Lambda-Calculus and Type Theory ISR 2024 Obergurgl, Austria

Herman Geuvers & Niels van der Weide Radboud University Nijmegen, The Netherlands

Lecture 11

Normalization by Evaluation

Previous Lecture

- We saw: the λ -calculus is strongly normalizing
- This gives us an algorithm to normalize λ-terms: find a β-redex and reduce it
- We shall look at another algorithm for finding normal forms

Reduction-Free Normalization

Topic of this lecture: **Normalization by Evaluation** (NbE)

- NbE does not work by finding redexes and reducing them
- Instead it works by evaluating terms in a suitable model and then reifying them back into the syntax
- ► The result is a normal form of the original term

Main Idea of NbE

This lecture

- ▶ We first look at normalizing monoid expressions.
- ▶ Then we illustrate how NbE works for the λ -calculus

Simple Example: Monoid Expressions

Let A be any set. The set M(A) of monoid expressions over A is generated by the following grammar:

$$e := u \mid v(a) \mid e_1 \cdot e_2$$

We also define an equivalence relation \sim generated by:

$$egin{aligned} u\cdot e &\sim e \ &e\cdot u \sim e \ &e(e_1\cdot e_2)\cdot e_3 \sim e_1\cdot (e_2\cdot e_3) \end{aligned}$$

Examples:

$$v(a), \quad v(a_1) \cdot (v(a_2) \cdot v(a_3)), \quad ((u \cdot v(a_1)) \cdot v(a_2)) \cdot (v(a_3) \cdot u)$$

Normal Forms of Monoid Expressions

Normal forms of monoid expressions are given by **lists**. Lists *l* of *A* give rise to a monoid expression incl(*l*):

$$incl([]) := u$$

$$\operatorname{incl}(x :: xs) := v(x) \cdot \operatorname{incl}(xs)$$

The normal forms look as follows:

$$v(x_1) \cdot v(x_2) \cdot \ldots \cdot v(x_n) \cdot u$$

Note: everything in this lecture can be adapted so that our normal forms look like $v(x_1) \cdot v(x_2) \cdot \ldots \cdot v(x_n)$, but that is a bit more technically involved

Concretely

Normalization function

We want to define a normalization function norm that sends expressions e to a list norm(e).

Correctness: $e_1 \sim e_2$ if and only if $norm(e_1) = norm(e_2)$ **Deciding equality of monoid expressions**: to check $e_1 \sim e_2$, it suffices to check whether $norm(e_1) = norm(e_2)$ as lists

What we will do

We define two normalization functions:

- Define a suitable model
- Define a reification function from the model to the syntax
- Their composition gives a normalization function

We will use two different models: lists and functions

Direct Proof of Normalization

Let e be an expression. We define [e]:

$$\llbracket v(a)
rbracket := a :: []$$
 $\llbracket u
rbracket := []$ $\llbracket e_1 \cdot e_2
rbracket := \llbracket e_1
rbracket + \llbracket e_2
rbracket$

The normalization function:

$$\mathsf{norm}(e) := \mathsf{incl}(\llbracket e \rrbracket)$$

Correctness

Theorem

We have: $e_1 \sim e_2$ if and only if $norm(e_1) = norm(e_2)$

This follows from the following lemmas:

Lemma

If $e_1 \sim e_2$, then $\llbracket e_1 \rrbracket = \llbracket e_2 \rrbracket$.

Lemma

For l_1 and l_2 , we have $incl(l_1 ++ l_2) = incl(l_1) \cdot incl(l_2)$.

Lemma

For all e, we have $e \sim \text{norm}(e)$.

