Lambda-Calculus and Type Theory ISR 2024 Obergurgl, Austria

Herman Geuvers & Niels van der Weide Radboud University Nijmegen, The Netherlands

Lecture 2

Simple Type theory and Formulas-as-Types and Proofs-as-terms

Simple Type Theory

Simplest system: $\lambda \rightarrow$ or simple type theory, STT. Just arrow types

$$\mathsf{Typ} := \mathsf{TVar} \mid (\mathsf{Typ} {\rightarrow} \mathsf{Typ})$$

- ightharpoonup Examples: $(\alpha \rightarrow \beta) \rightarrow \alpha$, $(\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))$
- Brackets associate to the right and outside brackets are omitted:

$$(\alpha \rightarrow \beta) \rightarrow (\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \gamma$$

▶ Types are denoted by σ, τ, \ldots

Terms:

- typed variables $x_1^{\sigma}, x_2^{\sigma}, \ldots$, countably many for every σ .
- ▶ application: if $M : \sigma \rightarrow \tau$ and $N : \sigma$, then $(MN) : \tau$
- ▶ abstraction: if $P : \tau$, then $(\lambda x^{\sigma}.P) : \sigma \rightarrow \tau$

Examples of simply typed terms

$$\lambda x^{\sigma}.\lambda y^{\tau}.x : \sigma \to \tau \to \sigma$$
$$\lambda x^{\alpha \to \beta}.\lambda y^{\beta \to \gamma}.\lambda z^{\alpha}.y(xz) : (\alpha \to \beta) \to (\beta \to \gamma) \to \alpha \to \gamma$$
$$\lambda x^{\alpha}.\lambda y^{(\beta \to \alpha) \to \alpha}.y(\lambda z^{\beta}.x) : \alpha \to ((\beta \to \alpha) \to \alpha) \to \alpha$$

For every type there is a term of that type:

$$x^{\sigma}:\sigma$$

Not for every type there is a closed term of that type:

$$(\alpha \rightarrow \alpha) \rightarrow \alpha$$
 is not inhabited

[That is: there is no closed term of type $(\alpha \rightarrow \alpha) \rightarrow \alpha$.]

Church' simple type theory

Church formulation of simple type theory:terms with type information.

Inductive definition of the terms:

- typed variables $x_1^{\sigma}, x_2^{\sigma}, \ldots$, countably many for every σ .
- ▶ application: if $M : \sigma \rightarrow \tau$ and $N : \sigma$, then $(MN) : \tau$
- ▶ abstraction: if $P : \tau$, then $(\lambda x^{\sigma}.P) : \sigma \rightarrow \tau$

Alternative: Inductive definition of the terms in rule form:

$$\frac{}{\mathbf{x}^{\sigma}:\sigma} \qquad \frac{M:\sigma\to\tau \ \ N:\sigma}{MN:\tau} \qquad \frac{P:\tau}{\lambda\mathbf{x}^{\sigma}.P:\sigma\to\tau}$$

Advantage: We also have a derivation tree, a proof of the fact that the term has that type.

We can reason over derivations.

Simple type theory à la Church with contexts

Formulation with contexts to declare the free variables:

$$x_1 : \sigma_1, x_2 : \sigma_2, \ldots, x_n : \sigma_n$$

is a context, usually denoted by Γ . Derivation rules of $\lambda \rightarrow$ (à la Church):

$$\frac{x:\sigma \in \Gamma}{\Gamma \vdash x:\sigma} \qquad \frac{\Gamma \vdash M:\sigma \to \tau \quad \Gamma \vdash N:\sigma}{\Gamma \vdash MN:\tau} \qquad \frac{\Gamma, x:\sigma \vdash P:\tau}{\Gamma \vdash \lambda x:\sigma.P:\sigma \to \tau}$$

 $\Gamma \vdash_{\lambda \to} M : \sigma$ if there is a derivation using these rules with conclusion $\Gamma \vdash M : \sigma$

