Lambda-Calculus and Type Theory ISR 2024 Obergurgl, Austria

Herman Geuvers & Niels van der Weide Radboud University Nijmegen, The Netherlands

Lecture 7

Higher order logic in the Calculus of constructions and in Coq

The Barendregt cube

Barendregt cube: 8 typed λ -calculi, defined in one coherent way. Generalization: Berardi & Terlouw: Pure Type Systems

> framework for defining and studying typed λ -calculi $PTS = pure$ type system

the PTS rules are basically the λP rules as presented before.

variations on the product rule

$$
\frac{\Gamma \vdash A : s_1 \qquad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A.B : s_2}
$$

$$
\begin{array}{ll} \lambda P & s_1 = *, \ s_2 \in \{*, \square\} \\ & (s_1, s_2) \in \{(*, *), (*, \square)\} \\ \lambda \rightarrow & (s_1, s_2) \in \{(*, *)\} \\ \lambda 2 & (s_1, s_2) \in \{(*, *), (\square, *)\} \\ \lambda C & (s_1, s_2) \in \{(*, *), (*, \square), (\square, *) , (\square, \square)\}\end{array}
$$

 $(axiom)$ \vdash $*$: \square (var) $Γ ⊢ A : s$ Γ, x : Α \vdash $x :$ Α (weak) $\Gamma \vdash A : s \quad \Gamma \vdash M : C$ Γ, x:A ⊢ M : C (Π) $\begin{array}{l} \mathsf{\Gamma \vdash A : s_1 \quad \Gamma, x{:}A \vdash B : s_2 \quad \text{if} \ (s_1, s_2) \in \ \ \mathcal{R} \end{array}$ $Γ ⊢ Πx:A.B$ s₂ (λ) $Γ, x:A ⊢ M : B ⊂ ⊢ Πx:A.B : s$ $Γ ⊢ λx:A.M : ∩x:A.B$ (app) $\Gamma \vdash M : \Pi x : A.B \quad \Gamma \vdash N : A$ $\Gamma \vdash MN : B[N/x]$ (conv) $\Gamma \vdash M : A \quad \Gamma \vdash B : s$ $Γ ⊢ M : B$ if $A=_{\beta} B$

$$
\text{(}\Pi\text{)} \quad \frac{\Gamma \vdash A : s_1 \quad \Gamma, x:A \vdash B : s_2}{\Gamma \vdash \Pi x:A.B : s_2} \quad \text{if } (s_1, s_2) \in \mathcal{R}
$$

the Barendregt cube

Calculus of Constructions

 $\lambda \rightarrow$ in this presentation is equivalent to $\lambda \rightarrow$ as presented before. Similarly for λ 2, λ P, ... This cube also gives a fine structure for the

Calculus of Constructions, CC (Coquand and Huet)

- ▶ Polymorphic data types on the ∗-level, e.g. $\Box \alpha$: * . $\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha$: * .
- \triangleright Predicate domains on the \square -level. e.g. $N \rightarrow N \rightarrow * : \Box$
- ▶ Logic on the ∗-level,

e.g. $\varphi \wedge \psi := \Pi \alpha: * .(\varphi \rightarrow \psi \rightarrow \alpha) \rightarrow \alpha : *$.

 \triangleright Universal quantification (first and higher order), e.g. $\Pi P: N \rightarrow * \Pi x: N.Px \rightarrow Px$: *.

Examples

\blacktriangleright Induction

$$
\forall P: N \rightarrow * ((P0) \rightarrow (\forall x: N.(Px \rightarrow P(Sx))) \rightarrow \forall x: N.Px)
$$

▶ Defining the smallest subset of A containing $P : A \rightarrow *$ and closed under $f : A \rightarrow A$.

$$
S := \lambda y : A.
$$

\n
$$
\forall Q : A \rightarrow * . (P \subseteq Q) \rightarrow (\forall x : A . Q x \rightarrow Q (f x)) \rightarrow Q y
$$

where $P \subseteq Q := \forall x : A.P \times \rightarrow Q \times$. To prove:

- 1. S is closed under f ,
- 2. S contains P,
- 3. S is the smallest such.

Examples ctd.

