Lambda-Calculus and Type Theory

ISR 2024
Obergurgl, Austria

Herman Geuvers & Niels van der Weide

Radboud University Nijmegen, The Netherlands

Lecture 11

Normalization by Evaluation

1/43

Previous Lecture

» We saw: the \-calculus is strongly normalizing

» This gives us an algorithm to normalize A-terms: find a
B-redex and reduce it

» We shall look at another algorithm for finding normal forms

/41

Reduction-Free Normalization

Topic of this lecture: Normalization by Evaluation (NbE)
» NbE does not work by finding redexes and reducing them

» Instead it works by evaluating terms in a suitable model
and then reifying them back into the syntax

» The result is a normal form of the original term

4/43

Main Idea of NbE

Syntay mode |
I

This lecture

» We first look at normalizing monoid expressions.
» Then we illustrate how NbE works for the A-calculus

A/43

Simple Example: Monoid Expressions

Let A be any set. The set M(A) of monoid expressions over A is
generated by the following grammar:

e= u | v@ | e -e
We also define an equivalence relation ~ generated by:
u-e~e

e-u~e
(e1-€2)-e3~ e (e2-63)

Examples:

v(a), v(ar)-(v(a)- v(as)), ((u-v(ar))-v(a))-(v(as)-u)

/41

Normal Forms of Monoid Expressions

Normal forms of monoid expressions are given by lists.
Lists / of A give rise to a monoid expression incl(/):

incl([]) ==u

incl(x :: xs) := v(x) - incl(xs)

The normal forms look as follows:
vixq) - v(xe)-...-v(xn)-u

Note: everything in this lecture can be adapted so that our
normal forms look like v(x1) - v(x2) - ... - v(xp), but that is a bit
more technically involved

9/43

Concretely

7N
SN SN 2
a b U

L—0 —o —_ o

We normalize

into

10/43

Normalization function

We want to define a normalization function norm that sends
expressions e to a list norm(e).

Correctness: e; ~ e if and only if norm(ey) = norm(ez)
Deciding equality of monoid expressions: to check ey ~ ey,
it suffices to check whether norm(e1) = norm(e,) as lists

11/43

What we will do

We define two normalization functions:
» Define a suitable model
» Define a reification function from the model to the syntax
» Their composition gives a normalization function

We will use two different models: lists and functions

12/43

Direct Proof of Normalization

Let e be an expression. We define [e]:
[via)] =a:]

[ul == 1]
[e1 - e2] == [e1] ++ [e2]
The normalization function:

norm(e) := incl([e])

13/43

Correctness

Theorem
We have: e; ~ e, if and only if norm(e;) = norm(ez)
This follows from the following lemmas:

Lemma
If er ~ ey, then [e1] = [e2]-

Lemma
For Iy and b, we have incl(ly + k) = incl(l) - incl(k).

Lemma
For all e, we have e ~ norm(e).

14/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

norm(((v(1) - u) - v(2)) - v(3))

15/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).
norm(((v(1) - u) - v(2)) - v(3))
v

= [((v(1) - u) - v(2)) - v(3)](uv)
Unfold the definition

15/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

=incl([((v(1) - u) - v(2)) - v(3)])

15/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

= incl([((v(1) - u) - v(2)) - v(3)])
=incl([(v(1) - u) - v(2)] ++ [v(3)])

Use: [e1 - e2] := [e1] ++ [e&2]

15/43

An Example

Let’s normalize: ((v(1) - u) - v(2)) - v(3).

=incl([(v(1) - u) - v(2)] ++ [v(3)])
=incl([v(1) - u] ++ [v(2)] ++ [v(3)])

Use: [er - e2] := [e1] ++ [e2]

15/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

=incl([v(1) - u] ++ [v(2)] ++ [v(3)])
=incl([v(1)] ++ [u] ++ [v(2)] ++ [v(3)])

Use: [e1 - e2] := [e1] ++ [e2]

15/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

=incl([v(1)] ++ [u] ++ [v(2)] ++ [v(3)])

15/43

An Example

Let’s normalize: ((v(1) - u) - v(2)) - v(3).

incl(Iv(1)] ++ [u] ++ V()] ++ [v@3)])
= incl((v(1) = [) ++ [l ++ (V@) =) ++ (v(3) =)

Use [v(a)] :=a::]

15/43

An Example

Let’s normalize: ((v(1) - u) - v(2)) - v(3).