Reading the typing rules top down

Inductive definition of the "derivable judgments"

$$\frac{x:\sigma \in \Gamma}{\Gamma \vdash x:\sigma} \qquad \frac{\Gamma \vdash M:\sigma \to \tau \ \Gamma \vdash N:\sigma}{\Gamma \vdash MN:\tau} \qquad \frac{\Gamma,x:\sigma \vdash P:\tau}{\Gamma \vdash \lambda x:\sigma.P:\sigma \to \tau}$$

Deriving

$$\vdash \lambda x : \alpha.\lambda y : (\beta \to \alpha) \to \alpha.y(\lambda z : \beta.x) : \alpha \to ((\beta \to \alpha) \to \alpha) \to \alpha$$

Reading the typing rules bottom up

Trying to solve a typing problem / an inhabitation problem

$$\frac{x : \sigma \in \Gamma}{\Gamma \vdash x : \sigma} \qquad \frac{\Gamma \vdash M : \sigma \rightarrow \tau \ \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau} \qquad \frac{\Gamma, x : \sigma \vdash P : \tau}{\Gamma \vdash \lambda x : \sigma . P : \sigma \rightarrow \tau}$$

Formulas-as-Types (Curry, Howard)

There are two readings of a judgement $M: \sigma$

- 1. term as algorithm/program, type as specification: M is a function of type σ
- 2. type as a proposition, term as its proof: M is a proof of the proposition σ
- There is a one-to-one correspondence: $\text{typable terms in } \lambda \rightarrow \simeq \text{derivations in minimal proposition} \\ \text{logic}$

Example

$$\frac{\left[\alpha \to \beta \to \gamma\right]^{3} \left[\alpha\right]^{1}}{\beta \to \gamma} \frac{\left[\alpha \to \beta\right]^{2} \left[\alpha\right]^{1}}{\beta}$$

$$\frac{\gamma}{\alpha \to \gamma} 1 \qquad \simeq \qquad \frac{\lambda x : \alpha \to \beta \to \gamma . \lambda y : \alpha \to \beta . \lambda z : \alpha . xz(yz)}{: (\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma}$$

$$\frac{(\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma}{(\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma} 3$$

Example

$$\frac{[x:\alpha\rightarrow\beta\rightarrow\gamma]^{3} \ [z:\alpha]^{1}}{xz:\beta\rightarrow\gamma} \qquad \frac{[y:\alpha\rightarrow\beta]^{2} \ [z:\alpha]^{1}}{yz:\beta}$$

$$\frac{xz(yz):\gamma}{\lambda z:\alpha.xz(yz):\alpha\rightarrow\gamma} 1$$

$$\frac{\lambda z:\alpha.xz(yz):\alpha\rightarrow\gamma}{\lambda y:\alpha\rightarrow\beta.\lambda z:\alpha.xz(yz):(\alpha\rightarrow\beta)\rightarrow\alpha\rightarrow\gamma} 2$$

$$\frac{\lambda x:\alpha\rightarrow\beta\rightarrow\gamma.\lambda y:\alpha\rightarrow\beta.\lambda z:\alpha.xz(yz):(\alpha\rightarrow\beta\rightarrow\gamma)\rightarrow(\alpha\rightarrow\beta)\rightarrow\alpha\rightarrow\gamma}{\lambda x:\alpha\rightarrow\beta\rightarrow\gamma.\lambda y:\alpha\rightarrow\beta.\lambda z:\alpha.xz(yz):(\alpha\rightarrow\beta\rightarrow\gamma)\rightarrow(\alpha\rightarrow\beta)\rightarrow\alpha\rightarrow\gamma} 3$$

Exercise: Give the derivation that corresponds to

$$\lambda x: \gamma \to \varepsilon. \lambda y: (\gamma \to \varepsilon) \to \varepsilon. y(\lambda z. y. x) : (\gamma \to \varepsilon) \to ((\gamma \to \varepsilon) \to \varepsilon) \to \varepsilon$$

Flag style deductions

The Fitch style (also: flag style) presentation of $\lambda \rightarrow$.

Example

```
3
                     xz:\beta\rightarrow\gamma
                  \lambda z : \alpha . x z(y z) : \alpha \rightarrow \gamma
              \lambda y : \alpha \rightarrow \beta . \lambda z : \alpha . x z(y z) : (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma
          \lambda x: \alpha \to \beta \to \gamma. \lambda y: \alpha \to \beta. \lambda z: \alpha. x z(y z) : (\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma
```

Computation

▶ β -reduction: $(\lambda x:\sigma.M)P \rightarrow_{\beta} M[x:=P]$

Cut-elimination

Cut-elimination in minimal logic = β -reduction in $\lambda \rightarrow$.

Example

Proof of $A \rightarrow A \rightarrow B$, $(A \rightarrow B) \rightarrow A \vdash B$

It contains a cut: a \rightarrow -i directly followed by an \rightarrow -e.

Example ctd

Proof of $A \rightarrow A \rightarrow B$, $(A \rightarrow B) \rightarrow A \vdash B$ after reduction

$$\begin{array}{c|c}
 & \underline{A}^{1} & A \to A \to B \\
 & \underline{A}^{1} & A \to A \to B \\
 & \underline{A} & \underline{A} \to B \\
 & \underline{A} & \underline{A} \to B
\end{array}$$

$$\begin{array}{c|c}
 & \underline{A}^{1} & A \to A \to B \\
 & \underline{A} & A \to B \\
 & \underline{A} & A \to A \to B
\end{array}$$

$$\begin{array}{c|c}
 & \underline{A}^{1} & A \to A \to B \\
 & \underline{A} & A \to A \to B
\end{array}$$

В

Example ctd

Proof of $A \rightarrow A \rightarrow B$, $(A \rightarrow B) \rightarrow A \vdash B$ with term information.

$$\frac{[y:A]^{1} p:A \to A \to B}{py:A]^{1} p:A \to B} \qquad \frac{[x:A]^{1} p:A \to A \to B}{px:A \to B} \\
\frac{[y:A]^{1} p:A \to A \to B}{py:A \to B} \qquad \frac{[x:A]^{1} p:A \to A \to B}{px:A \to B} \\
\frac{py:A \to B}{py:A \to B} \qquad \frac{q:(A \to B) \to A}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{(\lambda y:A \to B) \to A}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{(\lambda y:A \to B) \to A}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{(\lambda y:A \to B) \to A}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \\
\frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B} \qquad \frac{px:A \to B}{px:A \to B}$$

Term contains a β -redex: $(\lambda x:A.p.x.x)(q(\lambda x:A.p.x.x))$

Example ctd

Reduced proof of $A \rightarrow A \rightarrow B$, $(A \rightarrow B) \rightarrow A \vdash B$ with term info.

 $p(q(\lambda x : A.p \times x))(q(\lambda x : A.p \times x)) : B$

Extension with other connectives

STT with product types \times (proposition logic with conjunction \wedge) Extend the types with $\sigma \times \tau$. Extend the terms with pairing and projection.

$$\frac{\Gamma \vdash M : \sigma \times \tau}{\Gamma \vdash \pi_1 M : \sigma} \qquad \frac{\Gamma \vdash M : \sigma \times \tau}{\Gamma \vdash \pi_2 M : \tau} \qquad \frac{\Gamma \vdash P : \sigma \Gamma \vdash Q : \tau}{\Gamma \vdash \langle P, Q \rangle : \sigma \times \tau}$$

With reduction rules

$$\pi_1\langle P, Q \rangle \rightarrow P$$
 $\pi_2\langle P, Q \rangle \rightarrow Q$

Why do we want types?

