
Pure Type Systems revisited

Herman Geuvers

Radboud University Nijmegen
and

Eindhoven University of Technology
The Netherlands

LIX Colloquium
Theory and Application of Formal Proofs

Paris, 5-7 November 2013

It was 20 years ago ...

that I defended my PhD. thesis (“Logics and Type Systems”) on
Pure Type Systems

It was 20 years ago ...

that I defended my PhD. thesis (“Logics and Type Systems”) on
Pure Type Systems

It was 45 years ago today ...

that this much more interesting album appeared

Pure Type Systems

I Unified presentation of systems of dependently typed λ
calculus

I Barendregt: Fine structure of the Calculus of Constructions:
λ-cube

I Berardi: Study the interpretation of logics in systems of the
λ-cube 7→ the logic cube

I Terlouw, Geuvers & Nederhof: study the normalization of
Calculus of Constructions and type systems in general.

I First definition of PTSs: Generalized Type Systems 1991

Pure Type Systems revisited
Content

I Rules of Pure Type Systems and examples

I Meta-theory: Subject Reduction, Church-Rosser,
Normalization

I Combining with η

I Looping and fixed-point combinators and an open problem

I A conjecture about WN and SN

I Revisiting Contexts (PTSs without contexts)

I Revisiting Conversion (Making conversion explicit)

Not treated:

I Classical PTSs and Domain-free PTSs

I PTS with explicit substitution

I Syntax-directed PTS & Type checking

I Sequent calculus PTS

I ...

Pure Type Systems revisited
Content

I Rules of Pure Type Systems and examples

I Meta-theory: Subject Reduction, Church-Rosser,
Normalization

I Combining with η

I Looping and fixed-point combinators and an open problem

I A conjecture about WN and SN

I Revisiting Contexts (PTSs without contexts)

I Revisiting Conversion (Making conversion explicit)

Not treated:

I Classical PTSs and Domain-free PTSs

I PTS with explicit substitution

I Syntax-directed PTS & Type checking

I Sequent calculus PTS

I ...

Pure Type Systems revisited

Content

I Rules of Pure Type Systems and examples

I Meta-theory: Subject Reduction, Church-Rosser,
Normalization

I Combining with η

I Looping and fixed-point combinators

I A conjecture about WN and SN

I PTSs without contexts

I Making conversion explicit

Based on work of and joint work with (non-exhaustive):
H. Barendregt, B. van Benthem Jutting, S. Berardi, G. Barthe,
Th. Coquand, F. van Doorn, G. Gonthier, H. Herbelin, D. Howe,
T. Hurkens, R. Krebbers, J. McKinna, M.-J. Nederhof,
R. Nederpelt, R. Pollack, V. Siles, M.H. Sørensen, J. Terlouw,
J. Verkoelen, B. Werner, F. Wiedijk

Rules of Pure Type Systems

I Application and λ-abstraction.

I Π-types: Πx :A.B think of {f |∀a : A(f a : B[a/x]}.
I Rules:

(λ)
Γ, x :A ` M : B Γ ` Πx :A.B : s

Γ ` λx :A.M : Πx :A.B

(app)
Γ ` M : Πx :A.B Γ ` N : A

Γ ` MN : B[N/x]

Notation: A→ B for Πx :A.B when x /∈ FV(()B).
Examples: Given A : Type,P : A→Prop,

I λx : A.λh : P x .x : Πx : A.P x → P x

I (λx : A.λh : P x .x) a : P a→ P a

Rules of Pure Type Systems

I Structural (context) rules.

I Parameter: S is the set of “sorts” of the PTS (or the
“universes”)

I Rules:

(var)
Γ ` A : s

Γ, x :A ` x : A
(weak)

Γ ` A : s Γ ` M : C

Γ, x :A ` M : C

I Relations between sorts and Π-type formation.

I Parameters: A⊆ S × S, R⊆ S × S × S.

(axiom) ` s1 : s2 if (s1, s2) ∈ A

(Π)
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` Πx :A.B : s3
if (s1, s2, s3) ∈ R

I The triple (S,A,R) determines the PTS.

Rules of Pure Type Systems

I Structural (context) rules.