▶ Higher order predicates/functions: transitive closure of a relation R

$$
\lambda R: A \rightarrow A \rightarrow * \cdot \lambda x, y: A.
$$

$$
(\forall Q: A \rightarrow A \rightarrow * \cdot (trans(Q) \rightarrow (R \subseteq Q) \rightarrow Q \times y))
$$

of type

$$
(A{\to}A{\to}*){\to}(A{\to}A{\to}*)
$$

Example trans clos higher order and inductively

 \blacktriangleright transitive closure in higher order logic:

$$
\lambda R : A \rightarrow A \rightarrow * \cdot \lambda x, y : A.
$$

$$
(\forall Q : A \rightarrow A \rightarrow * \cdot (trans(Q) \rightarrow (R \subseteq Q) \rightarrow Q \times y))
$$

of type

$$
(A \rightarrow A \rightarrow *) \rightarrow (A \rightarrow A \rightarrow *)
$$

 \blacktriangleright transitive closure inductively:

Inductive TrclosInd $(R : A->A->Prop) : A \rightarrow A \rightarrow Prop :=$ | sub : forall x y : A, R x y -> TrclosInd x y | trans : forall x y z : A, TrclosInd $x \ y \rightarrow$ TrclosInd $y \ z \rightarrow$ TrclosInd $x \ z$.

Exercise trans clos higher order

Given the transitive closure of a binary relation, defined in higher order logic:

trclos
$$
R := \lambda x, y:A.
$$

\n $(\forall Q:A \rightarrow A \rightarrow *.(trans(Q) \rightarrow (R \subseteq Q) \rightarrow (Q \times y))).$

- 1. Prove that the transitive closure is transitive.
- 2. Prove that the transitive closure of R contains R .

Higher order logic HOL

In higher order logic (originally due to Church[1940]) we have:

- ▶ higher order domains: D , $D \rightarrow$ Prop, $(D \rightarrow$ Prop) \rightarrow Prop, etc (sets of predicates over predicates over . . .).
- \triangleright higher order function domains: $(D\rightarrow D)\rightarrow D$, $((D\rightarrow D)\rightarrow D)\rightarrow D$, etc.
- ▶ ∀-quantification over all domains

We can do Higher Order Logic in Coq In Coq we often have the choice to define sets/predicates/relations inductively or via higher order logic. The Standard Library uses inductive representations.

Definability of other connectives (constructively)

$$
\bot := \forall \alpha: * \alpha
$$

\n
$$
\varphi \land \psi := \forall \alpha: * .(\varphi \to \psi \to \alpha) \to \alpha
$$

\n
$$
\varphi \lor \psi := \forall \alpha: * .(\varphi \to \alpha) \to (\psi \to \alpha) \to \alpha
$$

\n
$$
\exists x: \sigma. \varphi := \forall \alpha: * .(\forall x: \sigma. \varphi \to \alpha) \to \alpha
$$

Idea:

The definition of a connective is an encoding of the elimination rule.

Existential quantifier

$$
\exists x:\sigma.\varphi := \forall \alpha: * .(\forall x:\sigma.\varphi \to \alpha) \to \alpha
$$

Derivation of the elimination rule in HOL.

Equality

Equality is definable in higher order logic: t and q terms are equal if they share the same properties (Leibniz equality)

Definition in HOL (for $t, q : A$):

$$
t =_A q := \forall P: A \rightarrow *.(Pt \rightarrow Eq)
$$

 \blacktriangleright This equality is reflexive and transitive (easy) \blacktriangleright It is also symmetric(!) Trick: find a "smart" predicate P Exercise: Prove reflexivity, transitivity and symmetry of $=$ α .

Question: is the type theory CC really isomorphic with HOL? No: only if we disambiguate $*$ into Set and Prop (or $*_s$ and $*_p$). This is the type theory of Coq.

Properties of CC

▶ Uniqueness of types If $\Gamma \vdash M : A$ and $\Gamma \vdash M : B$, then $A =_{\beta} B$.

▶ Subject Reduction If $\Gamma \vdash M : A$ and $M \rightarrow_{\beta} N$, then $\Gamma \vdash N : A$.

▶ Strong Normalization

If $\Gamma \vdash M : A$, then all β -reductions from M terminate.

Proof of SN is a really difficult.

Decidability Questions

 $\Gamma \vdash M : \sigma$? TCP $\Gamma \vdash M : ?$ TSP $\Gamma \vdash ? : \sigma$ TIP

For CC:

- \blacktriangleright TIP is undecidable
- ▶ TCP/TSP: simultaneously. The type checking algorithm is close to the one for λP . (In λ P we had a judgement of correct context; this form of judgement could also be introduced for CC)