
Lambda-Calculus and Type Theory

ISR 2024
Obergurgl, Austria

Herman Geuvers & Niels van der Weide

Radboud University Nijmegen, The Netherlands

Lecture 1

Introduction; Syntax and Semantics of Untyped Lambda Calculus

First half of the previous century

▶ Untyped lambda calculus (Church, Curry, Turing)
▶ What is (machine) computation? What is computability?
▶ Untyped lambda calculus as a model for computation,

equivalent to Turing Machines
▶ Undecidable problems
▶ Untyped lambda calculus is not a good basis to do logic

▶ Type Theory (Russell and Whitehead)
▶ Ramified Theory of Types
▶ A formal system for mathematics that avoids paradoxes

▶ Typed Lambda Calculus (Church)
▶ Simple Theory of Types
▶ Define higher order logic
▶ Use lambda calculus to be clear about variable binding

renaming bound variables, substitution, comprehension

Later Developments

Curry-Howard, De Bruijn, Girard, Martin-Löf.

▶ Interpreting formulas-as types and proofs-as-terms

▶ Dependent Types

▶ Polymorphic and Higher Order Types

▶ Inductive Types

Type theory as

▶ a language for describing proofs (deductions) as terms

▶ a basis for proof checking (→ proof assistants)

▶ a formalism to define the provable total functions in arithmetic

▶ a foundadtion for (constructive) mathematics

And apart from that: typed lambda calculus as a basis for
functional programming (Turner)

Type Theory now

▶ Theoretical basis of proof assistants
▶ formulas are types
▶ proofs (deductions) are terms
▶ proof checking = type checking
▶ proving = interactively constructing a term of a given type

▶ Theoretical basis for (functional) programming languages
▶ types are specifications
▶ terms are programs (with anotations)
▶ compiler checks types → guarantees (partial) correctness

▶ Foundation of Mathematics: Constructive Mathematics;
Homotopy Type Theory.

Contents

We assume familiarity with logic and natural deduction; formal
languages; some functional programming

▶ Untyped Lambda Calculus (crash course)

▶ Type theory: simple types, dependent types, polymorphic
types, higher order types, inductive types

▶ The Coq proof assistant

▶ Some meta-theory of type systems: confluence of reduction
(Church-Rosser), normalization of reduction

▶ Functional programmer’s view on type theory: principal types

▶ Homotopy Type Theory

Proof Assistants, the general picture

What are Proof Assistants for?

▶ Precise mathematical modelling (defining)

▶ Verification of properties of systems (proving)

Computer supports in these activities:

▶ Checking correctness of definitions

▶ Take care of the bookkeeping

▶ Do some computation

▶ Do some proving for us

What have PAs ever done for us?

Does the Proof Assistant do all the proving?
No . . .
It is undecidable in general whether a formula is true or not.

Automated Theorem Provers Proof Assistants

Specific domains Generally applicable
Massage your problem Modelling is direct
False or True (or Don’t Know) Interactive, user guided
No proofs complete, checkable proofs

Use of PAs

Who is using Proof Assistants and what for?
Computer Scientists for

▶ Modelling and specifying systems

▶ Proving the correctness of models / software /systems

Mathematicians for

▶ Building up theories

▶ Verifying proofs

Mathematicians are not (yet) big users of Proof Assistants

▶ Mechanically verifying a proof takes too much time. (Too
much idiosyncracy, not enough automation.)

▶ We don’t need computers to verify proofs! We are much
better at it!

Mathematical users of Proof Assistants

Gradually, more mathematicians are getting interested, young
mathematicians are less afraid of computers.

▶ Store formalized mathematics on a computer and make large
repositories of formal mathematics actively available.

▶ Various mathematicians observe that the proofs in their field
are becoming too long, complex, abstract that one can only
trust them if they are machine verified.

▶ Kevin Buzzard: Mathlib
a user maintained library for the
Lean theorem prover

Computer Science users of Proof Assistants

Compcert (Leroy et al.)

Xavier Leroy

▶ verifying an optimizing compiler from C to
x86/ARM/PowerPC code

▶ implemented using Coq’s functional language

▶ verified using using Coq’s proof language

why?

▶ your high level program may be correct, maybe you’ve proved
it correct ...

▶ ... but what if it is compiled to wrong code?

▶ compilers do a lot of optimizations: switch instructions,
remove dead code, re-arrange loops, ...

