Herman Geuvers

Radboud University Nijmegen and Eindhoven University of Technology The Netherlands

LIX Colloquium Theory and Application of Formal Proofs Paris, 5-7 November 2013 It was 20 years ago ...

that I defended my PhD. thesis ("Logics and Type Systems") on Pure Type Systems

It was 20 years ago ...

that I defended my PhD. thesis ("Logics and Type Systems") on Pure Type Systems

It was 45 years ago today ...

that this much more interesting album appeared

Pure Type Systems

- Unified presentation of systems of dependently typed λ calculus
- Barendregt: Fine structure of the Calculus of Constructions:
 λ-cube
- ► Berardi: Study the interpretation of logics in systems of the λ-cube → the logic cube
- Terlouw, Geuvers & Nederhof: study the normalization of Calculus of Constructions and type systems in general.
- ► First definition of PTSs: Generalized Type Systems 1991

Content

- Rules of Pure Type Systems and examples
- Meta-theory: Subject Reduction, Church-Rosser, Normalization
- Combining with η
- Looping and fixed-point combinators and an open problem
- A conjecture about WN and SN
- Revisiting Contexts (PTSs without contexts)
- Revisiting Conversion (Making conversion explicit)

Content

- Rules of Pure Type Systems and examples
- Meta-theory: Subject Reduction, Church-Rosser, Normalization
- Combining with η
- Looping and fixed-point combinators and an open problem
- A conjecture about WN and SN
- Revisiting Contexts (PTSs without contexts)
- Revisiting Conversion (Making conversion explicit)

Not treated:

- Classical PTSs and Domain-free PTSs
- PTS with explicit substitution
- Syntax-directed PTS & Type checking
- Sequent calculus PTS

Content

- Rules of Pure Type Systems and examples
- Meta-theory: Subject Reduction, Church-Rosser, Normalization
- Combining with η
- Looping and fixed-point combinators
- A conjecture about WN and SN
- PTSs without contexts
- Making conversion explicit

Based on work of and joint work with (non-exhaustive):
H. Barendregt, B. van Benthem Jutting, S. Berardi, G. Barthe,
Th. Coquand, F. van Doorn, G. Gonthier, H. Herbelin, D. Howe,
T. Hurkens, R. Krebbers, J. McKinna, M.-J. Nederhof,
R. Nederpelt, R. Pollack, V. Siles, M.H. Sørensen, J. Terlouw,
J. Verkoelen, B. Werner, F. Wiedijk

- Application and λ-abstraction.
- Π -types: $\Pi x: A.B$ think of $\{f | \forall a : A(f a : B[a/x])\}$.

Rules:

$$(\lambda) \qquad \frac{\Gamma, x: A \vdash M : B \quad \Gamma \vdash \Pi x: A.B : s}{\Gamma \vdash \lambda x: A.M : \Pi x: A.B}$$

$$(app) \qquad \frac{\Gamma \vdash M : \Pi x: A.B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B[N/x]}$$

Notation: $A \rightarrow B$ for $\Pi x: A.B$ when $x \notin FV(()B)$. Examples: Given A: Type, $P: A \rightarrow Prop$,

- $\lambda x : A.\lambda h : P x.x : \Pi x : A.P x \to P x$
- $(\lambda x : A.\lambda h : P x.x) a : P a \rightarrow P a$

- Structural (context) rules.
- Parameter: S is the set of "sorts" of the PTS (or the "universes")
- Rules:

(var)
$$\frac{\Gamma \vdash A: s}{\Gamma, x: A \vdash x: A}$$
 (weak) $\frac{\Gamma \vdash A: s \quad \Gamma \vdash M: C}{\Gamma, x: A \vdash M: C}$

- Structural (context) rules.
- Parameter: S is the set of "sorts" of the PTS (or the "universes")
- Rules:

(var)
$$\frac{\Gamma \vdash A: s}{\Gamma, x: A \vdash x: A}$$
 (weak) $\frac{\Gamma \vdash A: s \quad \Gamma \vdash M: C}{\Gamma, x: A \vdash M: C}$

- Relations between sorts and Π-type formation.
- Parameters: $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$, $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S} \times \mathcal{S}$.

(axiom)
$$\vdash s_1 : s_2$$
 if $(s_1, s_2) \in \mathcal{A}$
(Π) $\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A : B : s_3}$ if $(s_1, s_2, s_3) \in \mathcal{R}$

• The triple (S, A, R) determines the PTS.

