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Lecture 7

Higher order logic in the Calculus of constructions and in Coq



The Barendregt cube

Barendregt cube: 8 typed A-calculi, defined in one coherent way.
Generalization: Berardi & Terlouw: Pure Type Systems

framework for defining and studying typed A-calculi
PTS = pure type system

the PTS rules are basically the AP rules as presented before.



variations on the product rule
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Calculus of Constructions

A— in this presentation is equivalent to A— as presented before.
Similarly for A2, AP, ... This cube also gives a fine structure for the
Calculus of Constructions, CC (Coquand and Huet)
» Polymorphic data types on the x-level,
e.g. Na:x .a—(a—a)—a @ * .
» Predicate domains on the [J-level,
e.g. No>N—x : [
> Logic on the x-level,
e.g. p A =M * .(p—=p—a)—a: *,
» Universal quantification (first and higher order),
e.g. NP:N— x [x:N.Px— Px : .



Examples

» |nduction

VP:N—x( (P0) = (Vx:N.(Px — P(Sx))) = Vx:N.Px )

» Defining the smallest subset of A containing P : A — * and
closed under f : A — A.

S:=Ay: A
VQ : A—»*x (PC Q)= (Vx:AQx — Q(fx)) = Qy

where PC Q :=Vx: APx — Q@ x.
To prove:

1. S is closed under f,

2. S contains P,

3. S is the smallest such.



Examples ctd.

» Higher order predicates/functions: transitive closure of a
relation R

AR A—A—x . Ax,y : A.
(VQ : A»A— . (trans(Q) — (R C Q) — Qxy))

of type
(A= A—%)—=(A—>A—x)



Example trans clos higher order and inductively

» transitive closure in higher order logic:

AR A=A— x . Ax,y : A
(VQ : A»A— x . (trans(Q) = (R C Q) — Q xy))

of type
(A—>A—x)—(A—A—x)

» transitive closure inductively:

Inductive TrclosInd (R : A->A->Prop) : A -> A -> Prop :=
| sub : forall x y : A, R x y -> TrclosInd x y
| trans : forall xy z : A,

TrclosInd x y -> TrclosInd y z -> TrclosInd x z.



Exercise trans clos higher order

Given the transitive closure of a binary relation, defined in higher
order logic:

trclosR = Ax,y:A.
(VQ:A—A— x (trans(Q)—(R C Q)—(Q x y))).

1. Prove that the transitive closure is transitive.

2. Prove that the transitive closure of R contains R.



Higher order logic HOL

In higher order logic (originally due to Church[1940]) we have:
» higher order domains: D, D—Prop, (D—Prop)—Prop, etc
(sets of predicates over predicates over ... ).
» higher order function domains: (D—D)—D,
((D—D)—D)—D, etc.
» Y-quantification over all domains
We can do Higher Order Logic in Coq
In Coq we often have the choice to define sets/predicates/relations

inductively or via higher order logic. The Standard Library uses
inductive representations.



Definability of other connectives (constructively)

L = Varx.a
oAy = Varsx(p =Y —a) = a
oV = Varx.(p—a)— (Y —a)—a
Ixiop = Varx.(Vxiop —a) =«

Idea:
The definition of a connective is an encoding of the elimination
rule.



Existential quantifier

Ix:o.p :=Va: x .(Vxiop = a) > «
Derivation of the elimination rule in HOL.
[¢]
[¢] .
: Ix:o.0 C
x ¢ FV(C,ass.) (Vxi0.p— C)— C V¥xio.p— C
C

Ix:o.p C




Equality

Equality is definable in higher order logic:
t and q terms are equal if they share the same properties
(Leibniz equality)

Definition in HOL (for t, q : A):

t=aq = VP:A—x.(Pt — Pq)

» This equality is reflexive and transitive (easy)
» It is also symmetric(!) Trick: find a “smart” predicate P

Exercise: Prove reflexivity, transitivity and symmetry of =4.



CC versus HOL

Question: is the type theory CC really isomorphic with HOL?
No: only if we disambiguate * into Set and Prop (or *5 and xp).
This is the type theory of Coq.



Properties of CC

» Uniqueness of types
fr=M:Aand = M: B, then A=3B.

» Subject Reduction
fr=M:Aand M =g N, thenT = N : A

» Strong Normalization
If T = M : A, then all S-reductions from M terminate.

Proof of SN is a really difficult.



Decidability Questions

r=M:o? TCP
r=m:? TSP
Mr=7:0 TIP

For CC:
» TIP is undecidable

» TCP/TSP: simultaneously.
The type checking algorithm is close to the one for AP. (In
AP we had a judgement of correct context; this form of
judgement could also be introduced for CC)