I Parameter: S is the set of “sorts” of the PTS (or the
“universes”)

I Rules:

(var)
Γ ` A : s

Γ, x :A ` x : A
(weak)

Γ ` A : s Γ ` M : C

Γ, x :A ` M : C

I Relations between sorts and Π-type formation.

I Parameters: A⊆ S × S, R⊆ S × S × S.

(axiom) ` s1 : s2 if (s1, s2) ∈ A

(Π)
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` Πx :A.B : s3
if (s1, s2, s3) ∈ R

I The triple (S,A,R) determines the PTS.

Rules of Pure Type Systems

I Special rule: β-conversion

(conv)
Γ ` M : A Γ ` B : s

Γ ` M : B
if A =β B

I β-equal types have the same inhabitants

I x : Vec(3 + 2) ` x : Vec(5).

Pure Type Systems: all rules

Parameters: (S,A,R) with A ⊂ S × S, R ⊂ S × S × S.

(axiom) ` s1 : s2 if (s1, s2) ∈ A

(weak)
Γ ` A : s Γ ` M : C

Γ, x :A ` M : C
(var)

Γ ` A : s

Γ, x :A ` x : A

(app)
Γ ` M : Πx :A.B Γ ` N : A

Γ ` MN : B[N/x]
(λ)

Γ, x :A ` M : B Γ ` Πx :A.B : s

Γ ` λx :A.M : Πx :A.B

(Π)
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` Πx :A.B : s3
if (s1, s2, s3) ∈ R

(conv)
Γ ` M : A Γ ` B : s

Γ ` M : B
if A =β B

PTSs: the λ-cube

The cube of typed λ-calculi: S = {Prop,Type}
I In the Π-rule:

(Π)
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` Πx :A.B : s2

we always take s2 = s3.

I We take (Prop, Prop) in every R
I For the rest we vary on all possible combinations for

R ⊆ { (Prop, Prop), (Type, Prop), (Type,Type), (Prop,Type) }

PTSs: The λ-cube

(Π)
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` Πx :A.B : s2
if (s1, s2) ∈ R

System R
λ→ (Prop, Prop)
λ2 (system F) (Prop, Prop) (Type, Prop)
λP (LF) (Prop, Prop) (Prop,Type)
λω (Prop, Prop) (Type,Type)
λP2 (Prop, Prop) (Type, Prop) (Prop,Type)
λω (system Fω) (Prop, Prop) (Type, Prop) (Type,Type)
λPω (Prop, Prop) (Prop,Type) (Type,Type)
λPω (CC) (Prop, Prop) (Type, Prop) (Prop,Type) (Type,Type)

N.B. λ→, λP, λ2 ... in this presentation are equivalent to the
well-known ones.

PTSs: The λ-cube

Fω - CC

6 6

�
�
�
�
�
��

�
�
�
�
�
��

F - λP2

6 6

add (Type, Prop) λω - λPω

�
�
� add (Type,Type)
�
�
��

�
�
�
�
�
��

λ→
add (Prop,Type)

- λP

Some other Pure Type Systems

λHOL

S Prop,Type,Type′

A Prop : Type,Type : Type′

R (Prop, Prop), (Type,Type), (Type, Prop)

λU−

S Prop,Type,Type′

A Prop : Type,Type : Type′

R (Prop, Prop), (Type,Type), (Type′,Type), (Type, Prop)

λ∗
S ?
A ? : ?
R (?, ?)

I λHOL corresponds to constructive Higher Order Logic under
the Curry-Howard isomorphism

I λU− is Higher Order Logic over impredicative domains and is
inconsistent (Girard’s paradox)

I λ∗ is the system with ‘Type : Type’, which is also inconsistent.

Some meta-theory

I β-reduction is Church-Rosser on the pseudo-terms

T ::= S |Var | (ΠVar:T.T) | (λVar:T.T) |TT.

Therefore we have

Πx : A.B =β Πx : C .D =⇒ A =β C ∧ B =β D (†)

I From that we conclude Subject Reduction:

Γ ` M : A ∧M �β P =⇒ Γ ` P : A

Interesting case: M itself is a β-redex. It follows from (†)

I Uniqueness of Types holds for functional PTSs:

Γ ` M : A ∧ Γ ` M : B �β P =⇒ A =β B

I Strong normalization holds for CC, but not for λU− and λ∗.