Special rule: β-conversion

(conv)
$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma \vdash M : B} \text{ if } A =_{\beta} B$$

β-equal types have the same inhabitants
x : Vec(3+2) ⊢ x : Vec(5).

Pure Type Systems: all rules

Parameters:
$$(S, A, \mathcal{R})$$
 with $A \subset S \times S$, $\mathcal{R} \subset S \times S \times S$.
(axiom) $\vdash s_1 : s_2$ if $(s_1, s_2) \in A$
(weak) $\frac{\Gamma \vdash A : s \quad \Gamma \vdash M : C}{\Gamma, x:A \vdash M : C}$ (var) $\frac{\Gamma \vdash A : s}{\Gamma, x:A \vdash x : A}$
(app) $\frac{\Gamma \vdash M : \Pi x: A.B \quad \Gamma \vdash N : A}{\Gamma \vdash M : B \quad \Gamma \vdash \Pi x: A.B}$ (λ) $\frac{\Gamma, x:A \vdash M : B \quad \Gamma \vdash \Pi x: A.B : s}{\Gamma \vdash \lambda x: A.M : \Pi x: A.B}$
(Π) $\frac{\Gamma \vdash A : s_1 \quad \Gamma, x:A \vdash B : s_2}{\Gamma \vdash \Pi x: A.B : s_3}$ if $(s_1, s_2, s_3) \in \mathcal{R}$
(conv) $\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma \vdash M : B}$ if $A =_{\beta} B$

PTSs: the λ -cube

The cube of typed λ -calculi: $S = \{Prop, Type\}$

► In the Π-rule:

$$(\Pi) \quad \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A : B : s_2}$$

we always take $s_2 = s_3$.

- ▶ We take (Prop, Prop) in every *R*
- For the rest we vary on all possible combinations for

 $\mathcal{R} \subseteq \{ (Prop, Prop), (Type, Prop), (Type, Type), (Prop, Type) \}$

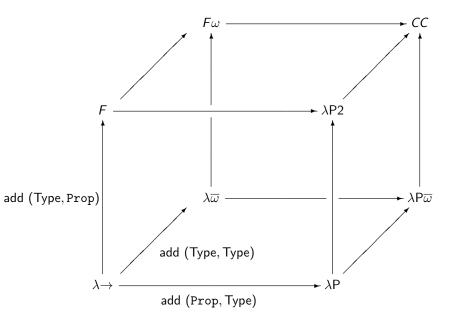
PTSs: The λ -cube

$$(\Pi) \quad \frac{\Gamma \vdash A : s_1 \quad \Gamma, x: A \vdash B : s_2}{\Gamma \vdash \Pi x: A \cdot B : s_2} \quad \text{if} \ (s_1, s_2) \in \mathcal{R}$$

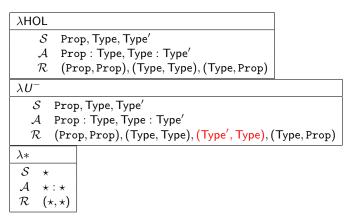
System	\mathcal{R}			
$\lambda \rightarrow$	(Prop, Prop)			
$\lambda 2$ (system F)	(Prop, Prop)	(Type, Prop)		
$\lambda P(LF)$	(Prop, Prop)		(Prop, Type)	
$\lambda \overline{\omega}$	(Prop, Prop)			(Type, Type)
$\lambda P2$	(Prop, Prop)	(Type, Prop)	(Prop, Type)	
$\lambda\omega$ (system F ω)	(Prop, Prop)	(Type, Prop)		(Type, Type)
$\lambda P\overline{\omega}$	(Prop, Prop)		(Prop, Type)	(Type, Type)
$\lambda P \omega$ (CC)	(Prop, Prop)	(Type, Prop)	(Prop, Type)	(Type, Type)

N.B. $\lambda {\rightarrow}, \, \lambda P, \, \lambda 2 \, ...$ in this presentation are equivalent to the well-known ones.

PTSs: The λ -cube



Some other Pure Type Systems



- λHOL corresponds to constructive Higher Order Logic under the Curry-Howard isomorphism
- ► \u03c8 \u03c8 \u03c8 \u03c8 U⁻ is Higher Order Logic over impredicative domains and is inconsistent (Girard's paradox)
- ▶ λ* is the system with 'Type : Type', which is also inconsistent.

