Lambda-Calculus and Type Theory ISR 2024 Obergurgl, Austria

Herman Geuvers & Niels van der Weide Radboud University Nijmegen, The Netherlands

Lecture 13 Homotopy Type Theory

Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory The Univalence Axiom Higher Inductive Types

Outlook

When are two groups G_1 and G_2 the same?

When are two groups G_1 and G_2 the same? Answer 1: When they are equal: $G_1 = G_2$.

- This is proof irrelevant: the proof carries no data
- If $G_1 = G_2$, then G_1 and G_2 have the same properties
- In foundations like ZFC: this is how groups are identified

When are two groups G_1 and G_2 the same? Answer 1: When they are equal: $G_1 = G_2$.

- This is proof irrelevant: the proof carries no data
- If $G_1 = G_2$, then G_1 and G_2 have the same properties
- In foundations like ZFC: this is how groups are identified

Answer 2: When they are isomorphic: $G_1 \cong G_2$.

- ▶ This is **proof relevant**: the information is given by an isomorphism $G_1 \rightarrow G_2$
- We need to prove by hand: G₁ and G₂ have the same group-theoretic properties
- In practice: this is how we actually identify groups

When are two groups G_1 and G_2 the same? Answer 1: When they are equal: $G_1 = G_2$.

- This is proof irrelevant: the proof carries no data
- If $G_1 = G_2$, then G_1 and G_2 have the same properties
- In foundations like ZFC: this is how groups are identified

Answer 2: When they are isomorphic: $G_1 \cong G_2$.

- ► This is **proof relevant**: the information is given by an isomorphism $G_1 \rightarrow G_2$
- We need to prove by hand: G₁ and G₂ have the same group-theoretic properties

In practice: this is how we actually identify groups

Note the difference between how groups are identified in mathematical practice and in the foundations

Why isomorphisms?

Common practice: mathematical structures are identified up to isomorphism

- Isomorphism is independent of the representation, while equality is not
- So: implementation details are hidden

However:

- Usual foundations for mathematics identifies structures up equality
- So: we have to prove by hand that properties are preserved under isomorphism
- In addition, only suitable properties are preserved under isomorphism

Why isomorphisms?

Common practice: mathematical structures are identified up to isomorphism

- Isomorphism is independent of the representation, while equality is not
- So: implementation details are hidden

However:

- Usual foundations for mathematics identifies structures up equality
- So: we have to prove by hand that properties are preserved under isomorphism
- In addition, only suitable properties are preserved under isomorphism

Can we have a foundation of mathematics where mathematical structures are identified up to isomorphism?

Homotopy type theory

• Homotopy type theory (HoTT) is a branch of type theory

- Key features: the univalence axiom and higher inductive types (HITs)
- Univalence axiom: allows us to identifies structures up to isomorphism
- HITs: give us access to quotients
- HoTT thinks about types in a different way: instead of viewing types as sets, we view them as **spaces**

This lecture

This lecture gives a basic introduction to homotopy type theory We discuss

- The identity type (the J-rule)
- Types as spaces
- The univalence axiom
- An example of a higher inductive type

Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory The Univalence Axiom Higher Inductive Types

Outlook

The Identity Type

- Starting point of HoTT: the identity type
- So: what does it mean for two objects to be equal
- We shall start by discussing the rules for the identity type.

Note: this part is not specific to HoTT

Rules for the Identity Type

Formation Rule:

$$\frac{\Gamma \vdash A : \mathsf{Type} \quad \Gamma \vdash x : A \quad \Gamma \vdash y : A}{\Gamma \vdash x =_A y : \mathsf{Type}}$$

If no confusion arises, we write x = y instead of $x =_A y$ Introduction Rule:

$$\frac{\Gamma \vdash A : \text{Type} \quad \Gamma \vdash x : A}{\Gamma \vdash \text{refl}_x : x = x}$$

Elimination Rule for the Identity Type

Elimination Rule (also known as the J-rule):

$$\begin{array}{c} \Gamma, x : A, y : A, p : x = y \vdash C : \text{Type} \\ \Gamma, x : A \vdash c : C[x := x, y := x, p := \text{refl}_x] \\ \hline \Gamma \vdash p : x = y \\ \hline \Gamma \vdash J(C, c, p) : C[x := x, y := y, p := p] \end{array}$$

We have $J(C, c, refl_x) \equiv c[x := x]$. **Slogan**: to prove something for all p : x = y, it suffices to prove it for refl_x for all x.