Some meta-theory

I β-reduction is Church-Rosser on the pseudo-terms

T ::= S |Var | (ΠVar:T.T) | (λVar:T.T) |TT.

Therefore we have

Πx : A.B =β Πx : C .D =⇒ A =β C ∧ B =β D (†)

I From that we conclude Subject Reduction:

Γ ` M : A ∧M �β P =⇒ Γ ` P : A

Interesting case: M itself is a β-redex. It follows from (†)
I Uniqueness of Types holds for functional PTSs:

Γ ` M : A ∧ Γ ` M : B �β P =⇒ A =β B

I Strong normalization holds for CC, but not for λU− and λ∗.

Adding η to the conversion rule
Problem: βη-reduction is not Church-Rosser on the pseudo-terms:

λy : B.(λx : A.x) y

	�
�
�

η �
�
� @

@
@ β

@
@
@R

λx : A.x λy : B.y

If A 6=βη B, these terms are not convertible.

Question: How do we prove Subject Reduction? We need

Πx : A.B =βη Πx : C .D =⇒ A =βη C ∧ B =βη D

Domain Lemma!: For pseudo-terms we have (∀C [−],A,B,M)

C [λx : A.M] =βη C [λx : B.M]

From that we conclude

Πx : A.B =βη Πx : C .D =⇒ A =βη C ∧ B =βη D (†)

and thereby Subject Reduction for β.

Adding η to the conversion rule
Problem: βη-reduction is not Church-Rosser on the pseudo-terms:

λy : B.(λx : A.x) y

	�
�
�

η �
�
� @

@
@ β

@
@
@R

λx : A.x λy : B.y

If A 6=βη B, these terms are not convertible.
Question: How do we prove Subject Reduction? We need

Πx : A.B =βη Πx : C .D =⇒ A =βη C ∧ B =βη D

Domain Lemma!: For pseudo-terms we have (∀C [−],A,B,M)

C [λx : A.M] =βη C [λx : B.M]

From that we conclude

Πx : A.B =βη Πx : C .D =⇒ A =βη C ∧ B =βη D (†)

and thereby Subject Reduction for β.

Adding η to the conversion rule
Problem: βη-reduction is not Church-Rosser on the pseudo-terms:

λy : B.(λx : A.x) y

	�
�
�

η �
�
� @

@
@ β

@
@
@R

λx : A.x λy : B.y

If A 6=βη B, these terms are not convertible.
Question: How do we prove Subject Reduction? We need

Πx : A.B =βη Πx : C .D =⇒ A =βη C ∧ B =βη D

Domain Lemma!: For pseudo-terms we have (∀C [−],A,B,M)

C [λx : A.M] =βη C [λx : B.M]

From that we conclude

Πx : A.B =βη Πx : C .D =⇒ A =βη C ∧ B =βη D (†)

and thereby Subject Reduction for β.

Adding η to the conversion rule
Problem: βη-reduction is not Church-Rosser on the pseudo-terms:

λy : B.(λx : A.x) y

	�
�
�

η �
�
� @

@
@ β

@
@
@R

λx : A.x λy : B.y

If A 6=βη B, these terms are not convertible.
Question: How do we prove Subject Reduction? We need

Πx : A.B =βη Πx : C .D =⇒ A =βη C ∧ B =βη D

Domain Lemma!: For pseudo-terms we have (∀C [−],A,B,M)

C [λx : A.M] =βη C [λx : B.M]

From that we conclude

Πx : A.B =βη Πx : C .D =⇒ A =βη C ∧ B =βη D (†)

and thereby Subject Reduction for β.

Adding η to the conversion rule

Summarizing we have:

I Subject Reduction for β
I If β-reduction is weakly normalizing, then

I Subject Reduction for η holds.
I Church-Rosser for βη on well-typed terms holds:

If Γ ` M : A ∧ Γ ` P : A ∧M =βη P

then ∃Q(M �βη Q ∧ P �βη Q).

