
Lambda-Calculus and Type Theory

ISR 2024
Obergurgl, Austria

Herman Geuvers & Niels van der Weide

Radboud University Nijmegen, The Netherlands

Lecture 13

Homotopy Type Theory

1/48



Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory
The Univalence Axiom
Higher Inductive Types

Outlook

2/48



Equality of Mathematical Structures

When are two groups G1 and G2 the same?

Answer 1: When they are equal: G1 = G2.
▶ This is proof irrelevant: the proof carries no data
▶ If G1 = G2, then G1 and G2 have the same properties
▶ In foundations like ZFC: this is how groups are identified

Answer 2: When they are isomorphic: G1 ∼= G2.
▶ This is proof relevant: the information is given by an

isomorphism G1 → G2

▶ We need to prove by hand: G1 and G2 have the same
group-theoretic properties

▶ In practice: this is how we actually identify groups
Note the difference between how groups are identified in
mathematical practice and in the foundations

3/48



Equality of Mathematical Structures

When are two groups G1 and G2 the same?
Answer 1: When they are equal: G1 = G2.
▶ This is proof irrelevant: the proof carries no data
▶ If G1 = G2, then G1 and G2 have the same properties
▶ In foundations like ZFC: this is how groups are identified

Answer 2: When they are isomorphic: G1 ∼= G2.
▶ This is proof relevant: the information is given by an

isomorphism G1 → G2

▶ We need to prove by hand: G1 and G2 have the same
group-theoretic properties

▶ In practice: this is how we actually identify groups
Note the difference between how groups are identified in
mathematical practice and in the foundations

3/48



Equality of Mathematical Structures

When are two groups G1 and G2 the same?
Answer 1: When they are equal: G1 = G2.
▶ This is proof irrelevant: the proof carries no data
▶ If G1 = G2, then G1 and G2 have the same properties
▶ In foundations like ZFC: this is how groups are identified

Answer 2: When they are isomorphic: G1 ∼= G2.
▶ This is proof relevant: the information is given by an

isomorphism G1 → G2

▶ We need to prove by hand: G1 and G2 have the same
group-theoretic properties

▶ In practice: this is how we actually identify groups

Note the difference between how groups are identified in
mathematical practice and in the foundations

3/48



Equality of Mathematical Structures

When are two groups G1 and G2 the same?
Answer 1: When they are equal: G1 = G2.
▶ This is proof irrelevant: the proof carries no data
▶ If G1 = G2, then G1 and G2 have the same properties
▶ In foundations like ZFC: this is how groups are identified

Answer 2: When they are isomorphic: G1 ∼= G2.
▶ This is proof relevant: the information is given by an

isomorphism G1 → G2

▶ We need to prove by hand: G1 and G2 have the same
group-theoretic properties

▶ In practice: this is how we actually identify groups
Note the difference between how groups are identified in
mathematical practice and in the foundations

3/48



Why isomorphisms?

Common practice: mathematical structures are identified up
to isomorphism
▶ Isomorphism is independent of the representation, while

equality is not
▶ So: implementation details are hidden

However:
▶ Usual foundations for mathematics identifies structures up

equality
▶ So: we have to prove by hand that properties are

preserved under isomorphism
▶ In addition, only suitable properties are preserved under

isomorphism

Can we have a foundation of mathematics where
mathematical structures are identified up to isomorphism?

4/48



Why isomorphisms?

Common practice: mathematical structures are identified up
to isomorphism
▶ Isomorphism is independent of the representation, while

equality is not
▶ So: implementation details are hidden

However:
▶ Usual foundations for mathematics identifies structures up

equality
▶ So: we have to prove by hand that properties are

preserved under isomorphism
▶ In addition, only suitable properties are preserved under

isomorphism
Can we have a foundation of mathematics where
mathematical structures are identified up to isomorphism?

4/48



Homotopy type theory

▶ Homotopy type theory (HoTT) is a branch of type theory
▶ Key features: the univalence axiom and higher inductive

types (HITs)
▶ Univalence axiom: allows us to identifies structures up to

isomorphism
▶ HITs: give us access to quotients
▶ HoTT thinks about types in a different way: instead of

viewing types as sets, we view them as spaces

5/48



This lecture

This lecture gives a basic introduction to homotopy type theory
We discuss
▶ The identity type (the J-rule)
▶ Types as spaces
▶ The univalence axiom
▶ An example of a higher inductive type

6/48



Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory
The Univalence Axiom
Higher Inductive Types

Outlook

7/48



The Identity Type

▶ Starting point of HoTT: the identity type
▶ So: what does it mean for two objects to be equal
▶ We shall start by discussing the rules for the identity type.

