
Lambda-Calculus and Type Theory

ISR 2024
Obergurgl, Austria

Herman Geuvers & Niels van der Weide

Radboud University Nijmegen, The Netherlands

Lecture 7

Higher order logic in the Calculus of constructions and in Coq

The Barendregt cube

Barendregt cube: 8 typed λ-calculi, defined in one coherent way.
Generalization: Berardi & Terlouw: Pure Type Systems

framework for defining and studying typed λ-calculi
PTS = pure type system

the PTS rules are basically the λP rules as presented before.

variations on the product rule

Γ ⊢ A : s1 Γ, x : A ⊢ B : s2

Γ ⊢ Πx : A.B : s2

λP s1 = ∗ , s2 ∈ {∗,□}

(s1, s2) ∈ {(∗, ∗), (∗,□)}
λ→ (s1, s2) ∈ {(∗, ∗)}
λ2 (s1, s2) ∈ {(∗, ∗), (□, ∗)}
λC (s1, s2) ∈ {(∗, ∗), (∗,□), (□, ∗), (□,□)}

(axiom) ⊢ ∗ : □

(var)
Γ ⊢ A : s

Γ, x :A ⊢ x : A
(weak)

Γ ⊢ A : s Γ ⊢ M : C

Γ, x :A ⊢ M : C

(Π)
Γ ⊢ A : s1 Γ, x :A ⊢ B : s2

Γ ⊢ Πx :A.B : s2

if (s1, s2) ∈ R

(λ)
Γ, x :A ⊢ M : B Γ ⊢ Πx :A.B : s

Γ ⊢ λx :A.M : Πx :A.B

(app)
Γ ⊢ M : Πx :A.B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]

(conv)
Γ ⊢ M : A Γ ⊢ B : s

Γ ⊢ M : B
if A =β B

(Π)
Γ ⊢ A : s1 Γ, x :A ⊢ B : s2

Γ ⊢ Πx :A.B : s2
if (s1, s2) ∈ R

System R
λ→ (∗, ∗)
λ2 (system F) (∗, ∗) (□, ∗)
λP (LF) (∗, ∗) (∗,□)
λω (∗, ∗) (□,□)
λP2 (∗, ∗) (□, ∗) (∗,□)
λω (system Fω) (∗, ∗) (□, ∗) (□,□)
λPω (∗, ∗) (∗,□) (□,□)
λPω (CC) (∗, ∗) (□, ∗) (∗,□) (□,□)

the Barendregt cube

λω //
OO λCOO

λ2

??

//
OO

(□, ∗)

λP2

??

OO

λω // λPω

λ→ (∗,□) //

(□,□)

??

λP

??

Calculus of Constructions

λ→ in this presentation is equivalent to λ→ as presented before.
Similarly for λ2, λP, . . . This cube also gives a fine structure for the

Calculus of Constructions, CC (Coquand and Huet)
▶ Polymorphic data types on the ∗-level,

e.g. Πα: ∗ .α→(α→α)→α : ∗ .

▶ Predicate domains on the □-level,
e.g. N→N→∗ : □

▶ Logic on the ∗-level,
e.g. φ ∧ ψ := Πα: ∗ .(φ→ψ→α)→α : ∗.

▶ Universal quantification (first and higher order),
e.g. ΠP:N→∗ .Πx :N.Px→Px : ∗.

Examples

▶ Induction

∀P:N→∗ ((P 0) → (∀x :N.(P x → P(S x))) → ∀x :N.P x)

▶ Defining the smallest subset of A containing P : A → ∗ and
closed under f : A → A.

S := λy : A.
∀Q : A→∗ .(P ⊆ Q) → (∀x : A.Q x → Q (f x)) → Q y

where P ⊆ Q := ∀x : A.P x → Q x .
To prove:

1. S is closed under f ,
2. S contains P,
3. S is the smallest such.

Examples ctd.

▶ Higher order predicates/functions: transitive closure of a
relation R

λR : A→A→∗ . λx , y : A.
(∀Q : A→A→∗ . (trans(Q) → (R ⊆ Q) → Q x y))

of type
(A→A→∗)→(A→A→∗)

Example trans clos higher order and inductively

▶ transitive closure in higher order logic:

λR : A→A→∗ . λx , y : A.
(∀Q : A→A→∗ . (trans(Q) → (R ⊆ Q) → Q x y))

of type
(A→A→∗)→(A→A→∗)

▶ transitive closure inductively:

Inductive TrclosInd (R : A->A->Prop) : A -> A -> Prop :=

| sub : forall x y : A, R x y -> TrclosInd x y

| trans : forall x y z : A,

TrclosInd x y -> TrclosInd y z -> TrclosInd x z.

Exercise trans clos higher order

Given the transitive closure of a binary relation, defined in higher
order logic:

trclosR := λx , y :A.

(∀Q:A→A→∗ .(trans(Q)→(R ⊆ Q)→(Q x y))).

1. Prove that the transitive closure is transitive.

2. Prove that the transitive closure of R contains R.

Higher order logic HOL

In higher order logic (originally due to Church[1940]) we have:

▶ higher order domains: D, D→Prop, (D→Prop)→Prop, etc
(sets of predicates over predicates over . . .).

▶ higher order function domains: (D→D)→D,
((D→D)→D)→D, etc.

▶ ∀-quantification over all domains

We can do Higher Order Logic in Coq
In Coq we often have the choice to define sets/predicates/relations
inductively or via higher order logic. The Standard Library uses
inductive representations.

Definability of other connectives (constructively)

⊥ := ∀α: ∗ .α
φ∧ψ := ∀α: ∗ .(φ→ ψ → α) → α

φ∨ψ := ∀α: ∗ .(φ→ α) → (ψ → α) → α

∃x :σ.φ := ∀α: ∗ .(∀x :σ.φ→ α) → α

Idea:
The definition of a connective is an encoding of the elimination
rule.

Existential quantifier

∃x :σ.φ := ∀α: ∗ .(∀x :σ.φ→ α) → α

Derivation of the elimination rule in HOL.

∃x :σ.φ

[φ]
...
C

x /∈ FV(C , ass.)
C

∃x :σ.φ

(∀x :σ.φ→ C) → C

[φ]
...
C

∀x :σ.φ→ C

C

Equality

Equality is definable in higher order logic:
t and q terms are equal if they share the same properties
(Leibniz equality)

Definition in HOL (for t, q : A):

t=Aq := ∀P:A→∗.(Pt → Pq)

▶ This equality is reflexive and transitive (easy)

▶ It is also symmetric(!) Trick: find a “smart” predicate P

Exercise: Prove reflexivity, transitivity and symmetry of =A.

CC versus HOL

Question: is the type theory CC really isomorphic with HOL?
No: only if we disambiguate ∗ into Set and Prop (or ∗s and ∗p).
This is the type theory of Coq.

Properties of CC

▶ Uniqueness of types
If Γ ⊢ M : A and Γ ⊢ M : B, then A=βB.

▶ Subject Reduction
If Γ ⊢ M : A and M →β N, then Γ ⊢ N : A.

▶ Strong Normalization
If Γ ⊢ M : A, then all β-reductions from M terminate.

Proof of SN is a really difficult.

Decidability Questions

Γ ⊢ M : σ? TCP
Γ ⊢ M : ? TSP
Γ ⊢? : σ TIP

For CC:

▶ TIP is undecidable

▶ TCP/TSP: simultaneously.
The type checking algorithm is close to the one for λP. (In
λP we had a judgement of correct context; this form of
judgement could also be introduced for CC)

