the operations of EF
pointwise.

Define ϕ ≤ ϕ′ = ∃e.∀γ.ϕ(γ) e→ ϕ′(γ).

Substitution: s∗(f) = f ◦ s.

Quantifiers: Πs(ϕ)(γ
′) = ⊤ ⊃ {ϕ(γ) | γ ∈ Γ ∧ s(γ) = γ′}.

Generic predicate: Ω = Φ, holds = id, χϕ = ϕ.

It is also possible to construct an evidenced frame from a tripos.

This essentially means that any tripos can be described as an
evidenced frame.

Ties Steijn (Radboud University) Effectful realizability January 2026 32 / 34

Tripos for an evidenced frame: UFam

Let EF = (Φ, E, · ·→ ·) be an evidenced frame.

Idea: Make a Heyting prealgebra of functions Γ→ Φ. ϕ ≤ ϕ′ if there
is an evidence that works for every γ ∈ Γ (uniform families).

Define T (Γ) = Γ→ Φ.

Heyting algebraic structure is given by applying the operations of EF
pointwise.

Define ϕ ≤ ϕ′ = ∃e.∀γ.ϕ(γ) e→ ϕ′(γ).

Substitution: s∗(f) = f ◦ s.
Quantifiers: Πs(ϕ)(γ

′) = ⊤ ⊃ {ϕ(γ) | γ ∈ Γ ∧ s(γ) = γ′}.

Generic predicate: Ω = Φ, holds = id, χϕ = ϕ.

It is also possible to construct an evidenced frame from a tripos.

This essentially means that any tripos can be described as an
evidenced frame.

Ties Steijn (Radboud University) Effectful realizability January 2026 32 / 34

Tripos for an evidenced frame: UFam

Let EF = (Φ, E, · ·→ ·) be an evidenced frame.

Idea: Make a Heyting prealgebra of functions Γ→ Φ. ϕ ≤ ϕ′ if there
is an evidence that works for every γ ∈ Γ (uniform families).

Define T (Γ) = Γ→ Φ.

Heyting algebraic structure is given by applying the operations of EF
pointwise.

Define ϕ ≤ ϕ′ = ∃e.∀γ.ϕ(γ) e→ ϕ′(γ).

Substitution: s∗(f) = f ◦ s.
Quantifiers: Πs(ϕ)(γ

′) = ⊤ ⊃ {ϕ(γ) | γ ∈ Γ ∧ s(γ) = γ′}.
Generic predicate: Ω = Φ, holds = id, χϕ = ϕ.

It is also possible to construct an evidenced frame from a tripos.

This essentially means that any tripos can be described as an
evidenced frame.

Ties Steijn (Radboud University) Effectful realizability January 2026 32 / 34

Tripos for an evidenced frame: UFam

Let EF = (Φ, E, · ·→ ·) be an evidenced frame.

Idea: Make a Heyting prealgebra of functions Γ→ Φ. ϕ ≤ ϕ′ if there
is an evidence that works for every γ ∈ Γ (uniform families).

Define T (Γ) = Γ→ Φ.

Heyting algebraic structure is given by applying the operations of EF
pointwise.

Define ϕ ≤ ϕ′ = ∃e.∀γ.ϕ(γ) e→ ϕ′(γ).

Substitution: s∗(f) = f ◦ s.
Quantifiers: Πs(ϕ)(γ

′) = ⊤ ⊃ {ϕ(γ) | γ ∈ Γ ∧ s(γ) = γ′}.
Generic predicate: Ω = Φ, holds = id, χϕ = ϕ.

It is also possible to construct an evidenced frame from a tripos.

This essentially means that any tripos can be described as an
evidenced frame.

Ties Steijn (Radboud University) Effectful realizability January 2026 32 / 34

Conclusion

HOL EffHOL
Evidenced
frame Tripos

Syntactic translation Semantics Uniform families

We defined two different models of HOL that allow for effectful
realizers.

EffHOL is a system consisting of an effectful programming language
and a logic system with modality.