Note: this part is not specific to HoTT

8/48



Rules for the Identity Type

Formation Rule:

Γ ⊢ A : Type Γ ⊢ x : A Γ ⊢ y : A
Γ ⊢ x =A y : Type

If no confusion arises, we write x = y instead of x =A y
Introduction Rule:

Γ ⊢ A : Type Γ ⊢ x : A
Γ ⊢ reflx : x = x

9/48



Elimination Rule for the Identity Type

Elimination Rule (also known as the J-rule):

Γ, x : A, y : A,p : x = y ⊢ C : Type
Γ, x : A ⊢ c : C[x := x , y := x ,p := reflx ]

Γ ⊢ p : x = y
Γ ⊢ J(C, c,p) : C[x := x , y := y ,p := p]

We have J(C, c, reflx) ≡ c[x := x ].
Slogan: to prove something for all p : x = y , it suffices to prove
it for reflx for all x .

10/48



Elimination Rule for the Identity Type

Elimination Rule (also known as the J-rule):

Γ, x : A, y : A,p : x = y ⊢ C : Type
Γ, x : A ⊢ c : C[x := x , y := x ,p := reflx ]

Γ ⊢ p : x = y
Γ ⊢ J(C, c,p) : C[x := x , y := y ,p := p]

We have J(C, c, reflx) ≡ c[x := x ].
Slogan: to prove something for all p : x = y , it suffices to prove
it for reflx for all x .

10/48



Consequences of the J-rule

With the J-rule, we can show
▶ Symmetry: given x = y , we have y = x

▶ Transitivity: given x = y and y = z, we have x = z
▶ Congruence: given f : A → B and x =A y , we have

f x = f y
▶ Substitution: given a type family B : A → Type, p : x =A y

and x : B(x), we have p∗(x) : B(y).
Each of these is proven in the same way. We only look at
symmetry.

11/48



Consequences of the J-rule

With the J-rule, we can show
▶ Symmetry: given x = y , we have y = x
▶ Transitivity: given x = y and y = z, we have x = z

▶ Congruence: given f : A → B and x =A y , we have
f x = f y

▶ Substitution: given a type family B : A → Type, p : x =A y
and x : B(x), we have p∗(x) : B(y).

Each of these is proven in the same way. We only look at
symmetry.

11/48



Consequences of the J-rule

With the J-rule, we can show
▶ Symmetry: given x = y , we have y = x
▶ Transitivity: given x = y and y = z, we have x = z
▶ Congruence: given f : A → B and x =A y , we have

f x = f y

▶ Substitution: given a type family B : A → Type, p : x =A y
and x : B(x), we have p∗(x) : B(y).

Each of these is proven in the same way. We only look at
symmetry.

11/48



Consequences of the J-rule

With the J-rule, we can show
▶ Symmetry: given x = y , we have y = x
▶ Transitivity: given x = y and y = z, we have x = z
▶ Congruence: given f : A → B and x =A y , we have

f x = f y
▶ Substitution: given a type family B : A → Type, p : x =A y

and x : B(x), we have p∗(x) : B(y).

Each of these is proven in the same way. We only look at
symmetry.

11/48



Consequences of the J-rule

With the J-rule, we can show
▶ Symmetry: given x = y , we have y = x
▶ Transitivity: given x = y and y = z, we have x = z
▶ Congruence: given f : A → B and x =A y , we have

f x = f y
▶ Substitution: given a type family B : A → Type, p : x =A y

and x : B(x), we have p∗(x) : B(y).
Each of these is proven in the same way. We only look at
symmetry.

