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Church-Rosser property



Todays lecture

▶ What do we want to prove about type systems?
Meta Theory

▶ Church-Rosser (confluence) of reduction



Church-Rosser property, CR
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Church-Rosser Theorem for β-reduction, CRβ .
If M ↠β P1 and M ↠β P2, then ∃Q(P1 ↠β Q ∧ P2 ↠β Q)

NB. M ↠ P denotes the reflexive transitive closure of M → P, that is:
M ↠ P iff there is a multi-step (0 or more) reduction from M to P.

We will prove the Church-Rosser Theorem for β-reduction in this lecture.



Church-Rosser (for β) example

(λx .y x x)(I I)



General setting: Rewriting systems

Definition A rewriting system is a pair (A,→R), with A a set and
→R⊆ A× A a relation on A.
Some notation:

▶ a →R a′ if (a, a′) ∈→R .

▶ ↠R denotes the reflexive transitive closure of →R . (Multistep
rewriting; 0 or more steps of →R)

▶ =R denotes the symmetric transitive closure of ↠R . (Smallest
equivalence relation containing ↠R .)
This is similar to β-reduction in λ-calculus, where we have →β , ↠β

and =β .

▶ a ∈ A is in →R -normal form if ¬∃b ∈ A(a →R b).



How can one prove the Church-Rosser property? (I)
Definition The rewriting system (A,→R) satisfies the Diamond
Property, DP, if

∀a, b1, b2 ∈ A(a →R b1 ∧ a →R b2 =⇒ ∃c ∈ A(b1 →R c ∧ b2 →R c)).

In a diagram:
a

b1
<

b2

>

c
<

>

Lemma DP(→R) implies CR(→R)
Proof



How can one prove the Church-Rosser property? (II)
Definition The rewriting system (A,→R) satisfies the Weak
Church-Rosser Property, WCR, if

∀a, b1, b2 ∈ A(a →R b1 ∧ a →R b2 =⇒ ∃c ∈ A(b1 ↠R c ∧ b2 ↠R c)).
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>

c
<<

>>

Note!: WCR(→R) does not imply CR(→R)

But we do have
Newman’s Lemma WCR(→R) + SN(→R) implies CR(→R)

But for type theory, we need first CR(→β), which will be used in the
meta theory and in the proof of SN(→β).



Intermezzo: proof of Newman’s Lemma
Newman’s Lemma WCR+ SN implies CR
Proof Constructive proof. By induction on M ∈ SN, we prove that M is
CR.

M ∈ NF
(base)

M ∈ SN

∀P, (if M →R P then P ∈ SN)
(step)

M ∈ SN



Corollaries of the Church-Rosser property
Theorem CR(→R) implies UN(→R) (Uniqueness of Normal forms)
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If P1 and P2 are in normal form, then P1 = P2, due to CR.

Theorem CR(→R) + SN(→R) implies =R is decidable.

Proof: To decide a =R b, just rewrite a and b until you find their
normal forms a′ and b′. Due to UN (which follows form CR), we have
a =R b iff a′ = b′.

NB. Decidability of =β is crucial for decidability of type checking!
Remember the conversion rule:

Γ ⊢ M : A Γ ⊢ B : s
A =β B

Γ ⊢ M : B



We prove CR(β) for untyped λ-calculus
Untyped λ-calculus

M,N ::= x | M N | λx .M

Reduction (inductive definition):

(β)
(λx .M)P →β M[x := P]

M →β M ′

(app-l)
M P →β M ′ P

M →β M ′

(λ)
λx .M →β λx .M ′

M →β M ′

(app-r)
P M →β P M ′

NB. DP(β) fails due to redex erasure or redex duplication:

(λx .y)(I I) (λx .y x x)(I I)



Parallel reduction in untyped λ-calculus
We prove CR(β) using parallel reduction, a method due to Tait and
Martin-Löf and refined by Takahashi.
Parallel reduction M =⇒ P allows to contract several redexes in M in
one step. It can be defined inductively.