Some meta-theory

• β -reduction is Church-Rosser on the pseudo-terms

 $\mathsf{T} ::= \mathcal{S} | \mathsf{Var} | (\mathsf{\Pi} \mathsf{Var}:\mathsf{T}.\mathsf{T}) | (\lambda \mathsf{Var}:\mathsf{T}.\mathsf{T}) | \mathsf{TT}.$

Therefore we have

$$\Pi x : A.B =_{\beta} \Pi x : C.D \Longrightarrow A =_{\beta} C \land B =_{\beta} D \tag{(\dagger)}$$

From that we conclude Subject Reduction:

$$\Gamma \vdash M : A \land M \twoheadrightarrow_{\beta} P \Longrightarrow \Gamma \vdash P : A$$

Interesting case: *M* itself is a β -redex. It follows from (†)

Some meta-theory

• β -reduction is Church-Rosser on the pseudo-terms

 $\mathsf{T} ::= \mathcal{S} | \mathsf{Var} | (\mathsf{\Pi} \mathsf{Var}:\mathsf{T}.\mathsf{T}) | (\lambda \mathsf{Var}:\mathsf{T}.\mathsf{T}) | \mathsf{TT}.$

Therefore we have

$$\Pi x : A.B =_{\beta} \Pi x : C.D \Longrightarrow A =_{\beta} C \land B =_{\beta} D \tag{(\dagger)}$$

From that we conclude Subject Reduction:

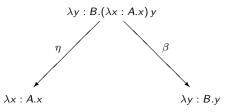
$$\Gamma \vdash M : A \land M \twoheadrightarrow_{\beta} P \Longrightarrow \Gamma \vdash P : A$$

Interesting case: *M* itself is a β -redex. It follows from (†)

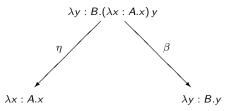
Uniqueness of Types holds for functional PTSs:

$$\Gamma \vdash M : A \land \Gamma \vdash M : B \twoheadrightarrow_{\beta} P \Longrightarrow A =_{\beta} B$$

Strong normalization holds for CC, but not for λU^- and $\lambda *$.

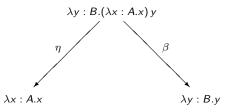


If $A \neq_{\beta\eta} B$, these terms are not convertible.



If $A \neq_{\beta\eta} B$, these terms are not convertible. Question: How do we prove Subject Reduction? We need

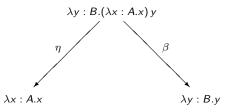
$$\Pi x : A.B =_{\beta\eta} \Pi x : C.D \Longrightarrow A =_{\beta\eta} C \land B =_{\beta\eta} D$$



If $A \neq_{\beta\eta} B$, these terms are not convertible. Question: How do we prove Subject Reduction? We need

$$\Pi x : A.B =_{\beta\eta} \Pi x : C.D \Longrightarrow A =_{\beta\eta} C \land B =_{\beta\eta} D$$

Domain Lemmal: For pseudo-terms we have $(\forall C[-], A, B, M)$ $C[\lambda x : A.M] =_{\beta\eta} C[\lambda x : B.M]$



If $A \neq_{\beta\eta} B$, these terms are not convertible. Question: How do we prove Subject Reduction? We need

$$\Pi x : A.B =_{\beta\eta} \Pi x : C.D \Longrightarrow A =_{\beta\eta} C \land B =_{\beta\eta} D$$

Domain Lemmal: For pseudo-terms we have $(\forall C[-], A, B, M)$

$$C[\lambda x : A.M] =_{\beta\eta} C[\lambda x : B.M]$$

From that we conclude

$$\Pi x : A.B =_{\beta\eta} \Pi x : C.D \Longrightarrow A =_{\beta\eta} C \land B =_{\beta\eta} D \tag{(\dagger)}$$

and thereby Subject Reduction for β .

Adding η to the conversion rule

Summarizing we have:

- Subject Reduction for β
- If β -reduction is weakly normalizing, then
 - Subject Reduction for η holds.
 - Church-Rosser for $\beta\eta$ on well-typed terms holds:

If
$$\Gamma \vdash M : A \land \Gamma \vdash P : A \land M =_{\beta\eta} P$$

then $\exists Q(M \twoheadrightarrow_{\beta\eta} Q \land P \twoheadrightarrow_{\beta\eta} Q).$

Adding η to the conversion rule

Summarizing we have:

- Subject Reduction for β
- If β -reduction is weakly normalizing, then
 - Subject Reduction for η holds.
 - Church-Rosser for $\beta\eta$ on well-typed terms holds:

If
$$\Gamma \vdash M : A \land \Gamma \vdash P : A \land M =_{\beta\eta} P$$

then $\exists Q(M \twoheadrightarrow_{\beta\eta} Q \land P \twoheadrightarrow_{\beta\eta} Q).$

This is strange ... usually normalization is hard, while confluence is combinatorial Can't we prove $CR_{\beta\eta}$ for arbitrary PTSs?

