
Lambda-Calculus and Type Theory

ISR 2024
Obergurgl, Austria

Herman Geuvers & Niels van der Weide

Radboud University Nijmegen, The Netherlands

Lecture 8

Meta theory of type systems and type checking algorithm



What do we want to prove about type systems?

The Meta Theory of type theory. Central result that we want:

▶ Decidability of Typing, which comes in two forms:
▶ Type Checking: Given Γ,M,A, is it the case that Γ ⊢ M : A?
▶ Type Synthesis: Given Γ,M, can we compute an A such that

Γ ⊢ M : A and otherwise decide that there is no such A?

These problems are equivalent.



Meta theory of type systems

More basic properties we want (and some are needed for Decidability of
typing)

▶ Subject Reduction (or Closure, or Preservation of typing)
If Γ ⊢ M : A and M →β N, then Γ ⊢ N : A

▶ Church-Rosser (next lecture: for β-reduction)
If M ↠β P1 and M ↠β P2, then ∃Q(P1 ↠β Q ∧ P2 ↠β Q).

▶ Normalization (two lectures ahead)
▶ Weak Normalization, WN, a term M is WN if ∃P ∈ NF(M ↠β P).

NB. NF is the set of normal forms, terms that cannot be reduced.
▶ Strong Normalization, SN, a term M is SN if

¬∃(Pi )i∈N(M = P0 →β P1 →β P2 →β . . .).

▶ Progress
If ⊢ M : A, then either ∃P(M →β P) or M is a value



Subject Reduction

Lemma If Γ ⊢ M : A and M →β N, then Γ ⊢ N : A

Proof By induction on M. The base case is when
M = (λx :B.P)Q →β P[x := Q] = N. This is also the only interesting
case. It goes roughly as follows

Γ, x :B ⊢ P : C

Γ ⊢ λx :B.P : Πx :B.C Γ ⊢ Q : B

Γ ⊢ (λx :B.P)Q : C [x := Q]

And we need to prove that Γ ⊢ P[x := Q] : C [x := Q].

This is proved by proving a Substitution Lemma:
Substitution Lemma: If Γ, x : B ⊢ P : C and Γ ⊢ Q : B, then
Γ ⊢ P[x := Q] : C [x := Q].



Substitution Lemma

Substitution Lemma: If Γ, x : B ⊢ P : C and Γ ⊢ Q : B, then
Γ ⊢ P[x := Q] : C [x := Q].
Proof By induction on the derivation of Γ, x : B ⊢ P : C .

But that doesn’t work: one has to prove something slightly more general.
Substitution Lemma: If Γ, x : B∆ ⊢ P : C and Γ ⊢ Q : B, then
Γ,∆[x := Q] ⊢ P[x := Q] : C [x := Q].
Proof By induction on the derivation of Γ, x : B,∆ ⊢ P : C .



Type Checking for λP

Define algorithms Ok(−) and Type (−) simultaneously:

▶ Ok(−) takes a context and returns ‘true’ or ‘false’

▶ Type (−) takes a context and a term and returns a term or ‘false’.

The type synthesis algorithm Type (−) is sound if (for all Γ and M)

TypeΓ(M) = A =⇒ Γ ⊢ M : A

The type synthesis algorithm Type (−) is complete if (for all Γ, M and
A)

Γ ⊢ M : A =⇒ TypeΓ(M) =β A

▶ A proof assistant like Coq is based on a type checking algorithm.

▶ The type checking algorithm is the trusted kernel of Coq



Ok(<>) = ‘true’

Ok(Γ, x :A) = TypeΓ(A) ∈ {∗,□},

TypeΓ(x) = if Ok(Γ) and x :A ∈ Γ then A else ‘false’,

TypeΓ(∗) = if Ok(Γ)then □ else ‘false’,

TypeΓ(MN) = if TypeΓ(M) = C and TypeΓ(N) = D

then if C ↠β Πx :A.B and A =β D
then B[x := N] else ‘false’

else ‘false’,



TypeΓ(λx :A.M) = if TypeΓ,x :A(M) = B

then if TypeΓ(Πx :A.B) ∈ {∗,□}
then Πx :A.B else ‘false’

else ‘false’,

TypeΓ(Πx :A.B) = if TypeΓ(A) = ∗ and TypeΓ,x :A(B) = s

then s else ‘false’



Soundness and Completeness

Soundness
TypeΓ(M) = A =⇒ Γ ⊢ M : A

Completeness

Γ ⊢ M : A =⇒ TypeΓ(M) =β A

As a consequence:

TypeΓ(M) = ‘false’ =⇒ M is not typable in Γ

NB 1. Completeness implies that Type terminates on all well-typed
terms. We want that Type terminates on all pseudo terms.
NB 2. Completeness only makes sense if we have uniqueness of types
(Otherwise: let Type (−) generate a set of possible types)



Termination

We want Type (−) to terminate on all inputs.
Interesting cases: λ-abstraction and application:

TypeΓ(λx :A.M) = if TypeΓ,x :A(M) = B

then if TypeΓ(Πx :A.B) ∈ {∗,□}
then Πx :A.B else ‘false’

else ‘false’,

! Recursive call is not on a smaller term!
Replace the side condition

if TypeΓ(Πx :A.B) ∈ {∗,□}

by
if TypeΓ(A) ∈ {∗}



Termination

We want Type (−) to terminate on all inputs.
Interesting cases: λ-abstraction and application:

TypeΓ(MN) = if TypeΓ(M) = C and TypeΓ(N) = D

then if C ↠β Πx :A.B and A =β D
then B[x := N] else ‘false’

else ‘false’,

! Need to decide β-reduction and β-equality!
For this case, termination follows from:

▶ Soundness of Type and

▶ Decidability of equality on well-typed terms.

This decidability of equality follows from SN (strong normalization) and
CR (Church-Rosser property) – to be discussed in later lectures.