Elimination Rule for the Identity Type

Elimination Rule (also known as the J-rule):

$$\begin{array}{c} \Gamma, x : A, y : A, p : x = y \vdash C : \text{Type} \\ \Gamma, x : A \vdash c : C[x := x, y := x, p := \text{refl}_x] \\ \hline \Gamma \vdash p : x = y \\ \hline \Gamma \vdash J(C, c, p) : C[x := x, y := y, p := p] \end{array}$$

We have $J(C, c, refl_x) \equiv c[x := x]$. Slogan: to prove something for all p : x = y, it suffices to prove it for refl_x for all x.

With the J-rule, we can show

Symmetry: given x = y, we have y = x

With the J-rule, we can show

- **Symmetry**: given x = y, we have y = x
- **Transitivity**: given x = y and y = z, we have x = z

With the J-rule, we can show

- Symmetry: given x = y, we have y = x
- **Transitivity**: given x = y and y = z, we have x = z
- Congruence: given $f : A \rightarrow B$ and $x =_A y$, we have f x = f y

With the J-rule, we can show

- Symmetry: given x = y, we have y = x
- **Transitivity**: given x = y and y = z, we have x = z
- **Congruence**: given $f : A \rightarrow B$ and $x =_A y$, we have f x = f y
- ▶ Substitution: given a type family $B : A \rightarrow$ Type, $p : x =_A y$ and $\overline{x} : B(x)$, we have $p_*(\overline{x}) : B(y)$.

With the J-rule, we can show

- Symmetry: given x = y, we have y = x
- **Transitivity**: given x = y and y = z, we have x = z
- **Congruence**: given $f : A \rightarrow B$ and $x =_A y$, we have f x = f y
- ▶ Substitution: given a type family $B : A \rightarrow$ Type, $p : x =_A y$ and $\overline{x} : B(x)$, we have $p_*(\overline{x}) : B(y)$.

Each of these is proven in the same way. We only look at symmetry.

Symmetry (formal)

Goal: given p : x = y, we have y = x

Symmetry (formal)

Goal: given p : x = y, we have y = xRecall the J-rule:

$$\begin{array}{c} \Gamma, x : A, y : A, p : x = y \vdash C : \text{Type} \\ \Gamma, x : A \vdash c : C[x := x, y := x, p := \text{refl}_x] \\ \hline \Gamma \vdash p : x = y \\ \hline \Gamma \vdash J(C, c, p) : C[x := x, y := y, p := p] \end{array}$$

Symmetry (formal)

Goal: given p : x = y, we have y = xRecall the J-rule:

$$\begin{array}{c} \Gamma, x : A, y : A, p : x = y \vdash C : \text{Type} \\ \Gamma, x : A \vdash c : C[x := x, y := x, p := \text{refl}_x] \\ \hline \Gamma \vdash p : x = y \\ \hline \Gamma \vdash J(C, c, p) : C[x := x, y := y, p := p] \end{array}$$

Take

$$\blacktriangleright C \equiv y = x$$

• We need c: x = x, for which we take refl_x With this, we get

$$\mathsf{J}(\boldsymbol{C},\boldsymbol{c},\boldsymbol{p}):\boldsymbol{y}=\boldsymbol{x}$$

Symmetry (informal)

Goal: given p : x = y, we have y = x

- Assume that p is reflexivity
- Then we must show x = x
- We use reflexivity

Symmetry (in Coq)

```
Definition sym {A:Type} {x y:A} (p:x = y):y = x.
Proof.
induction p.
reflexivity.
Defined.
```

Iterating Identity Types

Note:

► The identity type is **polymorphic** in the type A

So: given $p, q : x =_A y$, we also have a type $p =_{x=_A y} q$ We can iterate this as much as we want:

$$h =_{p =_{x =_A y} q} s$$

Does the following principle hold?

- In mathematics, equality is a proposition
- We do not distinguish different proofs of equality in mathematics
- We can translate this into type theory: for all types A, terms x, y : A and proofs p, q : x =_A y, we have p =_{x=y} q

This principle known as Unique of Identity Proofs (UIP) Does UIP hold in type theory?

Does the following principle hold?

- In mathematics, equality is a proposition
- We do not distinguish different proofs of equality in mathematics
- We can translate this into type theory: for all types A, terms x, y : A and proofs p, q : x = A y, we have p = x=y q

This principle known as Unique of Identity Proofs (UIP) Does UIP hold in type theory? Well, not necessarily

But what is a type?