=incl((v(1) = [) 4+ [u] +=+(v(2) = 1) ++ (v(3) = 1))

15/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

= incl((v(1) = [I) ++ [ul ++ (v(2) = []) ++ (v(3) == []))
=incl((v(1) = [) ++ 0 ++ (v(2) = 1) ++ (v(3) == [])

Use [u] :=]

15/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

incl((v(1) = 1) ++ 1 ++ (v(2) = 1) ++ (v(3) = 1))

15/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

15/43

An Example

Let’s normalize: ((v(1) - u) - v(2)) - v(3).

I
5
Q
—~
<
—~~
—_
~
<
—~
[\
~
<
—~
w
~—~
=

15/43

An Example

Let’s normalize: ((v(1) - u) - v(2)) - v(3).

norm(((v(1) - u) - v(2)) - v(3))

= incl([((v(1) - u) - v(2)) - v(3)])

incl([(v(1) - u) - v(2)] ++ [v(3)])

incl([v(1) - u] ++ [v(2)] ++ [v(3)])

=incl([v(1)] ++ [u] ++ [v(2)] ++ [v(3)])
incl((v(1) = []) ++ [u] ++ (v(2) = []) ++ (v(3) = [1))
incl((v(1) = [I) ++ 1 ++ (v(2) = []) ++ (v(3) = 11))

=incl(v(1) = v(2) :: v(3) :: [])

=v(1)-(v(2) - (v(3) - u))

15/43

Another Proof of Normalization

» The normalization function that we discussed, directly
shows that we have a model given by normal forms

» However, often this is not feasible (for instance, for the
A-calculus)

» For this reason, we shall discuss another proof of
normalization

» This time, the model is based on functions: every
expression e € M(A) gives a function M(A) — M(A)

16/43

Another Proof of Normalization: Interpretation

For e € M(A), we define a function [e] : M(A) — M(A):
[v(a)](e") == v(a)-€"

[ul(e”) :==¢"
[e- €](e") :=[el([€'](e"))

17/43

Another Proof of Normalization: Normalization

Given a function f : M(A) — M(A), define
reify(f) := f(u)
Now we define the normalization function as follows

norm(e) :=incl([e])

18/413

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

19/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

norm(((v(1) - u) - v(2)) - v(3))

19/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).
norm(((v(1) - u) - v(2)) - v(3))
v

= [((v(1) - u) - v(2)) - v(3)](uv)
Unfold the definition

19/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

= [((v(1) - u) - v(2)) - v(3)](v)

19/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

Use: [e- €](e") := [el([€](e"))

19/43

An Example

Let's normalize: ((v(1) - u) - v(2)) - v(3).

= [(v(1) - u) - v(2)I([v(3)](v))

19/43

An Example

Let’s normalize: ((v(1) - u) - v(2)) - v(3).

19/43

An Example

Let’s normalize: ((v(1) - u) - v(2)) - v(3).

19/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

(v(1)-u) - v(2)](v(3) - u)
(v(1) -)I([v(2)1(v(3) -)

Use: [e- €](¢") := [e]([€](e"))

[
[

19/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

= [(v(1) - WI([v(2)](v(3) -)

19/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

Use: [v(a)](€") :=v(a) - €’

19/43

An Example

Let’s normalize: ((v(1) - u) - v(2)) - v(3).

= [(v(1) - 1)I(v(2) - (v(3) - u))

19/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

= [(v(1) - 1)}(v(2) - (v(3) - u))
= [v(DI([ul(v(2) - (v(3) - v)))
)

Use: [e- e](e") = [el([€](e")

19/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

= [vOI([ul(v(2) - (v(3) - v)))

19/43

An Example

Let's normalize: ((v(1) - u) - v(2)) - v(3).