- Types give a (partial) specification
- ▶ Typed terms can't go wrong (Milner) Subject Reduction property: If M : A and $M \twoheadrightarrow_{\beta} N$, then N : A.
- Typed terms always terminate
- The type checking algorithm detects (simple) mistakes

But:

- ➤ The compiler should compute the type information for us! (Why would the programmer have to type all that?)
- This is called a type assignment system, or also typing à la Curry:
- For M an untyped term, the type system assigns a type σ to M (or not)

Simple Type Theory à la Church and à la Curry

$$\lambda \rightarrow$$
 (à la Church):

$$\frac{x:\sigma \in \Gamma}{\Gamma \vdash x:\sigma} \qquad \frac{\Gamma \vdash M:\sigma \to \tau \ \Gamma \vdash N:\sigma}{\Gamma \vdash MN:\tau} \qquad \frac{\Gamma,x:\sigma \vdash P:\tau}{\Gamma \vdash \lambda x:\sigma.P:\sigma \to \tau}$$

 $\lambda \rightarrow$ (à la Curry):

Typed Terms versus Type Assignment:

 \blacktriangleright With typed terms also called typing à la Church, we have terms with type information in the λ -abstraction

$$\lambda x : \alpha . x : \alpha \rightarrow \alpha$$

As a consequence:

- ► Terms have unique types,
- ► The type is directly computed from the type info in the variables.
- ▶ With typed assignment also called typing à la Curry, we assign types to untyped λ -terms

$$\lambda x.x: \alpha \rightarrow \alpha$$

As a consequence:

- Terms do not have unique types,
- ► A principal type can be computed using unification.

Examples

Typed Terms:

$$\lambda x : \alpha.\lambda y : (\beta \rightarrow \alpha) \rightarrow \alpha.y(\lambda z : \beta.x)$$

has only the type $\alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \alpha$

► Type Assignment:

$$\lambda x.\lambda y.y(\lambda z.x)$$

can be assigned the types

- $(\alpha \rightarrow \alpha) \rightarrow ((\beta \rightarrow \alpha \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$

with $\alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$ being the principal type

Example derivation

 $\lambda x.\lambda y.y(\lambda z.x)$ can be assigned the type $(\alpha \rightarrow \alpha) \rightarrow ((\beta \rightarrow \alpha \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$ in $\lambda \rightarrow$ a la Curry.

Connection between Church and Curry typed $\lambda \rightarrow$

Definition The erasure map |-| from $\lambda \rightarrow a$ la Church to $\lambda \rightarrow a$ la Curry is defined by erasing all type information.

$$|x| := x$$

$$|M N| := |M| |N|$$

$$|\lambda x : \sigma M| := \lambda x |M|$$

So, e.g.

$$|\lambda x : \alpha.\lambda y : (\beta \rightarrow \alpha) \rightarrow \alpha.y(\lambda z : \beta.x)| = \lambda x.\lambda y.y(\lambda z.x)$$

Theorem If $\Gamma \vdash M : \sigma$ in $\lambda \rightarrow \hat{a}$ la Church, then $\Gamma \vdash |M| : \sigma$ in $\lambda \rightarrow \hat{a}$ la Curry.

Theorem If $\Gamma \vdash P : \sigma$ in $\lambda \rightarrow$ à la Curry, then there is an M such that $|M| \equiv P$ and $\Gamma \vdash M : \sigma$ in $\lambda \rightarrow$ à la Church.

Connection between Church and Curry typed $\lambda \rightarrow$

Definition The erasure map |-| from $\lambda \rightarrow a$ la Church to $\lambda \rightarrow a$ la Curry is defined by erasing all type information.

$$|x| := x$$

$$|M N| := |M| |N|$$

$$|\lambda x : \sigma M| := \lambda x . |M|$$

Theorem If $\Gamma \vdash P : \sigma$ in $\lambda \rightarrow$ à la Curry, then there is an M such that $|M| \equiv P$ and $\Gamma \vdash M : \sigma$ in $\lambda \rightarrow$ à la Church. Proof: by induction on derivations.

$$\frac{x : \sigma \in \Gamma}{\Gamma \vdash x : \sigma} \qquad \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau} \qquad \frac{\Gamma, x : \sigma \vdash P : \tau}{\Gamma \vdash \lambda x . P : \sigma \to \tau}$$