11/48



Symmetry (formal)

Goal: given p : x = y , we have y = x

Recall the J-rule:

Γ, x : A, y : A,p : x = y ⊢ C : Type
Γ, x : A ⊢ c : C[x := x , y := x ,p := reflx ]

Γ ⊢ p : x = y
Γ ⊢ J(C, c,p) : C[x := x , y := y ,p := p]

Take
▶ C ≡ y = x
▶ We need c : x = x , for which we take reflx

With this, we get
J(C, c,p) : y = x

12/48



Symmetry (formal)

Goal: given p : x = y , we have y = x
Recall the J-rule:

Γ, x : A, y : A,p : x = y ⊢ C : Type
Γ, x : A ⊢ c : C[x := x , y := x ,p := reflx ]

Γ ⊢ p : x = y
Γ ⊢ J(C, c,p) : C[x := x , y := y ,p := p]

Take
▶ C ≡ y = x
▶ We need c : x = x , for which we take reflx

With this, we get
J(C, c,p) : y = x

12/48



Symmetry (formal)

Goal: given p : x = y , we have y = x
Recall the J-rule:

Γ, x : A, y : A,p : x = y ⊢ C : Type
Γ, x : A ⊢ c : C[x := x , y := x ,p := reflx ]

Γ ⊢ p : x = y
Γ ⊢ J(C, c,p) : C[x := x , y := y ,p := p]

Take
▶ C ≡ y = x
▶ We need c : x = x , for which we take reflx

With this, we get
J(C, c,p) : y = x

12/48



Symmetry (informal)

Goal: given p : x = y , we have y = x
▶ Assume that p is reflexivity
▶ Then we must show x = x
▶ We use reflexivity

13/48



Symmetry (in Coq)

Definition sym {A : Type} {x y : A} (p : x = y) : y = x.
Proof.
induction p.
reflexivity.

Defined.

14/48



Iterating Identity Types

Note:
▶ The identity type is polymorphic in the type A
▶ So: given p,q : x =A y , we also have a type p =x=Ay q

We can iterate this as much as we want:

h =p=x=Ay q s

15/48



Does the following principle hold?

▶ In mathematics, equality is a proposition
▶ We do not distinguish different proofs of equality in

mathematics
▶ We can translate this into type theory: for all types A, terms

x , y : A and proofs p,q : x =A y , we have p =x=y q
▶ This principle known as Unique of Identity Proofs (UIP)

Does UIP hold in type theory?

Well, not necessarily

16/48



Does the following principle hold?

▶ In mathematics, equality is a proposition
▶ We do not distinguish different proofs of equality in

mathematics
▶ We can translate this into type theory: for all types A, terms

x , y : A and proofs p,q : x =A y , we have p =x=y q
▶ This principle known as Unique of Identity Proofs (UIP)

Does UIP hold in type theory?
Well, not necessarily

16/48



But what is a type?

It depends on how we interpret types
▶ If we interpret types as sets in set theory, then UIP holds
▶ However, there are other ways to interpret types in which

UIP does not hold
▶ In such interpretation, other interesting principles might

hold (like univalence)
We shall look at an interpretation of types as topological spaces

17/48



Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory
The Univalence Axiom
Higher Inductive Types

Outlook

18/48



Types and Topology

Type Theory Homotopy Theory
Types Topological space

Dependent types Fibrations
Terms Points

Identity type Paths
Identity of identities Homotopies

19/48



Types and Terms

20/48



Terms of the Identity Type

21/48



Dependent Types

22/48



Transport

23/48



Homotopies

24/48



UIP does not hold!

The circle cannot be filled.
So: UIP does not hold!

25/48



Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory
The Univalence Axiom
Higher Inductive Types

Outlook

26/48



Proof Relevance of Identity

▶ From now on, we shall interpret types as spaces
▶ More specifically, we do not assume UIP
▶ As a consequence, statements like p = q are not

vacuously true for p,q : x =A y
In this context, the J-rule is often referred to as path induction

27/48



Computaton Rule for the Identity Type

Recall:

Γ, x : A, y : A,p : x = y ⊢ C : Type
Γ, x : A ⊢ c : C[x := x , y := x ,p := reflx ]

Γ ⊢ p : x = y
Γ ⊢ J(C, c,p) : C[x := x , y := y ,p := p]

Computation Rule: We have J(C, c, reflx) ≡ c[x/x ].

28/48



Operations on the Identity Type

We have the following operations on the identity type
▶ Inverse: given p : x = y , we have p−1 : y = x (symmetry)

▶ Concatenation: given p : x = y and q : y = z, we have
p · q : x = z (transitivity)

▶ Application: given f : A → B and p : x =A y , we have
apf (p) : f x = f y (congruence)

▶ Transport: given a type family B : A → Type, p : x =A y
and x : B(x), we have p∗(x) : B(y) (substitution).

