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Church-Rosser property



Todays lecture

» What do we want to prove about type systems?
Meta Theory

» Church-Rosser (confluence) of reduction



Church-Rosser property, CR

Q

CHURCH-ROSSER THEOREM for B-reduction, CRg.
If M —>g Py and M —g P>, then HQ(Pl —3 QAP —g Q)

NB. M — P denotes the reflexive transitive closure of M — P, that is:
M —» P iff there is a multi-step (0 or more) reduction from M to P.

We will prove the Church-Rosser Theorem for 3-reduction in this lecture.



Church-Rosser (for ) example

(Ax.y xx)(11)



General setting: Rewriting systems

DEFINITION A rewriting system is a pair (A, —g), with A a set and
—rC A x A a relation on A.
Some notation:
> a—gad if(a,d) e—r.
> —»r denotes the reflexive transitive closure of —. (Multistep
rewriting; 0 or more steps of —g)
» =g denotes the symmetric transitive closure of —»g. (Smallest
equivalence relation containing —g.)
This is similar to S-reduction in A-calculus, where we have —3, —4
and =8-
> a¢€ Aisin —g-normal form if =3b € A(a —r b).



How can one prove the Church-Rosser property? (I)

DEFINITION The rewriting system (A, —g) satisfies the Diamond
Property, DP, if

Va,b1,bs € A(a —r b1 ANa—g by = Jc € A(by —r c A by =g C)).

In a diagram:
a

b1 b2

\\A b/
C
LEMMA DP(—g) implies CR(—g)
PrRoOF



How can one prove the Church-Rosser property? (Il)
DEFINITION The rewriting system (A, —g) satisfies the Weak
Church-Rosser Property, WCR, if

Va,bl,bgeA(a—m biANa—r b = HCEA(bl —gr CA by —»RC)).

a

b1 b2

C
Note!: WCR(—g) does not imply CR(—g)

But we do have
NEWMAN’S LEMMA WCR(—Rg) + SN(—r) implies CR(—r)

But for type theory, we need first CR(—g), which will be used in the
meta theory and in the proof of SN(—3).



Intermezzo: proof of Newman’'s Lemma
NEwWMAN’S LEMMA WCR + SN implies CR

PrOOF Constructive proof. By induction on M € SN, we prove that M is
CR.

M e NF VP, (if M —r P then P € SN)
(base) (step)
M € SN M € SN




Corollaries of the Church-Rosser property
THEOREM CR(—g) implies UN(—g) (Uniqueness of Normal forms)

M

£ N\
P P>

If P; and P> are in normal form, then P; = P>, due to CR.

THEOREM CR(—Rg) + SN(—g) implies = is decidable.

PROOF: To decide a =g b, just rewrite a and b until you find their
normal forms a’ and b’. Due to UN (which follows form CR), we have
a=gbiffa =",

NB. Decidability of =4 is crucial for decidability of type checking!

Remember the conversion rule:

r=M:A -B:s
r'-m:B

A=5 B



We prove CR(3) for untyped A-calculus

Untyped A-calculus
M;N:=x|MN | x.M

Reduction (inductive definition):

M —B M
P oy M= 7] ) . p 2P
(Ax.M)P =5 M[x := P] MP —5 M P
M —B M’ M —B M
——(A) —— (app-r)
Ax.M =5 Ax.M PM—sPM

NB. DP(/3) fails due to redex erasure or redex duplication:

(Ax.y)(1) (Ax.y xx)(1)



Parallel reduction in untyped A-calculus
We prove CR(/3) using parallel reduction, a method due to Tait and
Martin-Lof and refined by Takahashi.
Parallel reduction M = P allows to contract several redexes in M in
one step. It can be defined inductively.

DEFINITION
M:>M/ P:}Pl (5) M:>M/ Pﬁpl
(Ax.M)P = M'[x := P'] MP— M P’ (app)
M= M
—_— ) (var)
XM = Ix.M X = X
Examples:

(Ax.y xx)(1) (Axx (x1)(11)



Properties of parallel reduction

M= M P=F M= M P= P
; —(8) — (app)
Ax.M)P = M'[x := P'] MP=— M P
M= M
_ (var)
MM = Mx.M’ X=X
THEOREM
1. M=—M

The proof is by induction on M.
2. f M -5 P, then M = P
The proof is by induction on the derivation, using (1).

3. f M= P, then M —3 P.
The proof is by induction on the derivation.



Parallel reduction satisfies a strong Diamond Property (1)

THEOREM
VYM3IQVP (if M= P then P = Q).

This immediately implies DP(=>) (and thereby CR(3)).
We can even define this @ inductively from M; it will be called M*.
So we have

VM, P (if M = P then P = M™).

Note: This implies VM (M = M*).

DEFINITION
x* = x
(Ax.M)* = Ix.M*
(AMx.PYN)" = P*[x:=N"]
(MN)* = M*N*if M#Ax.P (M is not a A-abstraction)



Parallel reduction satisfies a strong Diamond Property (II)

THEOREM
VM, P (if M = P then P = M™).

PROOF by induction on the derivation of M = P. There are 4 cases.
We treat 3 of them.

case (1)
(var)
X —= X
Then indeed x = x* (because x* = x).
case (2)
M= M

_— (A
XM = Ax.M’

IH: M" = M*. We need to prove: Ax.M' = (Ax.M)*
We have (Ax.M)* = Ax.M*.
Ax.M" = Ax.M* follows immediately from IH and the definition of =>.



Parallel reduction satisfies a strong Diamond Property (1V)

THEOREM
VM, P (if M = P then P = M").

PROOF continued
case (4)
M= M P=PF
(Mx.M)P = M'[x := P']

IH: M' = M* and P’ = P*.
We need to prove: M'[x := P'] = ((Ax.M) P)* = M*[x := P*].

To prove this we need a separate

SUBSTITUTION LEMMA If M = M’ and P = P/, then
M[x = P] = M'[x := P’].

This is proved by induction on the structure of M.



DP(=) implies CR(8)
The proof that DP(=>) implies CR() follows from the properties we
have established:
1. If M =3 P, then M = P.
2. f M= P, then M —3 P.
3. If M = P, then P —= M*.



Yet another example

(Az.zz) (1(1x))



The same example again

*

x* = x
(Ax.M)* = Ix.M*

(MN)* = P*[x:=N]if M=Xx.P
: M* N* otherwise.

(Az.zz) (1(1x))



This is a flexible proof of Church-Rosser

» Methods works for proving CR for reduction in Combinatory Logic

» Methods works for proving CR for 8 on pseudo-terms of Pure Type
Systems

» Method extends to typed lambda calculus with data types, for
example natural numbers:

M,N:=x|MN|Ax.M|0|sucM | nrecMN P

with nrecMNO — M
nrec M N (sucP) — NP (nrecMN P)

» Method extends to n-reduction:

MXMx =, M if x ¢ FV(M)