The situation for $PTS_{\beta\eta}$

If $\lambda_{*\beta\eta}$ has a fixed point combinator, then $\lambda_{*\beta\eta} \not\models CR_{\beta\eta}$. (G. and Werner)

The situation for $PTS_{\beta\eta}$

If $\lambda *_{\beta\eta}$ has a fixed point combinator, then $\lambda *_{\beta\eta} \not\models CR_{\beta\eta}$. (G. and Werner)

Proof. Let $Y : \Pi \alpha : \star . (\alpha \to \alpha) \to \alpha$ be the fixed-point comb. Let C, D, E be distinct types.

$$\begin{array}{rcl} A_c & := & Y\left(\lambda\beta : \star.\beta {\rightarrow} (C {\rightarrow} C) {\rightarrow} E\right) \\ A_d & := & Y\left(\lambda\beta : \star.\beta {\rightarrow} (D {\rightarrow} D) {\rightarrow} E\right) \end{array}$$

Then $A_c =_{\beta\eta} A_c \rightarrow (C \rightarrow C) \rightarrow E$ (and idem for A_d).

$$M_c := \lambda x : A_c.x x : A_c$$
$$M_d := \lambda x : A_d.x x : A_d$$

For $M_c M_c (\lambda z : C.z)$ (and similarly for $M_d M_d (\lambda z : D.z)$) the only reduction is

 $M_c M_c (\lambda z : C.z) \rightarrow_{\beta\eta} M_c M_c (\lambda z : C.z)$

But $M_c M_c (\lambda z : C.z) =_{\beta\eta} M_d M_d (\lambda z : D.z)$, so we don't have $CR_{\beta\eta}$.

Is there a fixed point combinator?

For the PTS_{β} case:

Howe: in λ*, from Girard's paradox, we can derive a looping combinator:

family of terms $(Y_i)_{i \in \mathbb{N}} : \Pi \alpha : \star . (\alpha \to \alpha) \to \alpha$

with $Y_i A f =_{\beta} f(Y_{i+1} A f)$.

- ► This enables the definability of all partial recursive functions.
- Coquand-Herbelin: use A-translation to extend to paradoxes in arbitrary "logical" PTSs.

Is there a fixed point combinator?

For the PTS_{β} case:

Howe: in λ*, from Girard's paradox, we can derive a looping combinator:

family of terms $(Y_i)_{i \in \mathbb{N}} : \Pi \alpha : \star . (\alpha \to \alpha) \to \alpha$

with $Y_i A f =_{\beta} f(Y_{i+1} A f)$.

- ► This enables the definability of all partial recursive functions.
- Coquand-Herbelin: use A-translation to extend to paradoxes in arbitrary "logical" PTSs.
- Hurkens' paradox: "simple" proof of inconsistency of λU⁻; we can actually study the derived term Y : Πα : ★.(α → α) → α.
 - G., Pollack: it is a looping combinator
 - Barthe, Coquand: it is not a fixed-point combinator, but if we erase all domains in λ-abstractions, it is a fixed point combinator.
 - If we erase all type information, we get the untyped fixed-point combinator

$$Y := \omega \left(\lambda p \, q.f \, (q \, p \, q) \right) \omega$$

where $\omega = \lambda x.x x$. So $Y f \twoheadrightarrow_{\beta} f(Y f)$.

So, is there a fixed-point combinator?

 Yes ... (Barthe, Coquand) The domain-erased term from Hurkens' inconsistency proof is a fixed-point combinator, so the term is also a fixed-point combinator in λ*_{βη}:

$$Y_i A f \twoheadrightarrow f(Y_{i+1} A f) =_{\beta \eta} f(Y_i A f)$$

(By the Domain Lemma: $C[\lambda x : A.M] =_{\beta\eta} C[\lambda x : B.M]$.)

 No ... (G., Verkoelen) In λU⁻, we cannot type an untyped λ-term of the shape

$$(\lambda x...(x x)...)(\lambda y...(y y)...).$$

So: Curry's fixed-point combinator $Y := \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$ and Turing's fixed-point combinator $\Theta := (\lambda x y.y(x x y))(\lambda x y.y(x x y))$ are not typable in λU^{-} .