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

 $norm(((v(1) \cdot u) \cdot v(2)) \cdot v(3))$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u)$$

Unfold the definition

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= \operatorname{incl}([((v(1) \cdot u) \cdot v(2)) \cdot v(3)])$$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= \operatorname{incl}([((v(1) \cdot u) \cdot v(2)) \cdot v(3)]) \\
= \operatorname{incl}([(v(1) \cdot u) \cdot v(2)] ++ [v(3)])$$

Use: $\llbracket e_1 \cdot e_2 \rrbracket := \llbracket e_1 \rrbracket \ + + \llbracket e_2 \rrbracket$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= \operatorname{incl}([(v(1) \cdot u) \cdot v(2)) \cdot v(3)]) \\
= \operatorname{incl}([(v(1) \cdot u) \cdot v(2)] ++ [v(3)]) \\
= \operatorname{incl}([v(1) \cdot u] ++ [v(2)] ++ [v(3)])$$

Use: $[e_1 \cdot e_2] := [e_1] ++ [e_2]$

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= \operatorname{incl}([((v(1) \cdot u) \cdot v(2)) \cdot v(3)]) \\
= \operatorname{incl}([(v(1) \cdot u) \cdot v(2)] ++ [v(3)]) \\
= \operatorname{incl}([v(1) \cdot u] ++ [v(2)] ++ [v(3)]) \\
= \operatorname{incl}([v(1)] ++ [u] ++ [v(2)] ++ [v(3)])$$
Use: $[e_1 \cdot e_2] := [e_1] ++ [e_2]$

```
\begin{aligned} & \mathsf{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\ &= \mathsf{incl}(\llbracket ((v(1) \cdot u) \cdot v(2)) \cdot v(3) \rrbracket) \\ &= \mathsf{incl}(\llbracket (v(1) \cdot u) \cdot v(2) \rrbracket \ ++ \llbracket v(3) \rrbracket) \\ &= \mathsf{incl}(\llbracket v(1) \cdot u \rrbracket \ ++ \llbracket v(2) \rrbracket \ ++ \llbracket v(3) \rrbracket) \\ &= \mathsf{incl}(\llbracket v(1) \rrbracket \ ++ \llbracket u \rrbracket \ ++ \llbracket v(2) \rrbracket \ ++ \llbracket v(3) \rrbracket) \end{aligned}
```

```
\begin{array}{l} \operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\ = \operatorname{incl}([[(v(1) \cdot u) \cdot v(2)) \cdot v(3)]) \\ = \operatorname{incl}([[(v(1) \cdot u) \cdot v(2)]] ++ [[v(3)]]) \\ = \operatorname{incl}([[v(1) \cdot u]] ++ [[v(2)]] ++ [[v(3)]]) \\ = \operatorname{incl}([[v(1)]]] ++ [[u]] ++ [[v(2)]] ++ [[v(3)]]) \\ = \operatorname{incl}((v(1) :: []) ++ [[u]] ++ (v(2) :: []) ++ (v(3) :: [])) \\ \end{array}
```

```
\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= \operatorname{incl}([(v(1) \cdot u) \cdot v(2)) \cdot v(3)]) \\
= \operatorname{incl}([(v(1) \cdot u) \cdot v(2)] ++ [v(3)]) \\
= \operatorname{incl}([v(1) \cdot u] ++ [v(2)] ++ [v(3)]) \\
= \operatorname{incl}([v(1)] ++ [u] ++ [v(2)] ++ [v(3)]) \\
= \operatorname{incl}((v(1) :: []) ++ [u] ++ (v(2) :: []) ++ (v(3) :: []))
```

```
\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3))
      = \operatorname{incl}(\llbracket ((v(1) \cdot u) \cdot v(2)) \cdot v(3) \rrbracket)
      = \operatorname{incl}(\llbracket (v(1) \cdot u) \cdot v(2) \rrbracket ++ \llbracket v(3) \rrbracket)
      = incl([v(1) \cdot u] ++ [v(2)] ++ [v(3)])
