
Lambda-Calculus and Type Theory

ISR 2024
Obergurgl, Austria

Herman Geuvers & Niels van der Weide

Radboud University Nijmegen, The Netherlands

Lecture 6

Polymorphic Types

Overview

▶ Weak (ML style) polymorphism, à la Church and à la Curry.

▶ Full (system F) polymorphism, à la Church and à la Curry.

▶ Data types and functions defined by iteration in full
polymorphic λ-calculus

▶ Properties of the systems TCP, TSP, TIP, Subject Reduction,
Uniqueness of Types, ...

Why Polymorphic λ-calculus?

▶ Simple type theory λ→ is not very expressive

▶ In simple type theory, we can not ‘reuse’ a function.
E.g. λx :α.x : α→α and λx :β.x : β→β.

We want to define functions that can treat types polymorphically:
add types ∀α.σ:
Examples

▶ ∀α.α→α
If M : ∀α.α→α, then M can map any type to itself.

▶ ∀α.∀β.α→β→α
If M : ∀α.∀β.α→β→α, then M can take two inputs (of
arbitrary types) and return a value of the first input type.

Derivation rules for Weak (ML-style) polymorphism

Typ : add ∀α1. . . .∀αn.σ for σ a λ→-type.

1. Curry style:

Γ ⊢ M : σ
α /∈ FV(Γ)

Γ ⊢ M : ∀α.σ

Γ ⊢ M : ∀α.σ
for τ a λ→-type

Γ ⊢ M : σ[α := τ]

2. Church style:

Γ ⊢ M : σ
α /∈ FV(Γ)

Γ ⊢ λα.M : ∀α.σ

Γ ⊢ M : ∀α.σ
for τ a λ→-type

Γ ⊢ Mτ : σ[α := τ]

▶ ∀ only occurs on the outside and is therefore usually left out:
“all type variables are implicitly universally quantified”

▶ With weak polymorphism, type checking is still decidable: the
principal types algorithm still works.

Derivation rules for Weak (ML-style) polymorphism

NB! Also the abstraction rule is restricted to λ→-types:

1. Curry style:

Γ, x : τ ⊢ M : σ
for σ, τ λ→-types

Γ ⊢ λx .M : τ→σ

2. Church style:

Γ, x : τ ⊢ M : σ
for σ, τ λ→-types

Γ ⊢ λx :τ.M : τ→σ

Examples

▶ λ2 à la Curry: λx .λy .x : ∀α.∀β.α→β→α.

▶ λ2 à la Church: λα.λβ.λx :α.λy :β.x : ∀α.∀β.α→β→α.

▶ λ2 à la Curry: z : ∀α.α→α ⊢ z z : ∀α.α→α.

▶ λ2 à la Church: z : ∀α.α→α ⊢ λα.z (α→α) (z α) : ∀α.α→α.

▶ But NOT ⊢ λz .z z : . . .

Examples with flag style derivations
λx .λy .x : ∀α.∀β.α→β→α.

More examples with flag style derivations
Self application?

Derivation rules of λ2 with full (system F-style)
polymorphism

Typ := TVar | (Typ→Typ) | ∀α.Typ

1. Curry style:

Γ ⊢ M : σ
α /∈ FV(Γ)

Γ ⊢ M : ∀α.σ

Γ ⊢ M : ∀α.σ
for τ any λ2-type

Γ ⊢ M : σ[α := τ]

2. Church style:

Γ ⊢ M : σ
α /∈ FV(Γ)

Γ ⊢ λα.M : ∀α.σ

Γ ⊢ M : ∀α.σ
for τ any λ2-type

Γ ⊢ Mτ : σ[α := τ]

▶ ∀ can also occur deeper in a type.

▶ With full polymorphism, type checking becomes undecidable!
[Wells 1993]

Derivation rules of λ2 with full (system F-style)
polymorphism

Typ := TVar | (Typ→Typ) | ∀α.Typ

NB: In the abstraction rule all types are λ2-types:

1. Curry style:
Γ, x : τ ⊢ M : σ

σ, τ λ2-types
Γ ⊢ λx .M : τ→σ

2. Church style:
Γ, x : τ ⊢ M : σ

σ, τ λ2-types
Γ ⊢ λx :τ.M : τ→σ

Erasure from λ2 à la Church to λ2 à la Curry

|x | := x
|λx :σ.M| := |λx .M| |λα.M| := |M|
|MN| := |M| |N| |Mσ| := |M|

Theorem If Γ ⊢ M : σ in λ2 à la Church, then Γ ⊢ |M| : σ in λ2 à
la Curry.
Theorem If Γ ⊢ P : σ in λ2 à la Curry, then there is an M such
that |M| ≡ P and Γ ⊢ M : σ in λ2 à la Church.

Derivation rules of λ2 with full (system F-style)
polymorphism

Typ := TVar | (Typ→Typ) | ∀α.Typ

1. Curry style:

Γ ⊢ M : σ
α /∈ FV(Γ)

Γ ⊢ M : ∀α.σ

Γ ⊢ M : ∀α.σ
for τ any λ2-type

Γ ⊢ M : σ[α := τ]

2. Church style:

Γ ⊢ M : σ
α /∈ FV(Γ)

Γ ⊢ λα.M : ∀α.σ

Γ ⊢ M : ∀α.σ
for τ any λ2-type

Γ ⊢ Mτ : σ[α := τ]

Examples valid only with full polymorphism:

▶ λ2 à la Curry: λx .λy .x : (∀α.α)→σ→τ .

▶ λ2 à la Church: λx :(∀α.α).λy :σ.xτ : (∀α.α)→σ→τ .

Some examples of typing in λ2

Abbreviate ⊥ := ∀α.α, ⊤ := ∀α.α→α.

▶ Curry λ2: λx .xx : ⊥→⊥
▶ Church λ2: λx :⊥.x(⊥→⊥)x : ⊥→⊥.

▶ Church λ2: λx :⊥.λα.x(α→α)(xα) : ⊥→⊥.

Exercises:

▶ Verify that in Church λ2: λx :⊤.x⊤x : ⊤→⊤.

▶ Verify that in Curry λ2: λx .xx : ⊤→⊤
▶ Find a type in Curry λ2 for λx .x x x

▶ Find a type in Curry λ2 for λx .(x x)(x x)

Examples with flag style derivations
λx .λy .x : ⊥→σ→τ .

More examples with flag style derivations
λx .x x : ⊥→⊥.

Let polymorphism in ML

To regain some of the “full polymorphism”, ML has let
polymorphism

Γ ⊢ M : σ Γ, x : σ ⊢ N : τ
for τ a λ→-type, σ a λ2-type

Γ ⊢ let x = M inN : τ

This allows the formation of a β-redex

(λx :σ.N)M

for σ a polymorphic type.
But not λx :σ.N : σ→τ

Recall: Important Properties

Γ ⊢ M : σ? TCP
Γ ⊢ M : ? TSP
⊢? : σ TIP

Properties of polymorphic λ-calculus

▶ TIP is undecidable, TCP and TSP are equivalent.

▶
TCP à la Church à la Curry

ML-style decidable decidable
System F-style decidable undecidable

With full polymorphism (system F), untyped terms contain
too little information to compute the type.

Data types in λ2

Nat := ∀α.α→(α→α)→α

This type uses the encoding of natural numbers as Church
numerals

n 7→ cn := λx .λf .f (. . . (f x)) n-times f

▶ 0 := λα.λx :α.λf :α→α.x

▶ S := λn:Nat.λα.λx :α.λf :α→α.f (nα x f)

▶ Iteration: if c : σ and g : σ→σ, then It c g : Nat→σ is
defined as

λn:Nat.n σ c g

We have It c g n = g(. . . (g c)) (n times g), i.e.

It c g 0 = c and It c g (S x) = g(It c g x)

Examples

▶ Addition
Plus := λm:Nat.λn:Nat.Itm S n

or Plus := λm:Nat.λn:Nat.nNatm S

▶ Multiplication

Mult := λm:Nat.λn:Nat.It 0 (λx :Nat.Plusmx) n

▶ Predecessor is difficult!
This requires defining primitive recursion in terms of iteration.
As a consequence:

Pred(n + 1) ↠β n

in a number of steps of O(n).

Iteration, the more general picture
Nat is a data-type with two constructors 0 : Nat and
S : Nat → Nat. This implies the Nat-iteration scheme for defining
functions f : Nat → D (for any type D).