▶ Effects are achieved via a monadic type former.
▶ HOL theorems are translated to types and specifications, proofs to

programs.

Evidenced frames are defined as a proof relevant ordering.
▶ The evidence can be effectful, e.g. computational systems.

Triposes are category-theoretical models of HOL.
▶ Propositional logic is implemented through Heyting prealgebras.
▶ Predicate logic is implemented through a functor Setop → pHA.

Ties Steijn (Radboud University) Effectful realizability January 2026 33 / 34

Questions

Ties Steijn (Radboud University) Effectful realizability January 2026 34 / 34

Bonus: translating HOL to EffHOL: complicated example

Consider the following HOL proposition:

∀x : 9. ∀y : 9. (∀p : 9→ 9. x ∈ p ⊐ y ∈ p) ⊐ x ⊐ y

The corresponding EffHOL type is:∏
X : ⋆. M(

∏
Y : ⋆. M((

∏
P : ⋆→ ⋆.M(P X →M(P Y)))

→M(X →M(Y))))

The corresponding EffHOL specification is:
p 7→ ∩X : ⋆. ∀x : RX . ⟨x0 ← p X⟩∩Y : ⋆. ∀y : RY .

⟨x1 ← x0 Y ⟩ ⊓x2 :
∏

P : ⋆→ ⋆. M(P X →M(P Y)).

(∩P : ⋆→ ⋆. ∀p : ∧X0 : ⋆. RP X0(RX0). ⟨x6 ← x2 P ⟩
⊓x7 : P X. x7;x A p X ⊃ ⟨x8 ← x6 x7⟩ x8; yy A p Y)

⊃ ⟨x3 ← x1 x2⟩ ⊓x4 : X. x4 A x ⊃ ⟨x5 ← x3 x4⟩ x5 A y

Ties Steijn (Radboud University) Effectful realizability January 2026 1 / 3

Bonus: proof of the soundness theorem

We translate each proof rule to an operation on EffHOL programs.

Id: [p].

Imp-I: λx : Jφ1KT . p.
Imp-E: let x0 ← p0 in let x1 ← p1 in x0 x1.

Uni-I: ΛX : JsKK . p.
Uni-E: let x← p in x JtKt.
Rules for comprehensions: do nothing.

Example

A realizer for ∀x : 9. ∀y : 9. (∀p : 9→ 9. x ∈ p ⊐ y ∈ p) ⊐ x ⊐ y is

ΛX : ⋆. ΛY : ⋆. λh1 :
∏

P : ⋆→ ⋆. M(PX →M(PY)). λh2 : X.

let x1 ← h1 (Λa : ⋆. a) in let x2 ← [h2] in x1 x2.

Ties Steijn (Radboud University) Effectful realizability January 2026 2 / 3

Bonus: evidenced frame for a computational system,
elaborated

Define c1 · c2 ⇊σ ϕ as ∀c, σ′ ≥ σ. c1 · c2 ∧ c1 · c2 ↓σσ′ c =⇒ (σ′, c) ∈ ϕ.
Given a computational system (C,Σ) with a separator S, define an

evidenced frame (Φ, E, · ·→ ·) as follows:

Φ = {ϕ ∈ P(Σ× C) | ∀σ, σ′, c. σ′ ≥ σ
=⇒ (σ, c) ∈ ϕ =⇒ (σ′, c) ∈ ϕ}

E = S
⊤ = Σ× C

ϕ1 ∧ ϕ2 = {(σ, c) | ∀σ′. σ′ ≥ σ =⇒ π1 c ⇊
σ′
ϕ1 ∧ π2 c ⇊

σ′
ϕ2}

ϕ1 ⊃
−→
ϕ = {(σ, c) | ∀σ′, c′, ϕ ∈

−→
ϕ . σ′ ≥ σ

=⇒ (σ′, c′) ∈ ϕ1 =⇒ c · c′ ⇊σ′
ϕ}

Ties Steijn (Radboud University) Effectful realizability January 2026 3 / 3

	Appendix