This is strange ... usually normalization is hard, while confluence is
combinatorial
Can’t we prove CRβη for arbitrary PTSs?

Adding η to the conversion rule

Summarizing we have:

I Subject Reduction for β
I If β-reduction is weakly normalizing, then

I Subject Reduction for η holds.
I Church-Rosser for βη on well-typed terms holds:

If Γ ` M : A ∧ Γ ` P : A ∧M =βη P

then ∃Q(M �βη Q ∧ P �βη Q).

This is strange ... usually normalization is hard, while confluence is
combinatorial
Can’t we prove CRβη for arbitrary PTSs?

The situation for PTSβη
If λ∗βη has a fixed point combinator, then λ∗βη 6|= CRβη.
(G. and Werner)

Proof. Let Y : Πα : ?.(α→ α)→ α be the fixed-point comb. Let
C ,D,E be distinct types.

Ac := Y (λβ : ?.β→(C→C)→E)

Ad := Y (λβ : ?.β→(D→D)→E)

Then Ac =βη Ac→(C→C)→E (and idem for Ad).

Mc := λx : Ac .x x : Ac

Md := λx : Ad .x x : Ad

For Mc Mc (λz : C .z) (and similarly for Md Md (λz : D.z)) the
only reduction is

Mc Mc (λz : C .z) →βη Mc Mc (λz : C .z)

But Mc Mc (λz : C .z) =βη Md Md (λz : D.z), so we don’t have
CRβη.

The situation for PTSβη
If λ∗βη has a fixed point combinator, then λ∗βη 6|= CRβη.
(G. and Werner)

Proof. Let Y : Πα : ?.(α→ α)→ α be the fixed-point comb. Let
C ,D,E be distinct types.

Ac := Y (λβ : ?.β→(C→C)→E)

Ad := Y (λβ : ?.β→(D→D)→E)

Then Ac =βη Ac→(C→C)→E (and idem for Ad).

Mc := λx : Ac .x x : Ac

Md := λx : Ad .x x : Ad

For Mc Mc (λz : C .z) (and similarly for Md Md (λz : D.z)) the
only reduction is

Mc Mc (λz : C .z) →βη Mc Mc (λz : C .z)

But Mc Mc (λz : C .z) =βη Md Md (λz : D.z), so we don’t have
CRβη.

Is there a fixed point combinator?
For the PTSβ case:
I Howe: in λ∗, from Girard’s paradox, we can derive a looping

combinator:

family of terms (Yi)i∈N : Πα : ?.(α→ α)→ α

with Yi A f =β f (Yi+1 A f).
I This enables the definability of all partial recursive functions.
I Coquand-Herbelin: use A-translation to extend to paradoxes in

arbitrary “logical” PTSs.

I Hurkens’ paradox: “simple” proof of inconsistency of λU−; we
can actually study the derived term Y : Πα : ?.(α→ α)→ α.

I G., Pollack: it is a looping combinator
I Barthe, Coquand: it is not a fixed-point combinator, but if we

erase all domains in λ-abstractions, it is a fixed point
combinator.

I If we erase all type information, we get the untyped fixed-point
combinator

Y := ω (λp q.f (q p q))ω

where ω = λx .x x . So Y f �β f (Y f).

Is there a fixed point combinator?
For the PTSβ case:
I Howe: in λ∗, from Girard’s paradox, we can derive a looping

combinator:

family of terms (Yi)i∈N : Πα : ?.(α→ α)→ α

with Yi A f =β f (Yi+1 A f).
I This enables the definability of all partial recursive functions.
I Coquand-Herbelin: use A-translation to extend to paradoxes in

arbitrary “logical” PTSs.
I Hurkens’ paradox: “simple” proof of inconsistency of λU−; we

can actually study the derived term Y : Πα : ?.(α→ α)→ α.
I G., Pollack: it is a looping combinator
I Barthe, Coquand: it is not a fixed-point combinator, but if we

erase all domains in λ-abstractions, it is a fixed point
combinator.

I If we erase all type information, we get the untyped fixed-point
combinator

Y := ω (λp q.f (q p q))ω

where ω = λx .x x . So Y f �β f (Y f).

So, is there a fixed-point combinator?

I Yes ... (Barthe, