Lambda-Calculus and Type Theory ISR 2024 Obergurgl, Austria

Herman Geuvers & Niels van der Weide Radboud University Nijmegen, The Netherlands

Lecture 13 Homotopy Type Theory

Outline

[General Introduction](#page-1-0)

[The Identity Type](#page-5-0)

[Types as Spaces](#page-15-0)

[More on the J-rule](#page-22-0)

[Homotopy Type Theory](#page-28-0) [The Univalence Axiom](#page-29-0) [Higher Inductive Types](#page-33-0)

[Outlook](#page-40-0)

When are two groups G_1 and G_2 the same?

When are two groups G_1 and G_2 the same? Answer 1: **When they are equal**: $G_1 = G_2$.

- ▶ This is **proof irrelevant**: the proof carries no data
- If $G_1 = G_2$, then G_1 and G_2 have the same properties
- \blacktriangleright In foundations like ZFC: this is how groups are identified

When are two groups G_1 and G_2 the same? Answer 1: **When they are equal**: $G_1 = G_2$.

- ▶ This is **proof irrelevant**: the proof carries no data
- If $G_1 = G_2$, then G_1 and G_2 have the same properties
- \blacktriangleright In foundations like ZFC: this is how groups are identified

Answer 2: **When they are isomorphic**: $G_1 \cong G_2$.

- ▶ This is **proof relevant**: the information is given by an isomorphism $G_1 \rightarrow G_2$
- \triangleright We need to prove by hand: G_1 and G_2 have the same **group-theoretic properties**
- \blacktriangleright In practice: this is how we actually identify groups

When are two groups G_1 and G_2 the same? Answer 1: **When they are equal**: $G_1 = G_2$.

- ▶ This is **proof irrelevant**: the proof carries no data
- If $G_1 = G_2$, then G_1 and G_2 have the same properties
- \blacktriangleright In foundations like ZFC: this is how groups are identified

Answer 2: **When they are isomorphic**: $G_1 \cong G_2$.

- ▶ This is **proof relevant**: the information is given by an isomorphism $G_1 \rightarrow G_2$
- \triangleright We need to prove by hand: G_1 and G_2 have the same **group-theoretic properties**

 \blacktriangleright In practice: this is how we actually identify groups Note the difference between how groups are identified in mathematical practice and in the foundations

Why isomorphisms?

Common practice: **mathematical structures are identified up to isomorphism**

- ▶ Isomorphism is **independent of the representation**, while equality is not
- ▶ So: implementation details are hidden

However:

- ▶ Usual foundations for mathematics identifies structures up equality
- \triangleright So: we have to prove by hand that properties are preserved under isomorphism
- ▶ In addition, only suitable properties are preserved under isomorphism

Why isomorphisms?

Common practice: **mathematical structures are identified up to isomorphism**

- ▶ Isomorphism is **independent of the representation**, while equality is not
- ▶ So: implementation details are hidden

However:

- ▶ Usual foundations for mathematics identifies structures up equality
- \triangleright So: we have to prove by hand that properties are preserved under isomorphism
- ▶ In addition, only suitable properties are preserved under isomorphism

Can we have a foundation of mathematics where mathematical structures are identified up to isomorphism?

Homotopy type theory

▶ **Homotopy type theory** (HoTT) is a branch of type theory

- ▶ Key features: the **univalence axiom** and **higher inductive types** (HITs)
- ▶ Univalence axiom: allows us to identifies structures up to isomorphism
- \blacktriangleright HITs: give us access to quotients
- ▶ HoTT thinks about types in a different way: instead of viewing types as sets, we view them as **spaces**

This lecture

This lecture gives a basic introduction to homotopy type theory We discuss

- \blacktriangleright The identity type (the J-rule)
- ▶ Types as spaces
- \blacktriangleright The univalence axiom
- \blacktriangleright An example of a higher inductive type

Outline

[General Introduction](#page-1-0)

- [The Identity Type](#page-5-0)
- [Types as Spaces](#page-15-0)
- [More on the J-rule](#page-22-0)
- [Homotopy Type Theory](#page-28-0) [The Univalence Axiom](#page-29-0) [Higher Inductive Types](#page-33-0)

[Outlook](#page-40-0)

The Identity Type

- \triangleright Starting point of HoTT: the identity type
- \triangleright So: what does it mean for two objects to be equal
- \triangleright We shall start by discussing the rules for the identity type.