It depends on how we interpret types

- If we interpret types as sets in set theory, then UIP holds
- However, there are other ways to interpret types in which UIP does not hold
- In such interpretation, other interesting principles might hold (like univalence)

We shall look at an interpretation of types as topological spaces

Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory The Univalence Axiom Higher Inductive Types

Outlook

Types and Topology

Type Theory	Homotopy Theory
Types	Topological space
Dependent types	Fibrations
Terms	Points
Identity type	Paths
Identity of identities	Homotopies

Types and Terms

Terms of the Identity Type

Transport

Homotopies

UIP does not hold!

The circle cannot be filled. So: **UIP does not hold**!

Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory The Univalence Axiom Higher Inductive Types

Outlook

Proof Relevance of Identity

- From now on, we shall interpret types as spaces
- More specifically, we do not assume UIP
- As a consequence, statements like p = q are not vacuously true for p, q : x =_A y

In this context, the J-rule is often referred to as path induction

Computaton Rule for the Identity Type

Recall:

$$\begin{array}{c} \Gamma, x : A, y : A, p : x = y \vdash C : \text{Type} \\ \Gamma, x : A \vdash c : C[x := x, y := x, p := \text{refl}_x] \\ \hline \Gamma \vdash p : x = y \\ \hline \Gamma \vdash J(C, c, p) : C[x := x, y := y, p := p] \end{array}$$

Computation Rule: We have $J(C, c, refl_x) \equiv c[x/x]$.

We have the following operations on the identity type

▶ **Inverse**: given p : x = y, we have $p^{-1} : y = x$ (symmetry)

We have the following operations on the identity type

- ▶ **Inverse**: given p : x = y, we have $p^{-1} : y = x$ (symmetry)
- Concatenation: given p : x = y and q : y = z, we have p · q : x = z (transitivity)

We have the following operations on the identity type

- ▶ Inverse: given p : x = y, we have $p^{-1} : y = x$ (symmetry)
- Concatenation: given p : x = y and q : y = z, we have p · q : x = z (transitivity)
- Application: given f : A → B and p : x =_A y, we have ap_f(p) : f x = f y (congruence)

We have the following operations on the identity type

- ▶ Inverse: given p : x = y, we have $p^{-1} : y = x$ (symmetry)
- Concatenation: given p : x = y and q : y = z, we have p · q : x = z (transitivity)
- Application: given f : A → B and p : x =_A y, we have ap_f(p) : f x = f y (congruence)
- ▶ **Transport**: given a type family $B : A \rightarrow$ Type, $p : x =_A y$ and $\overline{x} : B(x)$, we have $p_*(\overline{x}) : B(y)$ (substitution).

We have the following operations on the identity type

- ▶ Inverse: given p : x = y, we have $p^{-1} : y = x$ (symmetry)
- Concatenation: given p : x = y and q : y = z, we have p · q : x = z (transitivity)
- Application: given f : A → B and p : x =_A y, we have ap_f(p) : f x = f y (congruence)
- ▶ **Transport**: given a type family $B : A \rightarrow \text{Type}$, $p : x =_A y$ and $\overline{x} : B(x)$, we have $p_*(\overline{x}) : B(y)$ (substitution).

Reduction rules

- $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$
- $\operatorname{refl}_x \cdot q \equiv q$
- $\blacktriangleright \operatorname{ap}_{f}(\operatorname{refl}_{x}) \equiv \operatorname{refl}_{fx}$
- $\blacktriangleright (\operatorname{refl}_{X})_{*}(\overline{X}) \equiv \overline{X}$

Laws for Operations on the Identity Type

We have the following equalities:

▶
$$p \cdot \operatorname{refl}_y = p$$

▶ $p \cdot (q \cdot r) = (p \cdot q) \cdot r$
▶ $p \cdot p^{-1} = \operatorname{refl}_x$
▶ $p^{-1} \cdot p = \operatorname{refl}_y$
▶ $\operatorname{ap}_f(p \cdot q) = \operatorname{ap}_f(p) \cdot \operatorname{ap}_f(q)$
▶ $(p \cdot q)_*(\overline{x}) = q_*(p_*(\overline{x}))$
Here $p : x = y, q : y = z$, and $r : z = a$.

These follow by the J-rule.

Laws for Operations on the Identity Type

We have the following equalities:

We demonstrate this for $p \cdot \operatorname{refl}_y = p$ (right unitality).

Right Unitality (formal)

Goal: given p : x = y, we have $p \cdot \operatorname{refl}_{y} = p$

Right Unitality (formal)

Goal: given p : x = y, we have $p \cdot refl_y = p$ Recall the J-rule:

$$\begin{array}{c} \mathsf{\Gamma}, x : \mathsf{A}, y : \mathsf{A}, p : x = y \vdash \mathsf{C} : \mathsf{Type} \\ \mathsf{\Gamma}, x : \mathsf{A} \vdash \mathsf{c} : \mathsf{C}[x := x, y := x, p := \mathsf{refl}_x] \\ \hline \mathsf{\Gamma} \vdash \mathsf{p} : x = y \\ \hline \mathsf{\Gamma} \vdash \mathsf{J}(\mathsf{C}, \mathsf{c}, p) : \mathsf{C}[x := x, y := y, p := p] \end{array}$$

Right Unitality (formal)

Goal: given p : x = y, we have $p \cdot refl_y = p$ Recall the J-rule:

$$\begin{array}{c} \Gamma, x : A, y : A, p : x = y \vdash C : \text{Type} \\ \Gamma, x : A \vdash c : C[x := x, y := x, p := \text{refl}_x] \\ \hline \Gamma \vdash p : x = y \\ \hline \Gamma \vdash \mathsf{J}(C, c, p) : C[x := x, y := y, p := p] \end{array}$$

Take

 $\blacktriangleright C \equiv p \cdot \operatorname{refl}_y = p$

For all x, we need an inhabitant of $refl_x \cdot refl_x = refl_x$

Note: $refl_x \cdot refl_x$ reduces to $refl_x$, so it holds by reflexivity With this, we get

$$\mathsf{J}(C,c,p):p\cdot\mathsf{refl}_y=p$$

Right Unitality (informal)

Goal: given p : x = y, we have $p \cdot \operatorname{refl}_y = p$

- Assume that p is reflexivity
- Then we must show $refl_x \cdot refl_x = refl_x$
- Since $refl_x \cdot refl_x$ reduces to $refl_x$, we can use reflexivity

Right Unitality (informal)

Goal: given p : x = y, we have $p \cdot \operatorname{refl}_y = p$

- Assume that p is reflexivity
- Then we must show $refl_x \cdot refl_x = refl_x$
- Since $refl_x \cdot refl_x$ reduces to $refl_x$, we can use reflexivity

In Coq: again a matter of using the induction tactic.

Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory

The Univalence Axiom Higher Inductive Types

Outlook

Key Features Homotopy Type Theory

In Homotopy Type Theory (HoTT), we view

- types as spaces
- terms as points
- identities as paths
- identities of identities as homotopies

HoTT also offers 2 new features to type theory:

- The univalence axiom
- Higher inductive types

The Univalence Axiom

Key feature of HoTT: the univalence axiom

- Intuition: two types are the same if they are isomorphism
- This is some kind of representation independence
- If you can prove two representations are equivalent, then they can be replaced by each other

Note: in HoTT, we say equivalence instead of isomorphism

Equivalences

Definition

Let $f : A \rightarrow B$ be a function.

• The **fiber** $fib_f(y)$ of f along y : B is the type

$$\sum_{x:A} f(x) = y$$

So: an inhabitant of fib_f(y) is a pair x : A together with a path f(x) = y

Equivalences

Definition

Let $f : A \rightarrow B$ be a function.

• The **fiber** $fib_f(y)$ of f along y : B is the type

$$\sum_{x:A} f(x) = y$$

So: an inhabitant of fib_f(y) is a pair x : A together with a path f(x) = y

Definition

We say that f is an equivalence if

- ▶ for all y : B the type fib_f(y) is inhabited (surjective)
- all x, y : fib_f(y) are equal (*injective*)

The type $A \simeq B$ consists of maps $f : A \rightarrow B$ together with a proof that f is an equivalence.

The Univalence Axiom

Proposition

The identity map, which sends every x to x, is an equivalence.

Proposition

For all types A, B: Type, we have a map idtoequiv : $A = B \rightarrow A \simeq B$.

Axiom (Univalence Axiom)

The map idtoequiv : $A = B \rightarrow A \simeq B$ is an equivalence. Intuitively: $(A = B) = (A \simeq B)$ Assuming univalence:

- There are two equivalences $\operatorname{Bool} \simeq \operatorname{Bool}$
- So: there are two paths Bool = Bool
- This contradicts UIP!