Definition

M =⇒ M ′ P =⇒ P ′

(β)
(λx .M)P =⇒ M ′[x := P ′]

M =⇒ M ′ P =⇒ P ′

(app)
M P =⇒ M ′ P ′

M =⇒ M ′

(λ)
λx .M =⇒ λx .M ′

(var)
x =⇒ x

Examples:

(λx .y x x)(I I) (λx .x (x I))(I I)



Properties of parallel reduction
M =⇒ M ′ P =⇒ P ′

(β)
(λx .M)P =⇒ M ′[x := P ′]

M =⇒ M ′ P =⇒ P ′

(app)
M P =⇒ M ′ P ′

M =⇒ M ′

(λ)
λx .M =⇒ λx .M ′

(var)
x =⇒ x

Theorem

1. M =⇒ M
The proof is by induction on M.

2. If M →β P, then M =⇒ P
The proof is by induction on the derivation, using (1).

3. If M =⇒ P, then M ↠β P.
The proof is by induction on the derivation.



Parallel reduction satisfies a strong Diamond Property (I)

Theorem
∀M ∃Q ∀P (if M =⇒ P then P =⇒ Q).

This immediately implies DP(=⇒) (and thereby CR(β)).
We can even define this Q inductively from M; it will be called M∗.
So we have

∀M,P (if M =⇒ P then P =⇒ M∗).

Note: This implies ∀M (M =⇒ M∗).

Definition

x∗ := x

(λx .M)∗ := λx .M∗

((λx .P)N)∗ := P∗[x := N∗]

(M N)∗ := M∗ N∗ if M ̸= λx .P (M is not a λ-abstraction)



Parallel reduction satisfies a strong Diamond Property (II)

Theorem
∀M,P (if M =⇒ P then P =⇒ M∗).

Proof by induction on the derivation of M =⇒ P. There are 4 cases.
We treat 3 of them.

case (1)
(var)

x =⇒ x

Then indeed x =⇒ x∗ (because x∗ = x).

case (2)
M =⇒ M ′

(λ)
λx .M =⇒ λx .M ′

IH: M ′ =⇒ M∗. We need to prove: λx .M ′ =⇒ (λx .M)∗

We have (λx .M)∗ = λx .M∗.
λx .M ′ =⇒ λx .M∗ follows immediately from IH and the definition of =⇒.



Parallel reduction satisfies a strong Diamond Property (IV)

Theorem
∀M,P (if M =⇒ P then P =⇒ M∗).

Proof continued

case (4)
M =⇒ M ′ P =⇒ P ′

(λx .M)P =⇒ M ′[x := P ′]

IH: M ′ =⇒ M∗ and P ′ =⇒ P∗.
We need to prove: M ′[x := P ′] =⇒ ((λx .M)P)∗ = M∗[x := P∗].

To prove this we need a separate

Substitution Lemma If M =⇒ M ′ and P =⇒ P ′, then
M[x := P] =⇒ M ′[x := P ′].

This is proved by induction on the structure of M.



DP(=⇒) implies CR(β)
The proof that DP(=⇒) implies CR(β) follows from the properties we
have established:
1. If M →β P, then M =⇒ P.
2. If M =⇒ P, then M ↠β P.
3. If M =⇒ P, then P =⇒ M∗.



Yet another example

(λz .z z) (I (I x))



The same example again

x∗ := x

(λx .M)∗ := λx .M∗

(M N)∗ := P∗[x := N∗] if M = λx .P

:= M∗ N∗ otherwise.

(λz .z z) (I (I x))



This is a flexible proof of Church-Rosser

▶ Methods works for proving CR for reduction in Combinatory Logic

▶ Methods works for proving CR for β on pseudo-terms of Pure Type
Systems

▶ Method extends to typed lambda calculus with data types, for
example natural numbers:

M,N := x | M N | λx .M | 0 | sucM | nrecM N P

with nrecM N 0 → M

nrecM N (sucP) → N P (nrecM N P)

▶ Method extends to η-reduction:

λx .M x →η M if x /∈ FV(M)