Note: this part is not specific to HoTT

Rules for the Identity Type

Formation Rule:

$$
\frac{\Gamma \vdash A : \text{Type} \qquad \Gamma \vdash x : A \qquad \Gamma \vdash y : A}{\Gamma \vdash x =_A y : \text{Type}}
$$

If no confusion arises, we write $x = y$ instead of $x =_A y$ **Introduction Rule:**

$$
\frac{\Gamma \vdash A : \text{Type} \qquad \Gamma \vdash x : A}{\Gamma \vdash \text{refl}_x : x = x}
$$

Elimination Rule for the Identity Type

Elimination Rule (also known as the J-rule):

$$
\begin{aligned}\n\Gamma, x : A, y : A, \rho : x = y \vdash C : \text{Type} \\
\Gamma, x : A \vdash c : C[x := x, y := x, \rho := \text{refl}_x] \\
\frac{\Gamma \vdash p : x = y}{\Gamma \vdash J(C, c, p) : C[x := x, y := y, \rho := \rho]}\n\end{aligned}
$$

We have $J(C, c, \text{refl}_x) \equiv c[x := x]$. **Slogan:** to prove something for all $p : x = y$, it suffices to prove it for refl*^x* for all *x*.

Elimination Rule for the Identity Type

Elimination Rule (also known as the J-rule):

$$
\begin{aligned}\n\Gamma, x : A, y : A, \rho : x = y \vdash C : \text{Type} \\
\Gamma, x : A \vdash c : C[x := x, y := x, \rho := \text{refl}_x] \\
\frac{\Gamma \vdash p : x = y}{\Gamma \vdash J(C, c, \rho) : C[x := x, y := y, \rho := \rho]}\n\end{aligned}
$$

We have $J(C, c, \text{refl}_x) \equiv c[x := x]$. **Slogan:** to prove something for all $p : x = y$, it suffices to prove it for refl*^x* for all *x*.

With the J-rule, we can show

• Symmetry: given $x = y$, we have $y = x$

With the J-rule, we can show

- **Symmetry**: given $x = y$, we have $y = x$
- **Figure 1 Transitivity**: given $x = y$ and $y = z$, we have $x = z$

With the J-rule, we can show

- **Symmetry**: given $x = y$, we have $y = x$
- **Transitivity:** given $x = y$ and $y = z$, we have $x = z$
- ▶ **Congruence**: given $f : A \rightarrow B$ and $x = A$ *y*, we have $f x = f y$

With the J-rule, we can show

- **Symmetry**: given $x = y$, we have $y = x$
- **Transitivity**: given $x = y$ and $y = z$, we have $x = z$
- ▶ **Congruence**: given *f* : *A* → *B* and *x* = *A y*, we have $f x = f y$
- ▶ **Substitution**: given a type family $B : A \rightarrow Type$, $p : x =_A y$ and \overline{x} : *B*(*x*), we have $p_*(\overline{x})$: *B*(*y*).

With the J-rule, we can show

- **Symmetry**: given $x = y$, we have $y = x$
- **Transitivity**: given $x = y$ and $y = z$, we have $x = z$
- ▶ **Congruence**: given *f* : *A* → *B* and *x* = *A y*, we have $f x = f y$
- ▶ **Substitution**: given a type family $B : A \rightarrow Type$, $p : x =_A y$ and \overline{x} : *B*(*x*), we have $p_*(\overline{x})$: *B*(*y*).

Each of these is proven in the same way. We only look at symmetry.

Symmetry (formal)

Goal: given $p : x = y$, we have $y = x$

Symmetry (formal)

Goal: given $p : x = y$, we have $y = x$ Recall the J-rule:

$$
\begin{aligned}\n\Gamma, x : A, y : A, p : x = y \vdash C : \text{Type} \\
\Gamma, x : A \vdash c : C[x := x, y := x, p := \text{refl}_x] \\
\frac{\Gamma \vdash p : x = y}{\Gamma \vdash J(C, c, p) : C[x := x, y := y, p := p]}\n\end{aligned}
$$

Symmetry (formal)

Goal: given $p : x = y$, we have $y = x$ Recall the J-rule:

$$
\begin{aligned}\n\Gamma, x : A, y : A, p : x = y \vdash C : \text{Type} \\
\Gamma, x : A \vdash c : C[x := x, y := x, p := \text{refl}_x] \\
\frac{\Gamma \vdash p : x = y}{\Gamma \vdash J(C, c, p) : C[x := x, y := y, p := p]}\n\end{aligned}
$$