      = incl([v(1)]] ++ [u] ++ [v(2)] ++ [v(3)])
      = incl((v(1) :: []) ++ [u] ++ (v(2) :: []) ++ (v(3) :: []))
      = incl((v(1) :: []) ++ [] ++ (v(2) :: []) ++ (v(3) :: []))
Use [\![u]\!] := [\![]
```

```
\begin{aligned} & \operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\ &= \operatorname{incl}(\llbracket((v(1) \cdot u) \cdot v(2)) \cdot v(3)\rrbracket) \\ &= \operatorname{incl}(\llbracket(v(1) \cdot u) \cdot v(2)\rrbracket \ ++ \llbracket v(3)\rrbracket) \\ &= \operatorname{incl}(\llbracket v(1) \cdot u \rrbracket \ ++ \llbracket v(2)\rrbracket \ ++ \llbracket v(3)\rrbracket) \\ &= \operatorname{incl}(\llbracket v(1)\rrbracket \ ++ \llbracket u \rrbracket \ ++ \llbracket v(2)\rrbracket \ ++ \llbracket v(3)\rrbracket) \\ &= \operatorname{incl}((v(1) :: \llbracket) \ ++ \llbracket u \rrbracket \ ++ (v(2) :: \llbracket) \ ++ (v(3) :: \llbracket)) \\ &= \operatorname{incl}((v(1) :: \llbracket) \ ++ \llbracket u \rrbracket \ ++ (v(2) :: \llbracket) \ ++ (v(3) :: \llbracket)) \end{aligned}
```

```
\begin{aligned} & \operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\ &= \operatorname{incl}(\llbracket((v(1) \cdot u) \cdot v(2)) \cdot v(3)\rrbracket) \\ &= \operatorname{incl}(\llbracket(v(1) \cdot u) \cdot v(2)\rrbracket \ ++ \llbracket v(3)\rrbracket) \\ &= \operatorname{incl}(\llbracket v(1) \cdot u \rrbracket \ ++ \llbracket v(2)\rrbracket \ ++ \llbracket v(3)\rrbracket) \\ &= \operatorname{incl}(\llbracket v(1)\rrbracket \ ++ \llbracket u \rrbracket \ ++ \llbracket v(2)\rrbracket \ ++ \llbracket v(3)\rrbracket) \\ &= \operatorname{incl}((v(1) :: \llbracket) \ ++ \llbracket u \rrbracket \ ++ (v(2) :: \llbracket) \ ++ (v(3) :: \llbracket)) \\ &= \operatorname{incl}((v(1) :: \llbracket) \ ++ \llbracket \ ++ (v(2) :: \llbracket) \ ++ (v(3) :: \llbracket])) \\ &= \operatorname{incl}(v(1) :: v(2) :: v(3) :: \llbracket]) \end{aligned}
```

```
\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3))
= \operatorname{incl}(\llbracket ((v(1) \cdot u) \cdot v(2)) \cdot v(3) \rrbracket)
= incl([(v(1) \cdot u) \cdot v(2)] ++ [v(3)])
= incl([v(1) \cdot u] ++ [v(2)] ++ [v(3)])
= incl([v(1)] ++ [u] ++ [v(2)] ++ [v(3)])
= incl((v(1) :: []) ++ [u] ++ (v(2) :: []) ++ (v(3) :: []))
= incl((v(1) :: []) ++ [] ++ (v(2) :: []) ++ (v(3) :: []))
= incl(v(1) :: v(2) :: v(3) :: [])
= v(1) \cdot (v(2) \cdot (v(3) \cdot u))
```

```
norm(((v(1) \cdot u) \cdot v(2)) \cdot v(3))
= \operatorname{incl}(\llbracket ((v(1) \cdot u) \cdot v(2)) \cdot v(3) \rrbracket)
= \operatorname{incl}(\llbracket (v(1) \cdot u) \cdot v(2) \rrbracket ++ \llbracket v(3) \rrbracket)
= incl([v(1) \cdot u] ++ [v(2)] ++ [v(3)])
= incl([v(1)] ++ [u] ++ [v(2)] ++ [v(3)])
= incl((v(1) :: []) ++ [u] ++ (v(2) :: []) ++ (v(3) :: []))
= incl((v(1) :: []) ++ [] ++ (v(2) :: []) ++ (v(3) :: []))
= incl(v(1) :: v(2) :: v(3) :: [])
= v(1) \cdot (v(2) \cdot (v(3) \cdot u))
```

