Lambda-Calculus and Type Theory
ISR 2024
Obergurgl, Austria
Herman Geuvers & Niels van der Weide

Radboud University Nijmegen, The Netherlands

Lecture 7

Higher order logic in the Calculus of constructions and in Coq

The Barendregt cube

Barendregt cube: 8 typed A-calculi, defined in one coherent way.
Generalization: Berardi & Terlouw: Pure Type Systems

framework for defining and studying typed A-calculi
PTS = pure type system

the PTS rules are basically the AP rules as presented before.

variations on the product rule

AP

A—
A2
ANC

= A:s NMx:AF B:s

MN~TMNx:A.B:s

s1 =%, 5 € {x,0}

(s1,92) € {(x,%), (+, L)}
(s1,92) € {(*,%)}
(s1,s 2; € {(x, *ga(*)}

(s1,52) € {(x,%), (x,0),(0,%),(3,0)}

(axiom) F*: 0O

FrA:s Fr'FA:s TEM:C
(var) —— (weak)
MxAEx: A MxAEM:C
") lN-A:sy INxAFB:s if (s1,)€ R
N=Tx:AB: s
()\) NxAFM:B TFMNxAB:s
M= :AM: Tx:A.B
FrN-=M:Mx:AB TEN:A
(app)

[+ MN : B[N/x]

IrEM:A THB:s
(conv) if A= B
rN-m:B

N-A:s; IIxAFB:s
(m if (s1,92)€ R
METx:AB: s

System R

A— (, %)

A2 (system F) (x,%) (O, %)

AP (LF) (*, %) (x,0)

Ao (*, %) (O,0)
AP2 (x,%) (O,%) (*,0)

Aw (system Fw) | (x,%) (O, %) (O,0)
APw (, %) (x0) (0,0)
APw (CC) (x,%) (O,%) (x0) (0,0

the Barendregt cube

Aw AC
A2 AP2
(0, %) \w APw

7 /
(0,0)
/

A (%,0)—= AP

Calculus of Constructions

A— in this presentation is equivalent to A— as presented before.
Similarly for A2, AP, ... This cube also gives a fine structure for the
Calculus of Constructions, CC (Coquand and Huet)
» Polymorphic data types on the x-level,
e.g. Na:x .a—(a—a)—a @ * .
» Predicate domains on the [J-level,
e.g. No>N—x : [
> Logic on the x-level,
e.g. p A =M * .(p—=p—a)—a: *,
» Universal quantification (first and higher order),
e.g. NP:N— x [x:N.Px— Px : .

Examples

» |nduction

VP:N—x((P0) = (Vx:N.(Px — P(Sx))) = Vx:N.Px)

» Defining the smallest subset of A containing P : A — * and
closed under f : A — A.

S:=Ay: A
VQ : A—»*x (PC Q)= (Vx:AQx — Q(fx)) = Qy

where PC Q :=Vx: APx — Q@ x.
To prove:

1. S is closed under f,

2. S contains P,

3. S is the smallest such.

Examples ctd.

» Higher order predicates/functions: transitive closure of a
relation R

AR A—A—x . Ax,y : A.
(VQ : A»A— . (trans(Q) — (R C Q) — Qxy))

of type
(A= A—%)—=(A—>A—x)

Example trans clos higher order and inductively

» transitive closure in higher order logic:

AR A=A— x . Ax,y : A
(VQ : A»A— x . (trans(Q) = (R C Q) — Q xy))

of type
(A—>A—x)—(A—A—x)

» transitive closure inductively:

Inductive TrclosInd (R : A->A->Prop) : A -> A -> Prop :=
| sub : forall x y : A, R x y -> TrclosInd x y
| trans : forall xy z : A,

TrclosInd x y -> TrclosInd y z -> TrclosInd x z.

Exercise trans clos higher order

Given the transitive closure of a binary relation, defined in higher
order logic:

trclosR = Ax,y:A.
(VQ:A—A— x (trans(Q)—(R C Q)—(Q x y))).

1. Prove that the transitive closure is transitive.

2. Prove that the transitive closure of R contains R.

Higher order logic HOL

In higher order logic (originally due to Church[1940]) we have:
» higher order domains: D, D—Prop, (D—Prop)—Prop, etc
(sets of predicates over predicates over ...).
» higher order function domains: (D—D)—D,
((D—D)—D)—D, etc.
» Y-quantification over all domains
We can do Higher Order Logic in Coq
In Coq we often have the choice to define sets/predicates/relations

inductively or via higher order logic. The Standard Library uses
inductive representations.

Definability of other connectives (constructively)

L = Varx.a
oAy = Varsx(p =Y —a) = a
oV = Varx.(p—a)— (Y —a)—a
Ixiop = Varx.(Vxiop —a) =«

Idea:
The definition of a connective is an encoding of the elimination
rule.

Existential quantifier

Ix:o.p :=Va: x .(Vxiop = a) > «
Derivation of the elimination rule in HOL.
[¢]
[¢] .
: Ix:o.0 C
x ¢ FV(C,ass.) (Vxi0.p— C)— C V¥xio.p— C
C

Ix:o.p C

Equality

Equality is definable in higher order logic:
t and q terms are equal if they share the same properties
(Leibniz equality)

Definition in HOL (for t, q : A):

t=aq = VP:A—x.(Pt — Pq)

» This equality is reflexive and transitive (easy)
» It is also symmetric(!) Trick: find a “smart” predicate P

Exercise: Prove reflexivity, transitivity and symmetry of =4.

CC versus HOL

Question: is the type theory CC really isomorphic with HOL?
No: only if we disambiguate * into Set and Prop (or *5 and xp).
This is the type theory of Coq.

Properties of CC

» Uniqueness of types
fr=M:Aand = M: B, then A=3B.

» Subject Reduction
fr=M:Aand M =g N, thenT = N : A

» Strong Normalization
If T = M : A, then all S-reductions from M terminate.

Proof of SN is a really difficult.

Decidability Questions

r=M:o? TCP
r=m:? TSP
Mr=7:0 TIP

For CC:
» TIP is undecidable

» TCP/TSP: simultaneously.
The type checking algorithm is close to the one for AP. (In
AP we had a judgement of correct context; this form of
judgement could also be introduced for CC)