Take

$$
\blacktriangleright C \equiv y = x
$$

 \triangleright We need $c : x = x$, for which we take refl_x With this, we get

$$
\mathsf{J}(C,c,p): y = x
$$

Symmetry (informal)

Goal: given $p : x = y$, we have $y = x$

- ▶ Assume that *p* is reflexivity
- \blacktriangleright Then we must show $x = x$
- \blacktriangleright We use reflexivity

Symmetry (in Coq)

```
Definition sym {A : Type} {x y : A} (p : x = y) : y = x.
Proof.
  induction p.
  reflexivity.
Defined.
```
Iterating Identity Types

Note:

▶ The identity type is **polymorphic** in the type *A*

▶ So: given $p, q : x = A$ *y*, we also have a type $p = x = A$ *y q* We can iterate this as much as we want:

$$
h =_{p = x = A^y} q s
$$

Does the following principle hold?

- \blacktriangleright In mathematics, equality is a proposition
- \triangleright We do not distinguish different proofs of equality in mathematics
- ▶ We can translate this into type theory: for all types *A*, terms *x*, *y* : *A* and proofs $p, q : x = A$ *y*, we have $p = x+y$ *q*

▶ This principle known as **Unique of Identity Proofs (UIP)** Does UIP hold in type theory?

Does the following principle hold?

- \blacktriangleright In mathematics, equality is a proposition
- \triangleright We do not distinguish different proofs of equality in mathematics
- ▶ We can translate this into type theory: for all types *A*, terms *x*, *y* : *A* and proofs $p, q : x = A$ *y*, we have $p = x+y$ *q*

▶ This principle known as **Unique of Identity Proofs (UIP)** Does UIP hold in type theory? Well, not necessarily

But what *is* a type?

It depends on how we **interpret types**

- \blacktriangleright If we interpret types as sets in set theory, then UIP holds
- \blacktriangleright However, there are other ways to interpret types in which UIP does not hold
- \blacktriangleright In such interpretation, other interesting principles might hold (like univalence)

We shall look at an interpretation of types as topological spaces

Outline

[General Introduction](#page-1-0)

[The Identity Type](#page-5-0)

[Types as Spaces](#page-15-0)

[More on the J-rule](#page-22-0)

[Homotopy Type Theory](#page-28-0) [The Univalence Axiom](#page-29-0) [Higher Inductive Types](#page-33-0)

[Outlook](#page-40-0)

Types and Topology

Types and Terms

Terms of the Identity Type

Transport

Homotopies

UIP does not hold!

The circle cannot be filled. So: **UIP does not hold**!

Outline

[General Introduction](#page-1-0)

[The Identity Type](#page-5-0)

[Types as Spaces](#page-15-0)

[More on the J-rule](#page-22-0)

[Homotopy Type Theory](#page-28-0) [The Univalence Axiom](#page-29-0) [Higher Inductive Types](#page-33-0)

[Outlook](#page-40-0)

Proof Relevance of Identity

- \blacktriangleright From now on, we shall interpret types as spaces
- \triangleright More specifically, we do not assume UIP
- \triangleright As a consequence, statements like $p = q$ are not vacuously true for $p, q : x =_A y$

In this context, the J-rule is often referred to as **path induction**

Computaton Rule for the Identity Type

Recall:

$$
\begin{aligned}\n\Gamma, x : A, y : A, p : x = y \vdash C : \text{Type} \\
\Gamma, x : A \vdash c : C[x := x, y := x, p := \text{refl}_x] \\
\begin{array}{c}\n\Gamma \vdash p : x = y \\
\hline\n\Gamma \vdash J(C, c, p) : C[x := x, y := y, p := p]\n\end{array}\n\end{aligned}
$$

Computation Rule: We have $J(C, c, \text{rel}x) \equiv c[X/X].$

We have the following operations on the identity type

▶ **Inverse**: given $p : x = y$, we have $p^{-1} : y = x$ (*symmetry*)

We have the following operations on the identity type

- ▶ **Inverse**: given $p : x = y$, we have $p^{-1} : y = x$ (*symmetry*)
- **Concatenation:** given $p : x = y$ and $q : y = z$, we have $p \cdot q$: $x = z$ (*transitivity*)

We have the following operations on the identity type

- ▶ **Inverse**: given $p : x = y$, we have $p^{-1} : y = x$ (*symmetry*)
- **Concatenation:** given $p : x = y$ and $q : y = z$, we have $p \cdot q$: $x = z$ (*transitivity*)
- ▶ Application: given *f* : *A* → *B* and *p* : *x* = *A y*, we have ap*^f* (*p*) : *f x* = *f y* (*congruence*)

We have the following operations on the identity type

- ▶ **Inverse**: given $p : x = y$, we have $p^{-1} : y = x$ (*symmetry*)
- **Concatenation:** given $p : x = y$ and $q : y = z$, we have $p \cdot q : x = z$ (*transitivity*)
- ▶ Application: given $f : A \rightarrow B$ and $p : x =_A y$, we have ap*^f* (*p*) : *f x* = *f y* (*congruence*)
- **Transport**: given a type family $B : A \rightarrow Type$, $p : x =_A y$ and \overline{x} : $B(x)$, we have $p_*(\overline{x})$: $B(y)$ (*substitution*).

We have the following operations on the identity type

- ▶ **Inverse**: given $p : x = y$, we have $p^{-1} : y = x$ (*symmetry*)
- **Concatenation:** given $p : x = y$ and $q : y = z$, we have $p \cdot q : x = z$ (*transitivity*)
- ▶ Application: given $f : A \rightarrow B$ and $p : x =_A y$, we have ap*^f* (*p*) : *f x* = *f y* (*congruence*)
- **Transport**: given a type family $B : A \rightarrow Type$, $p : x =_A p$ and \overline{x} : $B(x)$, we have $p_*(\overline{x})$: $B(y)$ (*substitution*).

Reduction rules

- \blacktriangleright refl_{*x*}¹ ≡ refl_{*x*}
- \blacktriangleright refl_x · *q* ≡ *q*
- ▶ ap*^f* (refl*^x*) ≡ refl*f x*
- \blacktriangleright (refl_x)_{*}(\overline{X}) $\equiv \overline{X}$

Laws for Operations on the Identity Type

We have the following equalities:

\n- $$
p \cdot \text{refl}_y = p
$$
\n- $p \cdot (q \cdot r) = (p \cdot q) \cdot r$
\n- $p \cdot p^{-1} = \text{refl}_x$
\n- $p^{-1} \cdot p = \text{refl}_y$
\n- $\text{ap}_f(p \cdot q) = \text{ap}_f(p) \cdot \text{ap}_f(q)$
\n- $(p \cdot q)_*(\overline{x}) = q_*(p_*(\overline{x}))$
\n
\nHere $p : x = y$, $q : y = z$, and $r : z = a$.

These follow by the J-rule.

Laws for Operations on the Identity Type

We have the following equalities:

\n- ▶
$$
p \cdot \text{refl}_y = p
$$
\n- ▶ $p \cdot (q \cdot r) = (p \cdot q) \cdot r$
\n- ▶ $p \cdot p^{-1} = \text{refl}_x$
\n- ▶ $p^{-1} \cdot p = \text{refl}_y$
\n- ▶ $ap_f(p \cdot q) = ap_f(p) \cdot ap_f(q)$
\n- ▶ $(p \cdot q)_*(\overline{x}) = q_*(p_*(\overline{x}))$
\n
\nHere $p : x = y, q : y = z$, and $r : z = a$. These follow by the J-rule.

We demonstrate this for $p \cdot \text{refl}_v = p$ (right unitality).

Right Unitality (formal)

Goal: given $p : x = y$, we have $p \cdot \text{refl}_y = p$

Right Unitality (formal)

Goal: given $p : x = y$, we have $p \cdot \text{refl}_y = p$ Recall the J-rule:

$$
\begin{aligned}\n\Gamma, x : A, y : A, p : x = y \vdash C : \text{Type} \\
\Gamma, x : A \vdash c : C[x := x, y := x, p := \text{refl}_x] \\
\frac{\Gamma \vdash p : x = y}{\Gamma \vdash J(C, c, p) : C[x := x, y := y, p := p]}\n\end{aligned}
$$

Right Unitality (formal)