▶ for critical software the possibility of miscompilation is an issue

C-compilers are generally not correct

Csmith project Finding and Understanding Bugs in C Compilers,
X. Yang, Y. Chen, E. Eide, J. Regehr, University of Utah.

... we have found and reported more than 325 bugs in
mainstream C compilers including GCC, LLVM, and com-
mercial tools.
Every compiler that we have tested, including several that
are routinely used to compile safety-critical embedded sys-
tems, has been crashed and also shown to silently miscom-
pile valid inputs.

As of early 2011, the under-development version of Com-
pCert is the only compiler we have tested for which Csmith
cannot find wrong-code errors. This is not for lack of try-
ing: we have devoted about six CPU-years to the task.

Some history of Proof Assistants

▶ Church 1940: λ-calculus, simple type theory, higher order logic

▶ Curry Howard (De Bruijn): Formulas-as-Types
Interpret formulas as types,
Encode proofs as terms
Proof-checking = Type-checking

▶ Automath (De Bruijn 1970s): first implementation of these
ideas

▶ LCF (Milner), ML

▶ Coq, Hol, Isabelle, Lean, Agda, Mizar, PVS, ACL2, ...

Typed λ calculus as the basis for a Proof Assistant

Typed λ calculus forms the basis for a variety of proof Assistants,
e.g. Coq (and Lean, Agda, Nuprl, Matita).

λ-term type

program specification
proof formula

Integrated system for proving and programming

Types are not sets
Types are a bit like sets, but types give syntactic information, e.g.

3 + (7× 8)5 : nat

whereas sets give semantic information, e.g.

3 ∈ {n ∈ IN | ∀x , y , z ∈ IN+(xn + yn ̸= zn)}.

▶ 3 + (7× 8)5 is of type nat because 3, 7, 8 are natural numbers
and ×, + and power are operations on natural numbers.

▶ 3 ∈ {n ∈ IN | ∀x , y , z ∈ IN+(xn + yn ̸= zn)} because there are
no positive x , y , z such that x3 + y3 = z3, which is an
instance of Fermat’s last Theorem, proved by Wiles.

▶ To establish that 3 is an element of the given set, we need a
proof, we can’t just read it off from the components of the
statement.

▶ To establish 3 + (7× 8)5 : nat we don’t need a proof but a
simple computation (the “reading the type of of the term”).

Decidability of :, undecidability of ∈

▶ Membership is undecidable in set theory, as it requires a proof
to establish a ∈ A.

▶ Type checking is decidable: Verifying whether M is of type A
requires purely syntactic methods, which can be cast into a
typing algorithm.

3 + (7× 8)5 : nat versus
1

2

∞∑
n=0

2−n ∈ IN

Question: Can we turn (e.g.)

{n ∈ IN | ∀x , y , z ∈ IN+(xn + yn ̸= zn)}

into a (syntactic) type, with decidable type checking?

Phrased differently: can we talk about this set as a “subtype of
nat”?

Formulas are also types; proofs are terms

{n ∈ nat | ∀x , y , z ∈ IN+(xn + yn ̸= zn)}

is a type.
Its terms are pairs ⟨n, p⟩ where
▶ n : nat

▶ p : ∀x , y , z ∈ IN+(xn + yn ̸= zn)

So p is a proof, and we view the formula
∀x , y , z ∈ IN+(xn + yn ̸= zn) as the type of its proofs.

If we have decidable proof checking, then it is decidable whether a
given pair ⟨n, p⟩ is typable with the above type or not.

We summarize:

▶ proof checking = type checking,

▶ type checking is decidable (so proof checking is decidable),

▶ proof finding is not decidable (proof finding is required to
check an ∈-judgment).

Next

▶ Untyped lambda calculus crash course

λ-abstraction

Defining a function

f (x) := x2 + 2

f : x 7→ x2 + 2

g(x , y) := x2 + y + 2

In λ-calculus we use λ-abstraction:

f := λx . x2 + 2

g := λx . λy . x2 + y + 2

▶ distinguish between term with a variable x2 + 2 and the
function λx . x2 + 2 that sends x to x2 + 2.

▶ make explicit which variables are abstracted over.

▶ clearly distinguish between free and bound (occurrences) of
variables.

Application

We have seen the functions f and g :

f := λx . x2 + 2

g := λx . λy . x2 + y + 2

Application:

f (3) no! f 3 or f · 3 or (f 3)

⇒ application is a binary operator which is usually not written.