Another Proof of Normalization

- ► The normalization function that we discussed, directly shows that we have a model given by normal forms
- ► However, often this is not feasible (for instance, for the λ -calculus)
- For this reason, we shall discuss another proof of normalization
- ▶ This time, the model is based on functions: every expression $e \in M(A)$ gives a function $M(A) \rightarrow M(A)$

Another Proof of Normalization: Interpretation

For $e \in M(A)$, we define a function $[e]: M(A) \to M(A)$:

$$\llbracket v(a)
rbracket (e'') := v(a) \cdot e''$$

$$\llbracket u
rbracket (e'') := e''$$

$$\llbracket e \cdot e'
rbracket (e'') := e'
rbracket (e'')$$

Another Proof of Normalization: Normalization

Given a function $f: M(A) \rightarrow M(A)$, define

$$reify(f) := f(u)$$

Now we define the normalization function as follows

$$\mathsf{norm}(e) := \mathsf{incl}(\llbracket e \rrbracket)$$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

 $norm(((v(1) \cdot u) \cdot v(2)) \cdot v(3))$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u)$$

Unfold the definition

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3))$$

= $[((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u)$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u))$$

Use: $\llbracket e \cdot e' \rrbracket (e'') := \llbracket e \rrbracket (\llbracket e' \rrbracket (e''))$

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u))$$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u)$$

Use: $[v(a)](e'') := v(a) \cdot e''$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u)$$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u) \\
= [(v(1) \cdot u)]([v(2)](v(3) \cdot u))$$

Use: $[e \cdot e'](e'') := [e]([e'](e''))$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u) \\
= [(v(1) \cdot u)]([v(2)](v(3) \cdot u))$$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u) \\
= [(v(1) \cdot u)]([v(2)](v(3) \cdot u)) \\
= [(v(1) \cdot u)](v(2) \cdot (v(3) \cdot u))$$

Use: $[v(a)](e'') := v(a) \cdot e''$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u) \\
= [(v(1) \cdot u)]([v(2)](v(3) \cdot u)) \\
= [(v(1) \cdot u)](v(2) \cdot (v(3) \cdot u))$$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u) \\
= [(v(1) \cdot u)]([v(2)](v(3) \cdot u)) \\
= [(v(1) \cdot u)](v(2) \cdot (v(3) \cdot u)) \\
= [v(1)]([u](v(2) \cdot (v(3) \cdot u)))$$

Use: $[e \cdot e'](e'') := [e]([e'](e''))$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u) \\
= [(v(1) \cdot u)]([v(2)](v(3) \cdot u)) \\
= [(v(1) \cdot u)](v(2) \cdot (v(3) \cdot u)) \\
= [v(1)]([u](v(2) \cdot (v(3) \cdot u)))$$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u) \\
= [(v(1) \cdot u)]([v(2)](v(3) \cdot u)) \\
= [(v(1) \cdot u)](v(2) \cdot (v(3) \cdot u)) \\
= [v(1)]([u](v(2) \cdot (v(3) \cdot u))) \\
= [v(1)](v(2) \cdot (v(3) \cdot u))$$

Use: $[\![u]\!](e'') := e''$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [((v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u) \\
= [(v(1) \cdot u)]([v(2)](v(3) \cdot u)) \\
= [(v(1) \cdot u)](v(2) \cdot (v(3) \cdot u)) \\
= [v(1)]([u](v(2) \cdot (v(3) \cdot u)) \\
= [v(1)](v(2) \cdot (v(3) \cdot u))$$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [(v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u) \\
= [(v(1) \cdot u)]([v(2)](v(3) \cdot u)) \\
= [(v(1) \cdot u)](v(2) \cdot (v(3) \cdot u)) \\
= [v(1)]([u](v(2) \cdot (v(3) \cdot u)) \\
= [v(1)](v(2) \cdot (v(3) \cdot u)) \\
= v(1) \cdot (v(2) \cdot (v(3) \cdot u))$$