19/43

An Example

Let’'s normalize: ((v(1) - u) - v(2)) - v(3).

= [v()I(v(2) - (v(3) - u))

19/43

An Example

Let’s normalize: ((v(1) - u) - v(2)) - v(3).

= [v(")l(v(2) - (v(3) - v))

=v(1)-(v(2)- (v(3)-u))

Use: [v(a)](€") :=v(a)- €’

19/43

Let’s normalize: ((v(1) - u) - v(2)) - v(3).

An Example

Al —~ = Z = - 0~
N~~~ = = T SA:
Vn/._)) —~~ ~—

= S N = > I .
=] ° z Z > —_
—~~ _ /= >~ L
- 3 3 3 3 35 T
~— . _ > N
~— —~ ° ° N— N~
N -~/ = =
—_ — T T ™ T
T2SSSST T
m —_ — — — > N —
e e e R = B >
o
2

19/43

Correctness

Theorem
We have: e; ~ e, if and only if norm(e;) = norm(ez)
This follows from the following lemmas:

Lemma
If er ~ ey, then [e1] = [e2]-

Lemma
For ey and e>, we have ey - e; = [eq](e2).

Lemma
For all e, we have e ~ norm(e).

20/43

Recap

So, we did the following:

» We defined interpretations of monoid expressions: via lists
and via functions

> We showed how to reify the interpretations back to
expressions

» Result: a normalization function

This is normalization by evaluation.
It can be applied to the A-calculus as well.

21/43

NbE for the \-calculus

» We shall define a normalization function for simply-typed
A-terms

» The output is an n-long S-normal form
Overall structure is similar to how SN is proved, but there are
differences:
» For SN, we proved a predicate on terms, while now we
define a function on terms

» Throughout the proof, we shall use contexts to indicate
the free variables of terms

23/43

n-expansion

The n-rule:
M= x.M x
Two ways of using this:
» p-contraction: rewrite Ax.M x to M
> p-expansion: rewrite M to Ax.M x

24/43

Neutral and Normal Forms: Idea

» To define normal forms of the STLC, we also need neutral
forms

» Neutral form: we can apply it to a normal form to get
another normal form

» Note: \x.x is not neutral

25/43

Neutral and Normal Forms: Definition

Neutral forms Ney:
» if x is a variable of type A, then x € Ney
» if me Nes_,gand n € Nfy, then mn € Neg
Normal forms Nf,:
» if n € Ne,, then n € Nf, (here ¢ is a base type)
» if n € Nfg, then A(x : A),n: Nfs_p

We write Ne4(I') and Nf4(I") for sets of neutral terms and
normal terms whose variables are in T.

26/43

Examples of a Normal Form

Is the following term an n-long 3-normal form?

AX o), x

Yes!
» Since x is a variable, x € Ne,,
» Since o is a base type, x € Nf,
» Hence, A\(x : 0),x € Nf,_,,

27/43

Examples of a Normal Form

Is the following term an n-long g-normal form?

Af:A— B),f

No!

» To check that A(f A— B), fe Nf(AHB)H(A%B): we need to
check that f € Nfs_.p

» Since f is a variable, we need to check that f € Nf,_,g
» However, f ¢ Nfs_, g, because f is not a A-abstraction

» We can’t use that f is a variable, because Ne, C Nf, only
for base types o

> A — Bis not a base type

28/43

Examples of a Normal Form

Is the following term an n-long 5-normal form?

vy

Mf:A— B)(x:A),fx

Goal: A\(f: A— B)(x : A), f x is in normal form
Sufficient: A(x : A), f x is in normal form
Sufficient: f x is in normal form

We need to check f is a neutral form and x is a normal
form

X is a normal form: it is a variable of a base type
f is a neutral form, because it is a variable

29/43

Contexts

Definition

A context is given by a finite set of variable declarations such
that each variable is declared at most once. Contexts are
ordered by inclusion. The set of contexts is denoted by Con.

For instance, {x : A,y : B}.

