Can the computer really help us to prove
theorems?

Herman Geuvers!

Radboud University Nijmegen
and
Eindhoven University of Technology
The Netherlands

ICT.Open 2011
Veldhoven, November 2011

Thanks to Freek Wiedijk & Foundations group, RU Nijmegen



Can the computer really help us to prove theorems?



Can the computer really help us to prove theorems?

Yes it can



Can the computer really help us to prove theorems?

Yes it can
But it's hard ...

» How does it work?
» Some state of the art
» What needs to be done



Overview

» What are Proof Assistants?
» How can a computer program guarantee correctness?

» Challenges



What are Proof Assistants — History

John McCarthy (1927 — 2011) ;
1961, Computer Programs for Checking Mathematical Proofs



What are Proof Assistants — History

John McCarthy (1927 — 2011) S
1961, Computer Programs for Checking Mathematical Proofs

Proof-checking by computer may be as important as
proof generation. It is part of the definition of formal
system that proofs be machine checkable.

For example, instead of trying out computer programs on
test cases until they are debugged, one should prove that
they have the desired properties.



What are Proof Assistants — History

Around 1970 five new systems / projects / ideas

» Automath De Bruijn (Eindhoven)
» Ngthm Boyer, Moore (Austin, Texas)
» LCF Milner (Stanford; Edinburgh)



What are Proof Assistants — History

Around 1970 five new systems / projects / ideas

Automath De Bruijn (Eindhoven)

Ngthm Boyer, Moore (Austin, Texas)

LCF Milner (Stanford; Edinburgh)

Mizar Trybulec (Biatystok, Poland)

Evidence Algorithm Glushkov (Kiev, Oekrain)

vV v . v v Y



What are Proof Assistants — History

Around 1970 five new systems / projects / ideas

Automath De Bruijn (Eindhoven) now: Coq

Ngthm Boyer, Moore (Austin, Texas) now: ACL2, PVS
LCF Milner (Stanford; Edinburgh) now: HOL, Isabelle
Mizar Trybulec (Biatystok, Poland)

Evidence Algorithm Glushkov (Kiev, Oekrain)

vV v . v v Y



HOL Light

LCF tradition (Milner):

LCF — HOL — HOL Light

Stanford, US — Cambridge, UK — Portland, US
Based on: higher order logic

John Harrison
proves correctness of floating point hardware at Intel

formalises mathematics in his spare time

very simple and elegant system
easy to extend (add your own tactics)
not user friendly



Isabelle

'successor’ of HOL
Based on: higher order logic

cooperation between two universities:
Cambridge, UK

focus: computer security

Miinchen, Duitsland

focus: mathematics and programming languages

balanced system
nice proof language
powerful automation



Coq

Based on: type theory

INRIA en Microsoft
Institut National de Recherche en Informatique et en Automatique

system with the most impressive formalisation so far
system used most at Nijmegen

integrated programming language
~ Haskell

mathematically expressive
the built in logic is intuitionistic



Mizar

ol @ |

Andrzej Trybulec
Biatystok, Polen

also: Nagano, Japan
Based on: set theory

most mathematical of all proof assistants

largest library of formalised mathematics
2,1 miljon lines of code

user friendly
sometimes hard to follow




What Proof Assistants are not

Doing mathematics on a computer

e Computing

e Proving



What Proof Assistants are not

Doing mathematics on a computer

e Computing: numbers
numerical mathematics, visualisation, simulation

e Computing: formulas
computer algebra

e Proving



What Proof Assistants are not

Doing mathematics on a computer

e Computing: numbers
numerical mathematics, visualisation, simulation

e Computing: formulas
computer algebra

e Proving: by the computer

e Proving: by a human, with the aid of a computer



What Proof Assistants are not

Doing mathematics on a computer

e Computing: numbers
numerical mathematics, visualisation, simulation

e Computing: formulas
computer algebra

e Proving: by the computer
automatic theorem proving

e Proving: by a human, with the aid of a computer
proof assistant



Why Proof Assistants

Doing mathematics on a computer

e Numerical Mathematics and Computer Algebra: No
proofs

e Automated Theorem Provers: No interesting mathematics

e Proof Assistants: proofs and interesting mathematics



Why Proof Assistants

Doing mathematics on a computer

e Numerical Mathematics and Computer Algebra: No
proofs

e Automated Theorem Provers: No interesting mathematics

e Proof Assistants: proofs and interesting mathematics

the price to pay:
user has to do a lot



Why Proof Assistants

Doing mathematics on a computer

e Numerical Mathematics and Computer Algebra: No
proofs

e Automated Theorem Provers: No interesting mathematics

e Proof Assistants: proofs and interesting mathematics
the price to pay:

user has to do a lot

proof assistant = interactive theorem prover
interplay between human and computer