Normalization

Is there a generic proof of normalization?

- Known proofs proceed by defining a saturated sets or candidat de réducibilité interpretation.
- These are proofs for strong normalization (SN)

Normalization

Is there a generic proof of normalization?

- Known proofs proceed by defining a saturated sets or candidat de réducibilité interpretation.
- These are proofs for strong normalization (SN)
- ► Terlouw:

Given a PTS, define TYPE := $\{A \mid \exists s \in cS(\vdash A : s)\}$. Define the relation \prec on well-typed terms as follows:

If
$$P \ B \ \vec{C} \in \text{TYPE}$$
, then $B \prec P$ and $P \ B \prec P$

Theorem (Terlouw): If \prec is well-founded, then the PTS is SN.

Weak and Strong Normalization

Observation

- All type theories we know are either SN or not WN ...
- The set of well-typed terms of a PTS is not just some subset of T: it is
 - closed under sub-terms
 - closed under reduction
 - closed under freezing of redexes

Weak and Strong Normalization

Observation

- All type theories we know are either SN or not WN ...
- The set of well-typed terms of a PTS is not just some subset of T: it is
 - closed under sub-terms
 - closed under reduction
 - closed under freezing of redexes

Closure under freezing:

If $C[(\lambda x : A.M)P]$ is well-typed, then C[dP] is well-typed

for some "neutral term" *d*. (So *d P* cannot reduce.)

Weak and Strong Normalization

Observation

- All type theories we know are either SN or not WN ...
- The set of well-typed terms of a PTS is not just some subset of T: it is
 - closed under sub-terms
 - closed under reduction
 - closed under freezing of redexes

Closure under freezing:

If $C[(\lambda x : A.M)P]$ is well-typed, then C[dP] is well-typed

for some "neutral term" d. (So d P cannot reduce.)

Conjecture: Every PTS that is WN is also SN.

Idea: if there is a well-typed term M that exhibits an infinite reduction path (M is not SN), then we can create out of M a well-typed term P that has only infinite reduction paths (P is not WN).

$WN \Longrightarrow SN?$

Consider the following conjecture. Given a set $X \subseteq \Lambda$ that is

- 1. closed under sub-terms
- 2. closed under reduction

3. closed under freezing of redexes

Then $X \models WN_{\beta} \implies X \models SN_{\beta}$. NB. X is closed under freezing if

$$C[(\lambda x : A.M)P] \in X \Longrightarrow C[dP]$$

$WN \Longrightarrow SN?$

Consider the following conjecture. Given a set $X \subseteq \Lambda$ that is

- 1. closed under sub-terms
- 2. closed under reduction

3. closed under freezing of redexes

Then $X \models WN_{\beta} \implies X \models SN_{\beta}$. NB. X is closed under freezing if

$$C[(\lambda x : A.M)P] \in X \Longrightarrow C[dP]$$

Gonthier: this conjecture is false!

Counterexample: consider X to be the closure under 1, 2, 3 of

$$\{\omega(\lambda z.F(z u z z))\}$$

where $F = \lambda x y.y$ and u is a variable.

Revisiting Contexts

Traditional presentation of dependent type theory

Terms considered with respect to an explicit context

 $\Gamma \vdash M : A$

- A **bound** variable is bound **locally** by a λ or Π
- ► A free variable is bound globally by Γ

Can we present dependent type theory without contexts?

Motivation

First-order logic and contexts

Predicate logic

$$\frac{A \vdash P(\mathbf{x})}{A \vdash \forall x.P(x)}$$
$$\vdash A \rightarrow \forall x.P(x)$$

Type theory $H \cdot A \times D \vdash M_2 \cdot P(\mathbf{x})$

$$\frac{H:A, X:D + M_3: P(X)}{H:A \vdash M_2: \Pi x: D.P(x)}$$
$$\vdash M_1: A \to \Pi x: D.P(x)$$

'sea' of free variables

context of 'free' variables

What about?

$$(\forall x. P(x)) \rightarrow (\exists x. P(x))$$

Motivation

Theorem provers

- Correctness of a theorem prover based on the LCF-architecture relies on the kernel
- Kernels always have a state

definitions from the formalization that already have been processed

Corresponds to a context in the formal treatment

 $\Gamma \vdash M : A$

Dependent Type Theory without Contexts

H.G., R. Krebbers, J. McKinna, F. Wiedijk, LFMTP 2010

- We simulate the sea of free variables
- Infinitely many variables x^A for each type A
- \blacktriangleright This gives an "infinite context" called Γ_∞
- For example

 $s^{N^* \rightarrow N^*}$

Dependent Type Theory without Contexts

H.G., R. Krebbers, J. McKinna, F. Wiedijk, LFMTP 2010

- We simulate the sea of free variables
- Infinitely many variables x^A for each type A
- \blacktriangleright This gives an "infinite context" called Γ_∞
- For example

 $s^{N^* \rightarrow N^*}$

- Variable carries history of how it comes to be well-typed
- ► Judgments of the shape A : B
- Should be imagined as $\Gamma_{\infty} \vdash A : B$

Labelled PTS terms

- Type labels should be considered as strings
- \blacktriangleright Labels are insensitive to α and $\beta\text{-conversion}$
- That is to say

$$x^{A}[A := B] \not\equiv x^{B}$$

and

Labelled PTS terms

- Type labels should be considered as strings
- Labels are insensitive to α and β -conversion
- That is to say

$$x^{A}[A := B] \not\equiv x^{B}$$

and

But we do have (by type conversion)

$$x^{(\lambda \dot{A}:*.\dot{A})B^*}:B^*$$

We avoid the need to consider substitution in labels of bound variables, e.g. in

$$(\lambda x^A \lambda P^{A \to *} \lambda y^{P^{A \to *} x^A} \dots) a^A \to_{\beta} \lambda P^{A \to *} \lambda y^{P^{A \to *} a^A} \dots$$

Typing rules Two of the six rules

PTS rules
$$\Gamma_{\infty}$$
 rules $\frac{\Gamma \vdash A:s}{\Gamma, x: A \vdash x: A} x \notin \Gamma$ $\frac{A:s}{x^A: A}$ $\Gamma \vdash A:s_1$ $\Gamma, x: A \vdash B:s_2$ $A:s_1$ $\Gamma \vdash \Pi x: A.B:s_3$ $\Pi \dot{x}: A.B[y^A:=\dot{x}]: s_3$

Remark:

 \blacktriangleright Binding a variable in Γ_∞

replace a free variable by a bound variable

No weakening rule

But this does not correspond to PTSs!

Now we would have

$$\frac{x^{A^*} : A^*}{\lambda \dot{A} : * . x^{A^*} : \Pi \dot{A} : * . \dot{A}}$$

but, in ordinary PTS-style

 $\frac{A:*,x:A \vdash x:A}{x:A \vdash \lambda A:*.x:\Pi A:*.A}$

which is nonsense because A^* occurs free in the type label of x.

It is not enough to consider the free variables in a type label, but the *hereditary* free variables of a type label.

$$\frac{A:s_1 \quad B:s_2}{\prod \dot{x}: A.B[y^A:=\dot{x}]:s_3}$$
 Incorrect

It is not enough to consider the free variables in a type label, but the *hereditary* free variables of a type label.

$$\frac{A:s_1 \quad B:s_2}{\prod \dot{x}: A.B[y^A:=\dot{x}]:s_3}$$

$$y^{\mathsf{A}} \notin \operatorname{hfvT}(B)$$

It is not enough to consider the free variables in a type label, but the *hereditary* free variables of a type label.

$$\frac{A:s_1 \quad B:s_2}{\prod \dot{x}: A.B[y^A:=\dot{x}]:s_3} \qquad y^A \notin \operatorname{hfvT}(B)$$
$$\frac{M:B \quad \exists \dot{x}: A.B[y^A:=\dot{x}]:s}{\lambda \dot{x}: A.M[y^A:=\dot{x}]: \exists \dot{x}: A.B[y^A:=\dot{x}]} y^A \notin \operatorname{hfvT}(M) \cup \operatorname{hfvT}(B)$$

Hereditary free type-variables are defined as

$$\begin{split} \mathrm{hfvT}(s) &= \mathrm{hfvT}(\dot{x}) &= \emptyset \\ \mathrm{hfvT}(F \ N) &= \mathrm{hfvT}(F) \cup \mathrm{hfvT}(N) \\ \mathrm{hfvT}(\lambda \dot{x} : A.N) &= \mathrm{hfvT}(A) \cup \mathrm{hfvT}(N) \\ \mathrm{hfvT}(x^{A}) &= \mathrm{hfvT}(A) \end{split}$$