Goal: given $p : x = y$, we have $p \cdot \text{refl}_v = p$ Recall the J-rule:

$$
\begin{aligned}\n\Gamma, x : A, y : A, p : x = y \vdash C : \text{Type} \\
\Gamma, x : A \vdash c : C[x := x, y := x, p := \text{refl}_x] \\
\begin{aligned}\n\Gamma \vdash p : x = y \\
\overline{\Gamma \vdash J(C, c, p) : C[x := x, y := y, p := p]}\n\end{aligned}\n\end{aligned}
$$

Take

▶ $C \equiv p \cdot \text{refl}_V = p$

 \triangleright For all *x*, we need an inhabitant of refl_x · refl_x = refl_x

 \triangleright Note: refl_x · refl_x reduces to refl_x, so it holds by reflexivity With this, we get

$$
\mathsf{J}(C,c,p): p\cdot \mathsf{refl}_y = p
$$

Right Unitality (informal)

Goal: given $p : x = y$, we have $p \cdot \text{refl}_v = p$

- ▶ Assume that *p* is reflexivity
- \blacktriangleright Then we must show refl_x · refl_x = refl_x
- \triangleright Since refl_x · refl_x reduces to refl_x, we can use reflexivity

Right Unitality (informal)

Goal: given $p : x = y$, we have $p \cdot \text{refl}_y = p$

- ▶ Assume that *p* is reflexivity
- \blacktriangleright Then we must show refl_x · refl_x = refl_x
- \triangleright Since refl_x · refl_x reduces to refl_x, we can use reflexivity

In Coq: again a matter of using the induction tactic.

Outline

[General Introduction](#page-1-0)

[The Identity Type](#page-5-0)

[Types as Spaces](#page-15-0)

[More on the J-rule](#page-22-0)

[Homotopy Type Theory](#page-28-0)

[The Univalence Axiom](#page-29-0) [Higher Inductive Types](#page-33-0)

[Outlook](#page-40-0)

Key Features Homotopy Type Theory

In **Homotopy Type Theory (HoTT)**, we view

- ▶ types as **spaces**
- ▶ terms as **points**
- ▶ identities as **paths**
- ▶ identities of identities as **homotopies**

HoTT also offers 2 new features to type theory:

- ▶ The **univalence axiom**
- ▶ **Higher inductive types**

The Univalence Axiom

▶ Key feature of HoTT: **the univalence axiom**

- \blacktriangleright Intuition: two types are the same if they are isomorphism
- ▶ This is some kind of representation independence
- \blacktriangleright If you can prove two representations are equivalent, then they can be replaced by each other

Note: in HoTT, we say **equivalence** instead of isomorphism

Equivalences

Definition

Let $f : A \rightarrow B$ be a function.

 \blacktriangleright The **fiber** fib_f(*y*) of *f* along *y* : *B* is the type

$$
\sum_{x:A}f(x)=y
$$

▶ So: an inhabitant of fib $f(y)$ is a pair $x : A$ together with a path $f(x) = y$

Equivalences

Definition

Let $f : A \rightarrow B$ be a function.

 \blacktriangleright The **fiber** fib_f(y) of *f* along y : *B* is the type

$$
\sum_{x:A}f(x)=y
$$

▶ So: an inhabitant of fib_{*f*}(y) is a pair $x : A$ together with a path $f(x) = y$

Definition We say that *f* is an **equivalence** if

- \triangleright for all $y : B$ the type fib_f(y) is inhabited (*surjective*)
- \blacktriangleright all x, y : fib_f(y) are equal (*injective*)

The type $A \simeq B$ consists of maps $f : A \rightarrow B$ together with a proof that *f* is an equivalence.

The Univalence Axiom

Proposition

The identity map, which sends every x to x, is an equivalence.

Proposition

For all types A, *B* : Type*, we have a map* $idtoequiv$ iv : $A = B \rightarrow A \simeq B$.

Axiom (Univalence Axiom)

The map idtoequiv : $A = B \rightarrow A \simeq B$ *is an equivalence.* Intuitively: $(A = B) = (A \simeq B)$

Assuming univalence:

- ▶ There are two equivalences Bool ≃ Bool
- \triangleright So: there are two paths Bool = Bool
- \blacktriangleright This contradicts UIP!

Univalence and UIP provide different perspectives on type theory

What are higher inductive types?

Higher inductive types are an extension of **inductive types** where we can have constructors for **points**, **paths**, **homotopies**, and so on.

We can use higher inductive types to define:

- \blacktriangleright Topological spaces, like the circle or the interval
- ▶ Quotient types
- \blacktriangleright Free algebraic structures (free group, polynomial ring)

We shall only look at a simple example: the **interval**

The Interval

```
Inductive interval : Type :=
 0 : interval
 1 : interval
 seq : 0 = 1.
```
Note that Coq does not natively support higher inductive types

The Interval

```
Inductive interval : Type :=
 0 : interval
 1 : interval
 seq : 0 = 1.
```
Note that Coq does not natively support higher inductive types

What are the rules for the interval?

The Interval

The Introduction Rules

Introduction Rules:

Γ ⊢ 0 : interval

Γ ⊢ 1 : interval

 $Γ ⊢ seq : 0 = 1$

The Recursion Rule

Before we do induction, let's do recursion

Γ ⊢ *A* : Type Γ ⊢ *a* : *A* Γ ⊢ *b* : *A* Γ ⊢ *p* : *a* = *b* Γ ⊢ intRec*A*,*a*,*b*,*^p* : interval → *A*

The Recursion Rule

Before we do induction, let's do recursion

$$
\frac{\Gamma \vdash A : \text{Type} \qquad \Gamma \vdash a : A \qquad \Gamma \vdash b : A \qquad \Gamma \vdash p : a = b}{\Gamma \vdash \text{intRec}_{A,a,b,p} : \text{interval} \rightarrow A}
$$

Computation rules:

 \overline{a}

 \blacktriangleright intRec_{*A*,*a*,*b*,*p*}(0) = *a*

$$
\blacktriangleright \ \mathsf{intRec}_{A,a,b,p}(1)=b
$$

$$
\blacktriangleright \text{ ap}_{\text{intRec}_{A,a,b,p}}(\text{seg}) = p
$$

One might guess that the induction principle might be:

 $\Gamma \vdash A$: interval \rightarrow Type $Γ ⊢ a : A(0)$ $Γ ⊢ b : A(1)$ Γ ⊢ *p* : *a* = *b* $Γ ⊢$ intRec $_{A,a,b,p}$: $\prod(X : \text{interval}), A(X)$

One might guess that the induction principle might be:

 $\Gamma \vdash A$: interval \rightarrow Type Γ ⊢ *a* : *A*(0) $Γ ⊢ b : A(1)$ Γ ⊢ *p* : *a* = *b* $Γ ⊢$ intRec $_{A,a,b,p}$: $\prod(X : \text{interval}), A(X)$

However, **this does not type check!**, because *a* and *b* have a different type

One might guess that the induction principle might be:

 $\Gamma \vdash A$: interval \rightarrow Type Γ ⊢ *a* : *A*(0) $Γ ⊢ b : A(1)$ Γ ⊢ *p* : *a* = *b* $Γ ⊢$ intRec $_{A,a,b,p}$: $\prod(X : \text{interval}), A(X)$

However, **this does not type check!**, because *a* and *b* have a different type Solution: transport

The induction principle for the interval:

$$
\begin{aligned}\n\Gamma \vdash A : \text{interval} \rightarrow \text{Type} \\
\Gamma \vdash a : A(0) \\
\Gamma \vdash b : A(1) \\
\Gamma \vdash p : \text{seg}_*(a) = b \\
\Gamma \vdash \text{intRec}_{A,a,b,p} : \prod(x : \text{interval}), A(x)\n\end{aligned}
$$

Outline

[General Introduction](#page-1-0)

[The Identity Type](#page-5-0)

[Types as Spaces](#page-15-0)

[More on the J-rule](#page-22-0)

[Homotopy Type Theory](#page-28-0) [The Univalence Axiom](#page-29-0) [Higher Inductive Types](#page-33-0)

[Outlook](#page-40-0)

More on HoTT

There are many interesting topics in homotopy type theory:

- ▶ Cubical type theory: how can we compute with univalence?
- ▶ Synthetic homotopy theory: develop algebraic topology in HoTT using that types represent spaces
- ▶ Univalent category theory: develop category theory from a univalent perspective
- ▶ Univalence and representation independence
- ▶ HITs allow us to define more data types, such as finite sets and finite multisets
Summary

Main points of this lecture:

- ▶ The **identity type** and the **J-rule**
- ▶ Using the J-rule to define operations and proving laws for the identity types
- ▶ **Types as spaces**: this connects type theory and topology
- ▶ The **univalence axiom**: equality is equivalence
- ▶ **Higher inductive types**: defining data types with extra equalities