Lemma[Nat-iteration] If d : D and g : D → D, then there is a
function f : Nat → D satisfying

f 0 = d

f (S x) = g (f x)

In λ2, this f , also called It d g , can be defined as λn:Nat.nD d g .

The other way around: if I want to have a function h : Nat → D
that I can specify by case distinction, satisfying these equations:

h 0 = d

h (S x) = g (h x)

Then I have it, because I can take h := λn:Nat.nD d g .

Examples of Nat-iteration
Nat-iteration in λ2: if d : D and g : D → D, then
f := λn:Nat.nD d g satisfies

f 0 = d

f (S x) = g (f x)

We derive Plus and Mult using Nat-iteration.

Plusm 0 = m

Plusm (S x) = S (Plusmx)

So we can take Plusm := λn:Nat.nNatm S and we define
Plus := λm, n:Nat.nNatm S

Multm 0 = 0

Multm (S x) = Plusm (Multmx)

So we define Mult := λm, n:Nat.nNat 0 (λy :Nat.Plusmy)

Data types in λ2 ctd.

ListA := ∀α.α→(A→α→α)→α

The type of lists over A uses the following encoding:

[a1, a2, . . . , an] 7→ λx .λf .f a1 (f a2 (. . . (f an x))) n-times f

▶ Nil := λα.λx :α.λf :A→α→α.x

▶ Cons := λa:A.λℓ:ListA.λα.λx :α.λf :A→α→α.f a (ℓ α x f)

▶ Iteration: if c : σ and g : A→σ→σ, then It c g : ListA→σ is
defined as

λℓ:ListA.ℓ σ c g

We have It c g [a1, . . . , an] = g a1 (. . . (g an c)) (n times g),
that is:

It c g Nil = c and It c g (Cons a l) = g a (It c g l)

The List-iteration scheme
ListA has constructors Nil : ListA and Cons : A → ListA → ListA.
This implies a List-iteration scheme for defining functions
f : ListA → D (for any type D).
Lemma[List-iteration] If d : D and g : A → D → D, then there is
a function f : ListA → D satisfying

f Nil = d

f (Cons a x) = g a (f x)

In λ2, this f can be defined as λℓ:ListA.ℓD d g (which is also
written as It d g).

Example: the length of a list, len : ListA → Nat. It satisfies

lenNil = 0

len (Cons a k) = S (len k)

So we can define len := It 0 (λa:A.λn:Nat.S n), or in full detail
len := λℓ:ListA.ℓNat 0 (λa:A.λn:Nat.S n).

Example: Map

Map is one of the standard functional programs over List. Given
h : σ→τ , we have

Map h : Listσ→Listτ

which applies h to all elements in the input-list.
We can specify it via these equations:

Map hNil = Nil

Map h (Cons a k) = Cons (h a)(Map h k)

So we can define it using List-iteration:

Map := λh:σ→τ.ItNil (λx :σ.λk :Listτ .Cons (h x) k).

Or in full detail

Map := λh:σ→τ.λℓ:Listσ.ℓListτ Nil(λx :σ.λk:Listτ .Cons (h x) k).

Many data-types can be defined in λ2

▶ Product of two data-types: σ×τ := ∀α.(σ→τ→α)→α

▶ Sum of two data-types: σ+τ := ∀α.(σ→α)→(τ→α)→α

▶ Unit type: Unit := ∀α.α→α

▶ Binary trees with nodes in A and leaves in B:
TreeA,B := ∀α.(B→α)→(A→α→α→α)→α
TreeA,B has two constructors, leaf : B → TreeA,B and
join : TreeA,B → TreeA,B → A → TreeA,B

Exercise:

▶ Define inl : σ → σ + τ

▶ Define the first projection: π1 : σ × τ → σ

▶ Define leaf : B → TreeA,B and
join : TreeA,B → TreeA,B → A → TreeA,B

▶ Give the Tree-iteration scheme for TreeA,B and define
h : TreeA,B → Nat that counts the number of leaves of a tree.

Properties of λ2

▶ For λ2 à la Church: Uniqueness of types
If Γ ⊢ M : σ and Γ ⊢ M : τ , then σ = τ .

▶ Subject Reduction
If Γ ⊢ M : σ and M −→βη N, then Γ ⊢ N : σ.

▶ Strong Normalization
If Γ ⊢ M : σ, then all βη-reductions from M terminate.