Use: $[v(a)](e'') := v(a) \cdot e''$

Let's normalize: $((v(1) \cdot u) \cdot v(2)) \cdot v(3)$.

$$\operatorname{norm}(((v(1) \cdot u) \cdot v(2)) \cdot v(3)) \\
= [(v(1) \cdot u) \cdot v(2)) \cdot v(3)](u) \\
= [(v(1) \cdot u) \cdot v(2)]([v(3)](u)) \\
= [(v(1) \cdot u) \cdot v(2)](v(3) \cdot u) \\
= [(v(1) \cdot u)]([v(2)](v(3) \cdot u)) \\
= [(v(1) \cdot u)](v(2) \cdot (v(3) \cdot u)) \\
= [v(1)]([u](v(2) \cdot (v(3) \cdot u)) \\
= [v(1)](v(2) \cdot (v(3) \cdot u)) \\
= v(1)(v(2) \cdot (v(3) \cdot u))$$

Correctness

Theorem

We have: $e_1 \sim e_2$ if and only if $norm(e_1) = norm(e_2)$

This follows from the following lemmas:

Lemma

If $e_1 \sim e_2$, then $\llbracket e_1 \rrbracket = \llbracket e_2 \rrbracket$.

Lemma

For e_1 and e_2 , we have $e_1 \cdot e_2 = [e_1](e_2)$.

Lemma

For all e, we have $e \sim \text{norm}(e)$.

Recap

So, we did the following:

- We defined interpretations of monoid expressions: via lists and via functions
- We showed how to reify the interpretations back to expressions
- Result: a normalization function

This is **normalization by evaluation**.

It can be applied to the λ -calculus as well.

NbE for the λ -calculus

- We shall define a normalization function for simply-typed λ-terms
- ▶ The output is an η -long β -normal form

Overall structure is similar to how SN is proved, but there are differences:

- For SN, we proved a predicate on terms, while now we define a function on terms
- Throughout the proof, we shall use contexts to indicate the free variables of terms

η -expansion

The η -rule:

$$M \equiv \lambda x.M x$$

Two ways of using this:

- $ightharpoonup \eta$ -contraction: rewrite $\lambda x.M x$ to M
- ightharpoonup η-expansion: rewrite M to λx.Mx

Neutral and Normal Forms: Idea

- To define normal forms of the STLC, we also need neutral forms
- Neutral form: we can apply it to a normal form to get another normal form
- Note: $\lambda x.x$ is not neutral

Neutral and Normal Forms: Definition

Neutral forms Ne_A:

- ▶ if x is a variable of type A, then $x \in Ne_A$
- ▶ if $m \in Ne_{A \to B}$ and $n \in Nf_A$, then $m \in Ne_B$

Normal forms Nf_A:

- ▶ if $n \in Ne_{\sigma}$, then $n \in Nf_{\sigma}$ (here σ is a base type)
- ▶ if $n \in Nf_B$, then $\lambda(x : A), n : Nf_{A \to B}$

We write $Ne_A(\Gamma)$ and $Nf_A(\Gamma)$ for sets of neutral terms and normal terms whose variables are in Γ .

Examples of a Normal Form

Is the following term an η -long β -normal form?

$$\lambda(x:\sigma), x$$

Yes!

- ▶ Since x is a variable, $x \in Ne_{\sigma}$
- ▶ Since σ is a base type, $x \in \mathsf{Nf}_{\sigma}$
- ▶ Hence, $\lambda(x : \sigma), x \in \mathsf{Nf}_{\sigma \to \sigma}$

Examples of a Normal Form

Is the following term an η -long β -normal form?

$$\lambda(f:A\rightarrow B), f$$

No!

