Lambda-Calculus and Type Theory
ISR 2024
Obergurgl, Austria
Herman Geuvers & Niels van der Weide

Radboud University Nijmegen, The Netherlands

Lecture 2

Simple Type theory and Formulas-as-Types and Proofs-as-terms

Simple Type Theory

Simplest system: A— or simple type theory, STT. Just arrow types

Typ := TVar | (Typ—Typ)

» Examples: (a—f)—a, (a—p)—=((6—v)—=(a—7))

> Brackets associate to the right and outside brackets are
omitted:
(a=B)=(B—7)—a—y

» Types are denoted by o, 7,

Terms:

> typed variables x{, x5, ..., countably many for every o.

» application: if M : 0—7 and N : o, then (MN) : 7

» abstraction: if P : 7, then (Ax?.P) : 0—T

Examples of simply typed terms

XAy x 1 o—=T—0
)\xo‘ﬁﬂ.)\yﬁ_w./\zo‘.y(xz) o (a=pB)=(B—y)—a—y
)\xo‘,)\y(ﬁ_’a)_m.y()\zﬁ.x) o a=((f—a)—a)—a

For every type there is a term of that type:
x? o
Not for every type there is a closed term of that type:

(a—a)—a is not inhabited

[That is: there is no closed term of type (a—a)—a.]

Church’ simple type theory

Church formulation of simple type theory:terms with type
information.
Inductive definition of the terms:

» typed variables x{, x5, ..., countably many for every o.
» application: if M : o—7 and N : o, then (MN) : 7
» abstraction: if P : 7, then (Ax?.P): 0—T

Alternative: Inductive definition of the terms in rule form:

M:o—=1 N:o P:r

g .

X o MN : 1 M. P o=t
Advantage: We also have a derivation tree, a proof of the fact that
the term has that type.

We can reason over derivations.

Simple type theory a la Church with contexts

Formulation with contexts to declare the free variables:

X1:01,X0 1 02,...,Xp . 0p

is a context, usually denoted by I'.
Derivation rules of A— (a la Church):

xo el r-EM:o—=7THN:o NxokEP:T
x:0 = MN: 7 = x0.P:o—T1

[Fx_. M : o if there is a derivation using these rules with
conclusion T M : o

Reading the typing rules top down

Inductive definition of the “derivable judgments”

xoel rN-M:o—=7T'EN:o MxokFP:T
N=x:0 M= MN: T M- Xx:0.P:o—=1
Deriving

F Axa\y:(f—a)—a.y(Az:5.x) : a=((f—a)—a)—a

Reading the typing rules bottom up

Trying to solve a typing problem / an inhabitation problem

xo el rEM:o—=1THN:o MNxokFP:T
N=x:0 M= MN:T M= x:0.P:o—T1

Formulas-as-Types (Curry, Howard)

There are two readings of a judgement M : o

1. term as algorithm/program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o
» There is a one-to-one correspondence:
typable terms in A— =~ derivations in minimal proposition
logic
> X1 :T1,X0:To,...,Xn:Tn b M : 0o can be read as
M is a proof of o from the assumptions 7,72, ..., 7.

Example

[a=B—=91 [[a=p8] [a]*
B—y B
Y
1
oy
B —
(a—=p)—a—y

(a—=p—=7y)=(a—p)—a—y

Axia—B—=y. A y:a— L. z:a.xz(yz)
C(a=B—=7)—=(a—=B)—a—y

Example

[x:a=B—=72 [z:0]) [y:a—=BP [z:a]

xz 1 By yz:pB

xz(yz) : vy
Az:ae.xz(yz) » a—y

1

Ay:a—BAziaxz(yz) : (a—F)—a—y

Ax:a— =y \y:a—pAz:a.xz(yz) : (a—=F—y)—=(a—=B)—a—y
Exercise: Give the derivation that corresponds to

Axy—=e Ny (y—=e)—ey(Az.y x) : (y—e)—=((y—e)—e)—e

Flag style deductions

The Fitch style (also: flag style) presentation of A—.

G W NN =

XxioM:o—T1

abs-rule

abs, 1, 4

~N O oW N

8

M:oc—rT1

N:o

MN : 1

app-rule

app, 3,6

Example

X a—P—y
ya—p

Az:axz(yz) : a—y

Ay:a—=BAzaxz(y z) : (a—=f)—a—y

© 00 N O 0 W N =

Ax:a— =y \y:a—=B.Az:axz(y z) : (a—=L—=v)—=(a—8)—a—y

Computation

» [-reduction: (Ax:o.M)P —g M[x := P]

Cut-elimination

Cut-eliminationin minimal logic = S-reduction in A—.

[0]!
D,
T D>
1 =
o—T o
T
[x: o]t
D,
M: T 1 D,
A\x:o.M:o—T1 P:o

(Ax:a.M)P : T

D>
o
Dy
.
D>
P:o
Dy
M[x:=P]:T

Example

Proof of A~A—B,(A—B)—AF B

[A]} A-A—B
[A' A=A—=B [A]* A—B
AL ASB B
B (A—=B)—A A—B
A—B A
B

It contains a cut: a —-i directly followed by an —-e.

Example ctd

Proof of A~A—B,(A—B)— A B after reduction

[A} A-A—B
[A' A-A—B [A]* A—B
[A]Y A—B B
B (A—B)—A A—B
(A—=B)—A A—B A A—A—
A A—B

Example ctd

Proof of A~A—B,(A—B)—AF B with term information.

[x: A p: A-A—=B

[y :A' p: A-A=B [x: Al* px:A—B
[y : A* py:A—=B pxx:B
pyy:B qg:(A—>B)—A M:Apxx:A—=B
Ay:Apyy: A—=B g(Ax:Apxx): A

(A\y:Apyy)g(Ax:Apxx)): B

Term contains a f-redex: (Ax:A.pxx) (g(Ax:A.px x))

Example ctd

Reduced proof of A-A—B, (A—B)—AF B with term info.

[x : A]1 p: A—>A—B

[x : A]1 p: A—>A—B [x: A]1 px:A—=B
[X:A]1 px:A—=B pxx:B
pxx:B q: (A—=B)—A Ax:A.pxx: A—=B
q:(A—>B)—A Ax:A.pxx: A—B g(Ax:A.pxx): A p: A—-A—B
g(Ax:A.pxx): A p(g(Ax:A.pxx)) : A=B

p(g(Ax:A.pxx))(g(Ax:A.pxx)) : B

Extension with other connectives

STT with product types x (proposition logic with conjunction A)

Extend the types with ¢ x 7. Extend the terms with pairing and
projection.

FrEM:oxT FrN-M:oxrTt TFP:cTHQ:T
NrN-mM:o M=mM:r Fr=(P,Q):oxr

With reduction rules

Why do we want types?

Types give a (partial) specification

Typed terms can’t go wrong (Milner)

Subject Reduction property: If M : Aand M —3 N, then
N : A.

Typed terms always terminate

The type checking algorithm detects (simple) mistakes

The compiler should compute the type information for us!
(Why would the programmer have to type all that?)

This is called a type assignment system, or also typing a la
Curry:

For M an untyped term, the type system assigns a type o to
M (or not)

Simple Type Theory a la Church and a la Curry

A— (a la Church):

xoel rN-M:o—=7TEN:o MNxokEP:1T
N=x:0 M= MN:T N Axio.P:o—r1

A— (a la Curry):

xo el rN-=M:0—=-7THN:o xokEP:1
lEx:0o = MN: 7 M= Ax.P:o—T1

Typed Terms versus Type Assignment:

> With typed terms also called typing a la Church, we have
terms with type information in the A-abstraction

AX DX D a—Q

As a consequence:
» Terms have unique types,
» The type is directly computed from the type info in the
variables.
> With typed assignment also called typing a la Curry, we assign
types to untyped A-terms

AX.X I a—Q

As a consequence:

» Terms do not have unique types,
» A principal type can be computed using unification.

Examples

» Typed Terms:
Ax oy ¢ (B—a)—ay(Az : B.x)

has only the type a—((f—a)—a)—a

> Type Assignment:
AXAy.y(Az.x)

can be assigned the types
> a—((f—a)—a)—a
> (a—a)=((f—a—a)—y)—=y
> ..

with a—((8—«a)—)—y being the principal type

Example derivation

Ax.Ay.y(Az.x) can be assigned the type
(a—a)—=((B—a—a)—y)—y in A— a la Curry.

Connection between Church and Curry typed A—

Definition The erasure map | — | from A— a la Church to A— a la
Curry is defined by erasing all type information.

x| = x
IMN| = [M[|N|
IAx :o.M| = Ax.|M|

So, e.g.

IAx Ay (B—a)—=ay(Az: B.x)| = AxAy.y(Az.x)

Theorem If = M : o in A— a la Church, then ' = [M|: 0 in A\—
a la Curry.

Theorem If = P : o in A= a la Curry, then there is an M such
that [M|=Pand ' M : o in A= a la Church.

Connection between Church and Curry typed A—

Definition The erasure map | — | from A— a la Church to A— a la
Curry is defined by erasing all type information.

x| = x
IMN| = [M[|N]
IAx:o.M| = Ix.|M|

Theorem If [= P : o in A= a la Curry, then there is an M such
that [M|=Pand ' M : o in A= a la Church.
Proof: by induction on derivations.

xo el rMN-=M:o—=7T+N:o MNxokFP:T
lEx:0 = MN Tt N Ax.P:o—oT