Univalence and UIP provide different perspectives on type theory

What are higher inductive types?

Higher inductive types are an extension of **inductive types** where we can have constructors for **points**, **paths**, **homotopies**, and so on.

We can use higher inductive types to define:

- Topological spaces, like the circle or the interval
- Quotient types
- Free algebraic structures (free group, polynomial ring)

We shall only look at a simple example: the interval

The Interval

```
Inductive interval: Type :=
| 0: interval
| 1: interval
| seq:0 = 1.
```

Note that Coq does not natively support higher inductive types

The Interval

```
Inductive interval : Type :=
| 0 : interval
| 1 : interval
| seq:0 = 1.
```

Note that Coq does not natively support higher inductive types

What are the rules for the interval?

The Interval

The Introduction Rules

Introduction Rules:

 $\Gamma \vdash \mathbf{0}: interval$

 $\Gamma \vdash 1$: interval

 $\Gamma \vdash seg: 0 = 1$

The Recursion Rule

Before we do induction, let's do recursion

$$\frac{\Gamma \vdash A : \mathsf{Type} \quad \Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \Gamma \vdash p : a = b}{\Gamma \vdash \mathsf{intRec}_{A,a,b,p} : \mathsf{interval} \to A}$$

The Recursion Rule

Before we do induction, let's do recursion

$$\frac{\Gamma \vdash A : \mathsf{Type} \quad \Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \Gamma \vdash p : a = b}{\Gamma \vdash \mathsf{intRec}_{A,a,b,p} : \mathsf{interval} \to A}$$

Computation rules:

▶ intRec_{A,a,b,p}(0) = a

•
$$ap_{intRec_{A,a,b,p}}(seg) = p$$

One might guess that the induction principle might be:

 $\begin{array}{c} \Gamma \vdash A : \text{ interval} \rightarrow \text{Type} \\ \Gamma \vdash a : A(0) \\ \Gamma \vdash b : A(1) \\ \hline \Gamma \vdash p : a = b \\ \hline \Gamma \vdash \text{ intRec}_{A,a,b,p} : \prod(x : \text{ interval}), A(x) \end{array}$

One might guess that the induction principle might be:

 $\begin{array}{c} \Gamma \vdash A : \text{ interval} \rightarrow \text{Type} \\ \Gamma \vdash a : A(0) \\ \Gamma \vdash b : A(1) \\ \hline \Gamma \vdash p : a = b \\ \hline \Gamma \vdash \text{ intRec}_{A,a,b,p} : \prod(x : \text{ interval}), A(x) \end{array}$

However, **this does not type check!**, because *a* and *b* have a different type

One might guess that the induction principle might be:

 $\begin{array}{c} \Gamma \vdash A : \text{ interval} \rightarrow \text{Type} \\ \Gamma \vdash a : A(0) \\ \Gamma \vdash b : A(1) \\ \hline \Gamma \vdash p : a = b \\ \hline \Gamma \vdash \text{ intRec}_{A.a.b.p} : \prod (x : \text{ interval}), A(x) \end{array}$

However, **this does not type check!**, because *a* and *b* have a different type Solution: transport

The induction principle for the interval:

$$\begin{array}{c} \Gamma \vdash A : \text{interval} \rightarrow \text{Type} \\ \Gamma \vdash a : A(0) \\ \Gamma \vdash b : A(1) \\ \hline \Gamma \vdash p : \text{seg}_*(a) = b \\ \hline \Gamma \vdash \text{intRec}_{A,a,b,p} : \prod(x : \text{interval}), A(x) \end{array}$$

Outline

General Introduction

The Identity Type

Types as Spaces

More on the J-rule

Homotopy Type Theory The Univalence Axiom Higher Inductive Types

Outlook

More on HoTT

There are many interesting topics in homotopy type theory:

- Cubical type theory: how can we compute with univalence?
- Synthetic homotopy theory: develop algebraic topology in HoTT using that types represent spaces
- Univalent category theory: develop category theory from a univalent perspective
- Univalence and representation independence
- HITs allow us to define more data types, such as finite sets and finite multisets

Summary

Main points of this lecture:

- ► The identity type and the J-rule
- Using the J-rule to define operations and proving laws for the identity types
- **Types as spaces**: this connects type theory and topology
- > The univalence axiom: equality is equivalence
- Higher inductive types: defining data types with extra equalities