Giving two arguments:

(g 3) 4 or just g 3 4

because we omit brackets by associating them to the left.

Untyped λ-calculus

Untyped λ-calculus = Variables + λ-abstraction + application

Λ ::= Var | (Λ Λ) | (λVar.Λ)

Notation

M N P denotes (M N)P (so not M (N P))

λxyz .M denotes λx .λy .λz .M (or more precisely λx .(λy .(λz .M)).)

Examples:
- I := λx .x
- K := λx y .x
- S := λx y z .x z(y z)
- ω := λx .x x
- Ω := ω ω

Computing with λ-terms

Computation is done via the β-rule

(λx .x2 + 2) 3 →β 32 + 2

Definition β-equality, written as =β is the term reduction
generated from the β-rule:

(λx .M)P →β M[x := P]

where M[x := N] denotes the substitution of N for all occurrences
of x in M.

That =β is a term reduction means that it is closed under the
term-forming-operators. More precisely we have

M →β M ′

M P →β M ′ P

P →β P ′

M P →β M P ′

M →β M ′

λx .M →β λx .M ′

Examples

Remember I := λx .x , K := λx y .x , S := λx y z .x z(y z),
ω := λx .x x , Ω := ω ω.

IP →β P

KP Q →β . . . →β P

Ω →β Ω

(λx y .y x)P →β λy .y P

(λx y .y x) y
??→β λy .y y

No!
λy .M binds all occurrences of y in M. We cannot just substitute a
term with a free y inside M.

Free and bound variables, alpha-equivalence

▶ λy .M binds all occurrences of y in M.

▶ We distinguish bound variables and free variables in a term:
BV(M) and FV(M). (Better bound and free occurrences of
variables.)

▶ We consider term modulo renaming of bound variables (also
called “modulo α-equality”):

λx .M ≡ λy .M[x := y]

if y does not occur in M.

A more precise definition of →β:

(λx .M)P →β M[x := P]

where the substitution M[x := P] is defined by: (1) rename the
bound variables in M that occur free in P, obtaining M ′; (2)
replace all free occurrences of x by P.

Alpha equivalence

Two terms M,N are α-equal, M ≡ N, in case they can be
obtained from eachother via renaming bound variables.

Examples

λx .λy .x y
??≡ λy .λx .y x

λx .λy .x y
??≡ λx .λy .y x

λx .λy .x y
??≡ λx .λy .y y

λx .λx .x x
??≡ λx .λy .y y

Multi-step reduction and β-equality

▶ ↠β is the transitive reflexived closure of →β.
So M ↠β P iff M β-reduces to P in 0 or more steps.

▶ =β is the transitive, reflexive, symmetric closure of →β.
So =β is the least congruence obtained from =β.

Examples of reductions:

IP →β P

KP Q ↠β P

K IP Q ↠β Q

SKK ↠β I

Ω →β Ω

Is λ-calculus consistent?

Why does λ-calculus “make sense”?
Could it be the case that M =β P for all M,P? (Then λ-calculus
would be inconsistent...)

Theorem λ-calculus satisfies the Church-Rosser property.

Corollary K ̸=β I and so λ-calculus is consistent.

The computational power of λ-calculus

Untyped λ-calculus is Turing complete
Its power lies in the fact that you can solve recursive equations:
Is there a term M such that

M x =β x M x?

Is there a term M such that

M x =β if (Zero x) then 1 elseMult x (M (Pred x))?

Yes, because we have a fixed point combinator:
- Y := λf .(λx .f (x x))(λx .f (x x))
Property:

Y f =β f (Y f)

Untyped λ-calculus (ctd.)
Solving recursive equations using the fixed point combinator:
▶ For M a λ-term, YM is a fixed point of M, that is

M (YM) =β YM

▶ As a consequence, a question like “Is there a λ-term P such
that P x =β x P x P (for all x)?” can be answered affirmative:

Representing data in λ-calculus
Booleans

true := λx y . x

false := λx y . y

ifM thenP elseQ := M P Q

Natural Numbers via the so-called Church Numerals

c0 := λf x .x

c1 := λf x .f x

c2 := λf x .f (f x)

. . .

cn := λf x .f n x

where f n x is an n-times application of f on x .

Then, e.g.

Succ := λn f x .f (n f x)

Zero := λn.n (λy . false) true

	History in a nutshell
	These lectures
	Untyped -calculus crash course