- ► To check that $\lambda(f: A \to B), f \in Nf_{(A \to B) \to (A \to B)}$, we need to check that $f \in Nf_{A \to B}$
- ▶ Since f is a variable, we need to check that $f \in Nf_{A \to B}$
- ▶ However, $f \notin Nf_{A \to B}$, because f is not a λ -abstraction
- ▶ We can't use that f is a variable, because Ne $_{\sigma}$ ⊆ Nf $_{\sigma}$ only for base types σ
- ► $A \rightarrow B$ is not a base type

Examples of a Normal Form

Is the following term an η -long β -normal form?

$$\lambda(f:A\to B)(x:A), fx$$

Yes!

- ▶ Goal: $\lambda(f: A \rightarrow B)(x: A), f x$ is in normal form
- Sufficient: $\lambda(x : A)$, f x is in normal form
- Sufficient: f x is in normal form
- We need to check f is a neutral form and x is a normal form
- x is a normal form: it is a variable of a base type
- f is a neutral form, because it is a variable

Contexts

Definition

A **context** is given by a finite set of variable declarations such that each variable is declared at most once. Contexts are ordered by **inclusion**. The set of contexts is denoted by Con.

For instance, $\{x : A, y : B\}$.

Main Steps

To define NbE for the STLC, we take the following steps

- Define the model
- Define the interpretation
- Define reification

Model: Interpretation of Types

To prove strong normalization, we first define a predicate [A] for terms on types A Concretely we defined:

- ▶ $\llbracket \sigma \rrbracket$: strongly normalizing terms of type σ
- ▶ $\llbracket A \rightarrow B \rrbracket$: the set $\{M \mid \forall_{N \in \llbracket A \rrbracket} MN \in \llbracket B \rrbracket\}$

For NbE, we do something similar, but

- we need to keep track of contexts
- we need to work proof relevant: instead of defining a predicate, we define a set

Model: Interpretation of Types

We interpret types A as a map $\llbracket A \rrbracket$: Con \to Set together with functions $\llbracket A \rrbracket_{\Gamma_1,\Gamma_2}: \llbracket A \rrbracket(\Gamma_1) \to \llbracket A \rrbracket(\Gamma_2)$ whenever $\Gamma_1 \subseteq \Gamma_2$.

Definition

We interpret base types as follows: $\llbracket \sigma \rrbracket(\Gamma) = \mathsf{Nf}_{\sigma}(\Gamma)$. For function types: elements of $\llbracket A \to B \rrbracket(\Gamma)$ consist of

- ▶ for all Γ' such that $\Gamma \subseteq \Gamma'$ a function $f^{\Gamma'} : \llbracket A \rrbracket(\Gamma') \to \llbracket B \rrbracket(\Gamma')$
- ▶ such that for all Γ' , $\Gamma'' \in \text{Con with } \Gamma' \subseteq \Gamma''$ and all $x \in \llbracket A \rrbracket(\Gamma')$, we have

$$f^{\Gamma''}(\llbracket A \rrbracket_{\Gamma',\Gamma''}(x)) = \llbracket B \rrbracket_{\Gamma',\Gamma'}(f^{\Gamma'}(x))$$

Comparison

The case for the function type might seem mysterious, but compare the following:

 $\textbf{SN} \colon \{ \textit{M} \mid \forall_{\textit{N} \in \llbracket \textit{A} \rrbracket} \textit{MN} \in \llbracket \textit{B} \rrbracket \}$

 $\mathbf{NbE} \colon f^{\Gamma'} : \llbracket A \rrbracket(\Gamma') \to \llbracket B \rrbracket(\Gamma')$

And we recall the previous lecture again

Proposition

lf

- \triangleright $x_1 : A_1, ..., x_n : A_n \vdash M : B$
- $ightharpoonup N_1 \in [\![A_1]\!], \ldots N_n \in [\![A_n]\!],$

Then $M[x_1 := N_1, \dots x_n := N_n] \in [\![B]\!]$

For NbE: we need to give an interpretation of terms

The Model: Terms

Suppose, we have a term *t* of type *A*. Given

- \triangleright a context Γ containing the free variables of t,
- ▶ an element $\rho(x)$: $\llbracket B \rrbracket(\Gamma)$ for each declaration x : B in Γ , we interpret t as an element $\llbracket t \rrbracket_{\rho}^{\Gamma}$ of $\llbracket A \rrbracket(\Gamma)$.