Proof Assistants: what are they used for

» Verify mathematical theorems

» Build up a formal mathematical library

» Verify software and hardware design



Proof Assistants: what are they used for

» Verify mathematical theorems
Some mathematical proofs just become too large and
complex: proof of a Kepler's conjecture

» Build up a formal mathematical library

» Verify software and hardware design



Proof Assistants: what are they used for

» Verify mathematical theorems
Some mathematical proofs just become too large and
complex: proof of a Kepler's conjecture

» Build up a formal mathematical library
Mizar Mathematical Library

» Verify software and hardware design



Proof Assistants: what are they used for

» Verify mathematical theorems
Some mathematical proofs just become too large and
complex: proof of a Kepler's conjecture

» Build up a formal mathematical library
Mizar Mathematical Library

» Verify software and hardware design
Compcert: verified C compiler



Proof Assistants for software verification

Holy Grail

‘Things like even software verification, this has been the
Holy Grail of computer science for many decades but now
in some very key areas, for example, driver verification
we're building tools that can do actual proof about the
software and how it works in order to guarantee the
reliability.’



Proof Assistants for software verification

Holy Grail

‘Things like even software verification, this has been the
Holy Grail of computer science for many decades but now
in some very key areas, for example, driver verification
we're building tools that can do actual proof about the
software and how it works in order to guarantee the
reliability.’

Bill Gates, 18 april 2002



How a Proof Assistant works

The different phases in a mathematical proof

1. find a proof
Everything goes: experiment, guess, simplify, .. ..

Will not be preserved in the future, but crucial for students to
learn the subject.



How a Proof Assistant works

The different phases in a mathematical proof

1. find a proof
Everything goes: experiment, guess, simplify, .. ..
Will not be preserved in the future, but crucial for students to
learn the subject.

2. write down a proof
Contains explanation why the stated theorem holds and why
the proof is the way it is, but also small proof steps that
together provide a verification of the theorem.

3. present and communicate a proof

Explain to others, present in a talk. Improve a proof, simplify
it, change it, generalize it.



How a Proof Assistant works

The different phases in a mathematical proof

1. find a proof
Everything goes: experiment, guess, simplify, .. ..
Will not be preserved in the future, but crucial for students to
learn the subject.

2. write down a proof
Contains explanation why the stated theorem holds and why
the proof is the way it is, but also small proof steps that
together provide a verification of the theorem.

3. present and communicate a proof
Explain to others, present in a talk. Improve a proof, simplify
it, change it, generalize it.

Proof assistant plays a role in (2) and a bit in (3); in the future
possibly in (1)



Different styles of formalised proofs

» procedural

» declarative



Different styles of formalised proofs

» procedural
tell what to do

» declarative
tell where to go



Different styles of formalised proofs

» procedural
tell what to do
Go out of the train, to the right, down the stairs, to the right,
out of the exit, to the right, cross the pedestrian crossing,
take the Limbo trail, ...

» declarative
tell where to go



Different styles of formalised proofs

» procedural
tell what to do
Go out of the train, to the right, down the stairs, to the right,
out of the exit, to the right, cross the pedestrian crossing,
take the Limbo trail, ...

» declarative
tell where to go
Go to the platform, go down to the tunnel, to the north exit
of the station, go to the KvK building, then go to the “Zwarte
Doos", ...



Different styles of formalised proofs

procedural (tactics)

Theorem double_div2 : forall (n:nat), div2 (double n) = n.
simple induction n; auto with arith.

intros nO H.

rewrite double_S; pattern nO at 2; rewrite <- H; simpl; auto.
Qed.



Different styles of formalised proofs

declarative

Theorem double_div2 : forall (n:nat), div2 (double n) = n.
proof.
assume n:nat.
per induction on n.
suppose it is O.
thus thesis.
suppose it is (S m) and IH:thesis for m.
have (div2 (double (S m))= div2 (S (S (double m)))).
~“= (S (div2 (double m))).
thus "= (S m) by IH.
end induction.
end proof.



Why would we believe a proof assistant?

...a proof assistant is just another program ...




Why would we believe a proof assistant?

...a proof assistant is just another program ...

To attain the utmost level of reliability:

» Description of the rules and the logic of the system.



Why would we believe a proof assistant?

...a proof assistant is just another program ...

To attain the utmost level of reliability:

» Description of the rules and the logic of the system.

» A small “kernel”. All proofs can be reduced to a small
number of basic proof steps. high level steps are defined in
terms of the small ones.



Why would we believe a proof assistant?

...a proof assistant is just another program ...

To attain the utmost level of reliability:

» Description of the rules and the logic of the system.

» A small “kernel”. All proofs can be reduced to a small
number of basic proof steps. high level steps are defined in
terms of the small ones.

LCF approach [Milner]:

Have an abstract data type of theorems thm, where the only
constants of this data type are the axioms and the only functions
to this data type are the inference rules of the logic.



Why would we believe a proof assistant?

...a proof assistant is just another program ...

Other possibilities to increase the reliability of the proof assistant

» Check the proof checker. Verify the correctness of the proof
assistant in a proof assistant (e.g. the system itself).



Why would we believe a proof assistant?

...a proof assistant is just another program ...

Other possibilities to increase the reliability of the proof assistant

» Check the proof checker. Verify the correctness of the proof
assistant in a proof assistant (e.g. the system itself).
Example Coq in Coq: Construct a model of Coq in Cogq itself
and show that all tactics are sound with respect to this model
NB. Godel's incompleteness . .., so we need to assume
something.



Why would we believe a proof assistant?

...a proof assistant is just another program ...

Other possibilities to increase the reliability of the proof assistant

» Check the proof checker. Verify the correctness of the proof
assistant in a proof assistant (e.g. the system itself).
Example Coq in Coq: Construct a model of Coq in Cogq itself
and show that all tactics are sound with respect to this model
NB. Godel's incompleteness . .., so we need to assume
something.

» The De Bruijn criterion



Why would we believe a proof assistant?

...a proof assistant is just another program ...

Other possibilities to increase the reliability of the proof assistant

» Check the proof checker. Verify the correctness of the proof
assistant in a proof assistant (e.g. the system itself).
Example Coq in Coq: Construct a model of Coq in Cogq itself
and show that all tactics are sound with respect to this model
NB. Godel's incompleteness . .., so we need to assume
something.

» The De Bruijn criterion
A proof assistant satisfies the D.B. criterion if it generates
proof objects that can be checked independently of the system
that created it using a simple program that a skeptical user
can write him/herself.



Why would we believe a proof assistant?

Separating the proof checker (“simple”) from the proof engine

(“powerful™)

Proof Assistant (Interactive Theorem Prover)

Tactics

Goals

User Proof assistant

Proof Assistant with a small kernel that satisfies the De Bruijn

criterion

Tactics

User Goals

Proof Engine

Proof Assistant

Proof object

Proof checker

OK



How would we believe a proof assistant?

Does the formula on the screen correspond to what we have
proven?

» Proof Assistants have (sophisticated) notation and rendering
mechanisms to make formulas better readable.

» Can | make “True” look like “False” ?7



How would we believe a proof assistant?

Does the formula on the screen correspond to what we have
proven?

» Proof Assistants have (sophisticated) notation and rendering
mechanisms to make formulas better readable.

» Can | make “True” look like “False” ?7

Pollack consistency [Wiedijk]: One cannot introduce notation that
makes 0 = 1 provable.



How would we believe a proof assistant?

Does the formula on the screen correspond to what we have
proven?

» Proof Assistants have (sophisticated) notation and rendering
mechanisms to make formulas better readable.

» Can | make “True” look like “False” ?7

Pollack consistency [Wiedijk]: One cannot introduce notation that
makes 0 = 1 provable.
... None of the used proof assistants are Pollack consistent ...



How would we believe a proof assistant?

Does the formula on the screen correspond to what we have
proven?

Given that | trust the proof assistant,

how much proof code (definitions) do | need to read (and
understand) to believe that the final theorem is the one | wanted
to see proven?



How would we believe a proof assistant?

Does the formula on the screen correspond to what we have
proven?

Given that | trust the proof assistant,

how much proof code (definitions) do | need to read (and
understand) to believe that the final theorem is the one | wanted
to see proven?

That's an issue ...
The situation seems different between mathematics and computer
science.



How to believe that we have actually proven a theorem?
Example: The 4 colour theorem

Kenneth Appel en Wolfgang Haken, 1976
Neil Robertson e.a., 1996
Coq: Georges Gonthier, 2004

Can every map be coloured with only 4 different colours?



How to believe that we have actually proven a theorem?
Example: The 4 colour theorem

Kenneth Appel en Wolfgang Haken, 1976
Neil Robertson e.a., 1996
Coq: Georges Gonthier, 2004

Can every map be coloured with only 4 different colours?

e Gonthier has two pages of Coq definitions and notations that are
all that's needed to fully and precisely understand his statement of
the 4 colour theorem.



How to believe that we have actually proven a theorem?

Example: Compcert (Leroy et al. INRIA 2006)

Verifying an optimizing C-compiler



How to believe that we have actually proven a theorem?

Example: Compcert (Leroy et al. INRIA 2006)

Verifying an optimizing C-compiler

Just stating what the correctness of a C-compiler means already
takes several pages ...



Mathematical users of Proof Assistants

Flyspeck project: Formalizing a proof of the Kepler Conjecture
http://code.google.com/p/flyspeck/

Tom Hales, CMU Pittsburgh



Kepler Conjecture (1611)




Kepler Conjecture (1611)

The most compact way of stacking balls of the same size
is a pyramid.



Kepler Conjecture (1611)

The most compact way of stacking balls of the same size
is a pyramid.

ki
“Wolume occupied by spheres = — = 74 %
o ¥ spl = ®




Kepler Conjecture (1611)

» Hales 1998: proof of the conjecture using computer programs

» Annals of Mathematics: 99% correct . ..



Kepler Conjecture (1611)

» Hales 1998: proof of the conjecture using computer programs

» Annals of Mathematics: 99% correct .. .but we can't verify
the correctness of the computer programs.



Hales’ proof of the Kepler conjecture
Reduce the problem to 1039 inequalities of the shape

—X1X3 — X2X4 + X1X5 + X3X6 — X5X6+

Xo(—X2 4 X1 + X3 — X4 + X5 + Xp) <tan(z—
2

0.74)

xox4(—x2 + X1 + X3 — x4 + X5 + Xg)+
x1x5(x2 — X1 + X3 + Xg — X5 + X6)+
x3X6(X2 + X1 — X3 + X4 + X5 — Xp)
—X1X3X4 — X2X3X5 — X0X1 X6 — X4X5X6

4X2



Hales’ proof of the Kepler conjecture
Reduce the problem to 1039 inequalities of the shape

—X1X3 — X2X4 + X1X5 + X3X6 — X5X6+

Xo(—X2 4 X1 + X3 — X4 + X5 + Xp) <tan(z—
2

0.74)

xox4(—x2 + X1 + X3 — x4 + X5 + Xg)+
x1x5(x2 — X1 + X3 + Xg — X5 + X6)+
x3X6(X2 + X1 — X3 + X4 + X5 — Xp)
—X1X3X4 — X2X3X5 — X0X1 X6 — X4X5X6

4X2

Use computer programs to verify these inequalities.



Flyspeck project

» Hales: formalise the proof of Kepler's conjecture using Proof
Assistants Write the computer code in the PA, prove it correct
in the PA and run it in the PA.

» Proof Assistants used: Hol light, Isabelle, Coq



Some large formalization projects in Computer Science

» Conference Interactive Theorem Proving, every paper is
supported by a formalization

» the ARM microprocessor, proved correct in HOL4 by Anthony
Fox University of Cambridge, 2002

» the L4 operating system, proved correct in Isabelle by Gerwin
Klein NICTA, Australia, 2009



Some large formalization projects in Computer Science

» Conference Interactive Theorem Proving, every paper is
supported by a formalization

» the ARM microprocessor, proved correct in HOL4 by Anthony
Fox University of Cambridge, 2002

» the L4 operating system, proved correct in Isabelle by Gerwin
Klein NICTA, Australia, 2009 200,000 lines of Isabelle
20 person-years for the correctness proof
160 bugs before verification
0 bugs after verification



Proof Assistants: What needs to be done

Automation

» Formalize all of the Bachelor undergraduate mathematics

» Combination of Theorem Proving and Machine Learning
(Urban et al.)
Use ML to produce a hint databse that can be fed to an
Automated Theorem Prover

» Domain Specific Tactics / Automation



Proof Assistants: What needs to be done

Cooperation and Documentation

» PAs cannot cooperate, exchange knowledge: mathematical
components

» How to document your development for reuse?

» How to cooperate on a large development?



Proof Assistants: What needs to be done

Cooperation and Documentation

» PAs cannot cooperate, exchange knowledge: mathematical
components

» How to document your development for reuse? MathWiki

» How to cooperate on a large development? MathWiki