Reduction rules
▶ refl−1

x ≡ reflx

▶ reflx · q ≡ q
▶ apf (reflx) ≡ reflf x

▶ (reflx)∗(x) ≡ x

29/48



Operations on the Identity Type

We have the following operations on the identity type
▶ Inverse: given p : x = y , we have p−1 : y = x (symmetry)
▶ Concatenation: given p : x = y and q : y = z, we have

p · q : x = z (transitivity)

▶ Application: given f : A → B and p : x =A y , we have
apf (p) : f x = f y (congruence)

▶ Transport: given a type family B : A → Type, p : x =A y
and x : B(x), we have p∗(x) : B(y) (substitution).

Reduction rules
▶ refl−1

x ≡ reflx

▶ reflx · q ≡ q
▶ apf (reflx) ≡ reflf x

▶ (reflx)∗(x) ≡ x

29/48



Operations on the Identity Type

We have the following operations on the identity type
▶ Inverse: given p : x = y , we have p−1 : y = x (symmetry)
▶ Concatenation: given p : x = y and q : y = z, we have

p · q : x = z (transitivity)
▶ Application: given f : A → B and p : x =A y , we have

apf (p) : f x = f y (congruence)

▶ Transport: given a type family B : A → Type, p : x =A y
and x : B(x), we have p∗(x) : B(y) (substitution).

Reduction rules
▶ refl−1

x ≡ reflx

▶ reflx · q ≡ q
▶ apf (reflx) ≡ reflf x

▶ (reflx)∗(x) ≡ x

29/48



Operations on the Identity Type

We have the following operations on the identity type
▶ Inverse: given p : x = y , we have p−1 : y = x (symmetry)
▶ Concatenation: given p : x = y and q : y = z, we have

p · q : x = z (transitivity)
▶ Application: given f : A → B and p : x =A y , we have

apf (p) : f x = f y (congruence)
▶ Transport: given a type family B : A → Type, p : x =A y

and x : B(x), we have p∗(x) : B(y) (substitution).

Reduction rules
▶ refl−1

x ≡ reflx

▶ reflx · q ≡ q
▶ apf (reflx) ≡ reflf x

▶ (reflx)∗(x) ≡ x

29/48



Operations on the Identity Type

We have the following operations on the identity type
▶ Inverse: given p : x = y , we have p−1 : y = x (symmetry)
▶ Concatenation: given p : x = y and q : y = z, we have

p · q : x = z (transitivity)
▶ Application: given f : A → B and p : x =A y , we have

apf (p) : f x = f y (congruence)
▶ Transport: given a type family B : A → Type, p : x =A y

and x : B(x), we have p∗(x) : B(y) (substitution).
Reduction rules
▶ refl−1

x ≡ reflx

▶ reflx · q ≡ q
▶ apf (reflx) ≡ reflf x

▶ (reflx)∗(x) ≡ x

29/48



Laws for Operations on the Identity Type

We have the following equalities:
▶ p · refly = p
▶ p · (q · r) = (p · q) · r
▶ p · p−1 = reflx

▶ p−1 · p = refly

▶ apf (p · q) = apf (p) · apf (q)
▶ (p · q)∗(x) = q∗(p∗(x))

Here p : x = y , q : y = z, and r : z = a.
These follow by the J-rule.

We demonstrate this for p · refly = p (right unitality).

30/48



Laws for Operations on the Identity Type

We have the following equalities:
▶ p · refly = p
▶ p · (q · r) = (p · q) · r
▶ p · p−1 = reflx

▶ p−1 · p = refly

▶ apf (p · q) = apf (p) · apf (q)
▶ (p · q)∗(x) = q∗(p∗(x))

Here p : x = y , q : y = z, and r : z = a.
These follow by the J-rule.
We demonstrate this for p · refly = p (right unitality).

30/48



Right Unitality (formal)
Goal: given p : x = y , we have p · refly = p

Recall the J-rule:

Γ, x : A, y : A,p : x = y ⊢ C : Type
Γ, x : A ⊢ c : C[x := x , y := x ,p := reflx ]

Γ ⊢ p : x = y
Γ ⊢ J(C, c,p) : C[x := x , y := y ,p := p]

Take
▶ C ≡ p · refly = p
▶ For all x , we need an inhabitant of reflx · reflx = reflx

▶ Note: reflx · reflx reduces to reflx , so it holds by reflexivity
With this, we get

J(C, c,p) : p · refly = p

31/48



Right Unitality (formal)
Goal: given p : x = y , we have p · refly = p
Recall the J-rule:

Γ, x : A, y : A,p : x = y ⊢ C : Type
Γ, x : A ⊢ c : C[x := x , y := x ,p := reflx ]

Γ ⊢ p : x = y
Γ ⊢ J(C, c,p) : C[x := x , y := y ,p := p]

Take
▶ C ≡ p · refly = p
▶ For all x , we need an inhabitant of reflx · reflx = reflx

▶ Note: reflx · reflx reduces to reflx , so it holds by reflexivity
With this, we get

J(C, c,p) : p · refly = p

31/48



Right Unitality (formal)
Goal: given p : x = y , we have p · refly = p
Recall the J-rule:

Γ, x : A, y : A,p : x = y ⊢ C : Type
Γ, x : A ⊢ c : C[x := x , y := x ,p := reflx ]

Γ ⊢ p : x = y
Γ ⊢ J(C, c,p) : C[x := x , y := y ,p := p]

Take
▶ C ≡ p · refly = p
▶ For all x , we need an inhabitant of reflx · reflx = reflx

▶ Note: reflx · reflx reduces to reflx , so it holds by reflexivity
With this, we get

J(C, c,p) : p · refly = p

31/48



Right Unitality (informal)

Goal: given p : x = y , we have p · refly = p
▶ Assume that p is reflexivity
▶ Then we must show reflx · reflx = reflx

▶ Since reflx · reflx reduces to reflx , we can use reflexivity

In Coq: again a matter of using the induction tactic.

32/48



Right Unitality (informal)

Goal: given p : x = y , we have p · refly = p
▶ Assume that p is reflexivity
▶ Then we must show reflx · reflx = reflx

▶ Since reflx · reflx reduces to reflx , we can use reflexivity
In Coq: again a matter of using the induction tactic.

32/48



Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory
The Univalence Axiom
Higher Inductive Types

Outlook

33/48



Key Features Homotopy Type Theory

In Homotopy Type Theory (HoTT), we view
▶ types as spaces
▶ terms as points
▶ identities as paths
▶ identities of identities as homotopies

HoTT also offers 2 new features to type theory:
▶ The univalence axiom
▶ Higher inductive types

34/48



The Univalence Axiom

▶ Key feature of HoTT: the univalence axiom
▶ Intuition: two types are the same if they are isomorphism
▶ This is some kind of representation independence
▶ If you can prove two representations are equivalent, then

they can be replaced by each other
Note: in HoTT, we say equivalence instead of isomorphism

35/48



Equivalences

Definition
Let f : A → B be a function.
▶ The fiber fibf (y) of f along y : B is the type∑

x :A

f (x) = y

▶ So: an inhabitant of fibf (y) is a pair x : A together with a
path f (x) = y

Definition
We say that f is an equivalence if
▶ for all y : B the type fibf (y) is inhabited (surjective)
▶ all x , y : fibf (y) are equal (injective)

The type A ≃ B consists of maps f : A → B together with a
proof that f is an equivalence.

36/48



Equivalences

Definition
Let f : A → B be a function.
▶ The fiber fibf (y) of f along y : B is the type∑

x :A

f (x) = y

▶ So: an inhabitant of fibf (y) is a pair x : A together with a
path f (x) = y

Definition
We say that f is an equivalence if
▶ for all y : B the type fibf (y) is inhabited (surjective)
▶ all x , y : fibf (y) are equal (injective)

The type A ≃ B consists of maps f : A → B together with a
proof that f is an equivalence.

36/48



The Univalence Axiom

Proposition
The identity map, which sends every x to x, is an equivalence.

Proposition
For all types A,B : Type, we have a map
idtoequiv : A = B → A ≃ B.

Axiom (Univalence Axiom)
The map idtoequiv : A = B → A ≃ B is an equivalence.
Intuitively: (A = B) = (A ≃ B)

37/48



UIP versus Univalence

Assuming univalence:
▶ There are two equivalences Bool ≃ Bool
▶ So: there are two paths Bool = Bool
▶ This contradicts UIP!