The Model: Terms (Variables)

We define:

$$[\![x]\!]_{\rho}^{\mathsf{\Gamma}} = \rho(x)$$

This works because $\rho(x)$: $[B](\Gamma)$ where B is the type of x.

The Model: Terms (Application)

- ▶ Suppose $M : A \rightarrow B$ and N : A.
- ▶ Note $\llbracket M \rrbracket_{\rho}^{\Gamma}$ gives a function $f^{\Gamma'} : \llbracket A \rrbracket(\Gamma') \to \llbracket B \rrbracket(\Gamma')$ for all $\Gamma \subset \Gamma'$
- ► Also note: [N] : [A](Γ)

Define

$$\llbracket MN
bracket^{\Gamma}_{
ho} = \llbracket M
bracket^{\Gamma}_{
ho} (\llbracket N
bracket^{\Gamma}_{
ho})$$

The Model: Terms (Abstraction)

- Suppose M : B
- Let Γ contain the free variables of $\lambda(x : A).M$
- ▶ ρ maps variable declarations y : B in Γ to $\rho(y) : [B](Γ)$

Goal: to define $[\![\lambda(x:A).M]\!]_{\rho}^{\Gamma}$, we need to give for all Γ' such that $\Gamma \subseteq \Gamma'$ a function $f^{\Gamma'} : [\![A]\!](\Gamma') \to [\![B]\!](\Gamma')$ So, suppose we have,

- ▶ a context Γ' such that $\Gamma \subseteq \Gamma'$
- \triangleright $z : [A](\Gamma')$

Define $\rho[x \mapsto z]$ to be ρ but sending x to z. Then

$$\llbracket M
rbracket^{\Gamma}_{
ho \llbracket X \mapsto Z
rbracket} : \llbracket B
rbracket(\Gamma)$$

So, we take

$$\llbracket B \rrbracket_{\Gamma,\Gamma'}(\llbracket M \rrbracket_{\rho[X\mapsto Z]}^{\Gamma}) : \llbracket B \rrbracket(\Gamma')$$

Reification

Recall the following lemmas when proving strong normalization:

Lemma

For all strongly normalizing terms $N_1:A_1,...,N_k:A_k$ and variables $x:A_1\to\ldots\to A_k\to B$, we have

$$xN_1 \dots N_k : [\![B]\!]$$

Lemma

Every inhabitant of [A] is strongly normalizing

These were proven by mutual induction.

These are also needed for NbE.

Concretely: we define the **quote** and **unquote** functions

Reification

Lemma

For all contexts Γ and types A, we have functions

$$u_A^{\Gamma}: \mathsf{Ne}_A(\Gamma) \to \llbracket A \rrbracket(\Gamma)$$

$$q_A^{\Gamma}: \llbracket A \rrbracket(\Gamma) \to \mathsf{Nf}_A(\Gamma)$$

Proof.

Exercise!

 u_A^{Γ} is called **unquote** and q_A^{Γ} is called **quote**.

Reification: given by q_A^{Γ} .

Normalization

Let M: A be a term of type A free variables in Γ . We define the normalization function

$$\mathsf{norm}(M) = q_A^{\mathsf{\Gamma}}(\llbracket M \rrbracket_\rho^{\mathsf{\Gamma}})$$

where $\rho(x) = u_A^{\Gamma}(x)$.

Note that we need to use unquote here, because we need values in $[A](\Gamma)$ and not just variables.

Summary

Key points of this lecture:

- Normalization by evaluation is a different technique for normalizing terms
- It is not based on rewriting
- Instead it evaluates the term in a certain model and then reifies the result back to the syntax
- Possible for monoid expressions: one can use lists or functions
- Possible for the STLC: use sets indexed by contexts
- Many extensions of NbE are possible, for instance to dependent type theory
- NbE is also usable to implement proof assistants