20/43

Main Steps

To define NbE for the STLC, we take the following steps
» Define the model
» Define the interpretation
» Define reification

21/43

Model: Interpretation of Types

To prove strong normalization, we first define a predicate [A]
for terms on types A
Concretely we defined:

» [o]: strongly normalizing terms of type o

> [A— BJ: the set {M | Ve[a)MN € [B]}
For NbE, we do something similar, but

» we need to keep track of contexts

» we need to work proof relevant: instead of defining a
predicate, we define a set

29/473

Model: Interpretation of Types

We interpret types A as a map [A] : Con — Set together with
functions [A]r, r, : [A](I'1) — [Al(T2) whenever 'y C 5.
Definition
We interpret base types as follows: [¢](I') = Nf,(I').
For function types: elements of [A — B](I') consist of

» for all " such that I C I a function ™ : [AJ(I") — [B](I)

» such that for all ", " € Con with [’ C [and all
x € [A](I'"), we have

™ ([Alr (%)) = [Blrr (7 (x))

23/43

Comparison

The case for the function type might seem mysterious, but
compare the following:

SN: {M | VncpgMN € [B]}
NDE: /' : [A]1) — [B]

24/43

And we recall the previous lecture again

Proposition
If
> xiA,... . Xn: Ap-M:B
> Nj € [A1], ... Ny € [An],
Then M[xq := Ny, ... xn := Np] € [B]
For NbE: we need to give an interpretation of terms

25/43

The Model: Terms

Suppose, we have a term t of type A.
Given

» a context I containing the free variables of t,
» an element p(x) : [B](I') for each declaration x : Bin T,
we interpret t as an element [[t]]; of [A](T).

26//43

The Model: Terms (Variables)

We define:
[xI}, = p(x)
This works because p(x) : [B](I') where B is the type of x.

27/43

The Model: Terms (Application)

» Suppose M: A— Band N : A.

> Note [M]F gives a function ™ : [A](I") — [B](") for all
rcr

> Also note: [N] : [A](T)
Define
[MN]], = [M]5(INTY)

28/413

The Model: Terms (Abstraction)

» Suppose M : B

» Let ' contain the free variables of A\(x : A).M

» p maps variable declarations y : Bin I to p(y) : [B](I")
Goal: to define [A(x : A).M]}, we need to give for all I’ such
that I C I a function ™ : [A](I") — [B](I")
So, suppose we have,

» acontext " suchthatl” C I

> z: [A(IM)
Define p[x — Zz] to be p but sending x to z
Then
[[M]];[XHZ] : [[Bﬂ(r)
So, we take

[Blr.r (IM7.) - [BI(T)

209/43

Reification

Recall the following lemmas when proving strong normalization:

Lemma
For all strongly normalizing terms Ny : A+, ..., Nx : Ax and
variables x : Ay — ... — Ax — B, we have

XN1...NkZ[[B]]

Lemma
Every inhabitant of [A] is strongly normalizing

These were proven by mutual induction.
These are also needed for NbE.
Concretely: we define the quote and unquote functions

40/43

Reification

Lemma
For all contexts I and types A, we have functions

uj : Nea(T) — [A](T)

Gh : [AI(T) — Nfa(T)

Proof.
Exercise!]

ul, is called unquote and g, is called quote.
Reification: given by gf,.

41/43

Normalization

Let M : Abe aterm of type A free variables in I".
We define the normalization function

norm(M) = qj(IM;)
where p(x) = uj(x).

Note that we need to use unquote here, because we need
values in [A](I') and not just variables.

42/43

Summary

Key points of this lecture:

>

| 2
>

Normalization by evaluation is a different technique for
normalizing terms

It is not based on rewriting

Instead it evaluates the term in a certain model and then
reifies the result back to the syntax

Possible for monoid expressions: one can use lists or
functions

Possible for the STLC: use sets indexed by contexts

Many extensions of NbE are possible, for instance to
dependent type theory

NbE is also usable to implement proof assistants

43/43

	General Introduction
	Normalization by Evaluation for Monoid Expressions
	Normalization by Evaluation for the STLC