Where the hereditary free variables are defined as

$$\begin{split} \mathrm{hfv}(s) &= \mathrm{hfv}(\dot{x}) &= \emptyset \\ \mathrm{hfv}(F\,N) &= \mathrm{hfv}(F) \cup \mathrm{hfv}(N) \\ \mathrm{hfv}(\lambda \dot{x} : A.N) &= \mathrm{hfv}(A) \cup \mathrm{hfv}(N) \\ \mathrm{hfv}(x^{\mathcal{A}}) &= \{x^{\mathcal{A}}\} \cup \mathrm{hfv}(\mathcal{A}) \end{split}$$

Back to the example

$$\frac{x^{A^*} : A^*}{\lambda \dot{A} : * . x^{A^*} : \Pi \dot{A} : * . \dot{A}}$$

Not correct, because

$$A^* \in \operatorname{hfvT}(x^{A^*}) \cup \operatorname{hfvT}(A^*) = \{A^*\} \cup \emptyset$$

The correspondence theorems

derivable PTS judgment \longleftrightarrow derivable Γ_{∞} judgment

(α -)rename $\Gamma \vdash M : A$ to $\Gamma' \vdash M' : A'$ such that $\Gamma' \subset \Gamma_{\infty}$ and

$$\Gamma \vdash M : A \implies M' : A'$$

for M : A generate a context $\Gamma(M, A)$ such that

 $\Gamma(M,A) \vdash M : A \iff M : A$

Remarks

Advantages of the context-free approach:

- Strengthening is implicit
- Some theorems might be easier to prove
- Closer to LCF-style provers

Formalization in Coq

- One direction completely finished
- Locally nameless approach: bound variables are De Bruijn indices
- Suits distinction between variables well

Future work

- \blacktriangleright Γ_{∞} presentation for other type theories, e.g. theories with definitions
- LCF-style kernel based on Γ_{∞} . Efficiency?

Revisiting the conversion rule

Three uses of $\beta\text{-reduction}$ and the conversion rule in Logical Frameworks

- 1. To deal with substitution (and the proper renaming of bound vars etc).
- 2. For comprehension
- 3. To define functions as (executable) programs
- The first 2 are typically used in HOL and LF and involve β-reduction in simple type theory or first order dependent type theory, which is relatively easy.
- The third is available in CC and Coq, and used heavily for proof automation.

The conversion rule: examples in Church' HOL

Church' HOL:

 $\forall x : \mathbb{N}.x + 0 = x$ is defined as $\forall (\lambda x : \mathbb{N}.x + 0 = x)$. A derivation involving substitution:

$$\frac{\forall (\lambda x : \mathbb{N}.x + 0 = x)}{(\lambda x : \mathbb{N}.x + 0 = x)5} \forall \text{-elim} \\ \frac{\beta - \text{conv}}{5 + 0 = 5} \beta \text{-conv}$$

The conversion rule: examples in Church' HOL

Church' HOL:

 $\forall x : \mathbb{N}.x + 0 = x$ is defined as $\forall (\lambda x : \mathbb{N}.x + 0 = x)$. A derivation involving substitution:

$$\frac{\forall (\lambda x : \mathbb{N}.x + 0 = x)}{(\lambda x : \mathbb{N}.x + 0 = x)5} \forall \text{-elim} \\ \frac{\beta - \text{conv}}{5 + 0 = 5} \beta \text{-conv}$$

Comprehension: for all formulas φ :

$$\exists X \forall \vec{x}. X \, \vec{x} \leftrightarrow \varphi$$

In type theory this is easy, because we have $X := \lambda \vec{x}.\varphi$ available in the language.

$$\frac{\varphi \leftrightarrow \varphi}{(\lambda \vec{x}.\varphi) \, \vec{x} \leftrightarrow \varphi} \, \beta \text{-conv}}{\exists X \forall \vec{x}.X \, \vec{x} \leftrightarrow \varphi} \, \exists \text{-in}$$

More computation in the system

- Inductive types and (well-founded) recursive functions turn a PA (Coq, Matita, Agda, Nuprl, ...) into a programming language.
- This allows programming automated theorem proving techniques inside the system. (Via Reflection) To prove A, type-check

```
reflexivity : solve \llbracket A \rrbracket = true
```

More computation in the system

- Inductive types and (well-founded) recursive functions turn a PA (Coq, Matita, Agda, Nuprl, ...) into a programming language.
- This allows programming automated theorem proving techniques inside the system. (Via Reflection)
 To prove A, type-check

```
reflexivity : solve \llbracket A \rrbracket = true
```

 When the power of this was first shown to Per Martin-Löf (Kloster Irsee 1998), his first reaction was ...
 "But these aren't proofs!" How can we believe a proof assistant?