Univalence and UIP provide different perspectives on type
theory

38/48



What are higher inductive types?

Higher inductive types are an extension of inductive types
where we can have constructors for points, paths,
homotopies, and so on.
We can use higher inductive types to define:
▶ Topological spaces, like the circle or the interval
▶ Quotient types
▶ Free algebraic structures (free group, polynomial ring)

We shall only look at a simple example: the interval

39/48



The Interval

Inductive interval : Type :=
| 0 : interval
| 1 : interval
| seg : 0 = 1.

Note that Coq does not natively support higher inductive
types

What are the rules for the interval?

40/48



The Interval

Inductive interval : Type :=
| 0 : interval
| 1 : interval
| seg : 0 = 1.

Note that Coq does not natively support higher inductive
types
What are the rules for the interval?

40/48



The Interval

41/48



The Introduction Rules

Introduction Rules:

Γ ⊢ 0 : interval

Γ ⊢ 1 : interval

Γ ⊢ seg : 0 = 1

42/48



The Recursion Rule

Before we do induction, let’s do recursion

Γ ⊢ A : Type Γ ⊢ a : A Γ ⊢ b : A Γ ⊢ p : a = b
Γ ⊢ intRecA,a,b,p : interval → A

Computation rules:
▶ intRecA,a,b,p(0) = a
▶ intRecA,a,b,p(1) = b
▶ apintRecA,a,b,p

(seg) = p

43/48



The Recursion Rule

Before we do induction, let’s do recursion

Γ ⊢ A : Type Γ ⊢ a : A Γ ⊢ b : A Γ ⊢ p : a = b
Γ ⊢ intRecA,a,b,p : interval → A

Computation rules:
▶ intRecA,a,b,p(0) = a
▶ intRecA,a,b,p(1) = b
▶ apintRecA,a,b,p

(seg) = p

43/48



The Induction Principle

One might guess that the induction principle might be:

Γ ⊢ A : interval → Type
Γ ⊢ a : A(0)
Γ ⊢ b : A(1)
Γ ⊢ p : a = b

Γ ⊢ intRecA,a,b,p :
∏
(x : interval),A(x)

However, this does not type check!, because a and b have a
different type
Solution: transport

44/48



The Induction Principle

One might guess that the induction principle might be:

Γ ⊢ A : interval → Type
Γ ⊢ a : A(0)
Γ ⊢ b : A(1)
Γ ⊢ p : a = b

Γ ⊢ intRecA,a,b,p :
∏
(x : interval),A(x)

However, this does not type check!, because a and b have a
different type

Solution: transport

44/48



The Induction Principle

One might guess that the induction principle might be:

Γ ⊢ A : interval → Type
Γ ⊢ a : A(0)
Γ ⊢ b : A(1)
Γ ⊢ p : a = b

Γ ⊢ intRecA,a,b,p :
∏
(x : interval),A(x)

However, this does not type check!, because a and b have a
different type
Solution: transport

44/48



The Induction Principle

The induction principle for the interval:

Γ ⊢ A : interval → Type
Γ ⊢ a : A(0)
Γ ⊢ b : A(1)

Γ ⊢ p : seg∗(a) = b
Γ ⊢ intRecA,a,b,p :

∏
(x : interval),A(x)

45/48



Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory
The Univalence Axiom
Higher Inductive Types

Outlook

46/48



More on HoTT

There are many interesting topics in homotopy type theory:
▶ Cubical type theory: how can we compute with univalence?
▶ Synthetic homotopy theory: develop algebraic topology in

HoTT using that types represent spaces
▶ Univalent category theory: develop category theory from a

univalent perspective
▶ Univalence and representation independence
▶ HITs allow us to define more data types, such as finite sets

and finite multisets

47/48



Summary

Main points of this lecture:
▶ The identity type and the J-rule
▶ Using the J-rule to define operations and proving laws for

the identity types
▶ Types as spaces: this connects type theory and topology
▶ The univalence axiom: equality is equivalence
▶ Higher inductive types: defining data types with extra

equalities

48/48


	General Introduction
	The Identity Type
	Types as Spaces
	More on the J-rule
	Homotopy Type Theory
	The Univalence Axiom
	Higher Inductive Types

	Outlook