 Check the checker. Verify the correctness of the PA inside the system itself, or in another system. How can we believe a proof assistant?

- Check the checker. Verify the correctness of the PA inside the system itself, or in another system.
- The De Bruijn criterion

De Bruijn, July 9, 1918 - February 17, 2012

Some PAs generate proof objects that can be checked independently from the system by a simple program that a skeptical user could write him/herself. Back to simple (linear time?) type-checking?

Storing a trace of the conversion in the proof-term

• A PTS_f is a PTS with conversion replaced by the following rule $\Gamma \vdash t \cdot A \quad \Gamma \vdash B \cdot s \quad \Gamma \vdash H \cdot A = B$

$$\frac{\Gamma \vdash t : A \ \Gamma \vdash B : s \ \Gamma \vdash H : A = B}{\Gamma \vdash t^{H} : B}$$
(conv)

- In addition we have rules to construct expressions H to record the *conversion trace* between A and B, H : A = B. This H is meant to encode the β-conversion-path between A and B.
- The terms H : A = B are also well-typed in a context Γ .
- In λH , type-checking is linear

F. van Doorn, H.G. and F. Wiedijk – Explicit Convertibility Proofs in Pure Type Systems, LFMTP 2013

Rules for constructing equality proof terms

We have the term-construction rules for reflexivity, symmetry and transitivity

$$\frac{\Gamma \vdash_{f} A : B}{\Gamma \vdash_{f} \overline{A} : A = A}$$

$$\frac{\Gamma \vdash_{f} H : A = A'}{\Gamma \vdash_{f} H^{\dagger} : A' = A}$$

$$\frac{\Gamma \vdash_{f} H : A = A'}{\Gamma \vdash_{f} H' : A' = A''}$$

$$\Gamma \vdash_{f} H \cdot H' : A = A''$$

Some of the rules for constructing equality proof terms

We have the term-construction rules for Π -types, the β -rule and a rule to erase equality proof-annotations

$$\begin{array}{ll} \Gamma \vdash_{f} A : s_{1} & \Gamma, x : A \vdash_{f} B : s_{2} \\ \Gamma \vdash_{f} A' : s_{1}' & \Gamma, x' : A' \vdash_{f} B' : s_{2}' \\ \hline \Gamma \vdash_{f} H : A = A' & \Gamma, x : A \vdash_{f} H' : B = B'[x' := x^{H}] \\ \hline \Gamma \vdash_{f} \{H, [x : A]H'\} : \Pi x : A . B = \Pi x' : A' . B' \end{array} (s_{1}, s_{2}, s_{3}) \in \mathcal{R}$$

$$\frac{\Gamma \vdash_f a : A : s_1 \qquad \Gamma, x : A \vdash_f b : B : s_2}{\Gamma \vdash_f \beta((\lambda x : A . b)a) : (\lambda x : A . b)a = b[x := a]} (s_1, s_2, s_3) \in \mathcal{R}$$

$$\frac{\Gamma \vdash_f a : A \quad \Gamma \vdash_f A' : s \quad \Gamma \vdash_f H : A = A'}{\Gamma \vdash_f \iota(a^H) : a = a^H}$$

Soundness and Completeness of PTS_f with respect to PTS

Let |-| be the map that erases all equality-proof annotations. If |A'| = A, we call A' a lift of A.

► (Soundness, easy) If $\Gamma \vdash_f M : A$, then $|\Gamma| \vdash |M| : |A|$.

Soundness and Completeness of PTS_f with respect to PTS

Let |-| be the map that erases all equality-proof annotations. If |A'| = A, we call A' a lift of A.

- ► (Soundness, easy) If $\Gamma \vdash_f M : A$, then $|\Gamma| \vdash |M| : |A|$.
- Completeness for typing, hard!) If Γ ⊢ A : B, then there are lifts Γ', A' and B' of Γ, A and B, such that

$\Gamma' \vdash_f A' : B'$

• (Completeness for equality, hard!) If $\Gamma \vdash A : C$, $\Gamma \vdash A : D$ and $A =_{\beta} B$, then there are lifts Γ' , A' and B' of Γ , A and B and a term H such that

$$\Gamma' \vdash_f H : A' = B'$$

All proofs have been completely formalized in Coq by F. van Doorn.

Questions?

Advertisement: our book

"Type Theory and Formal Proof" will appear with CUP in 2014. (Authors: Rob Nederpelt, Herman Geuvers)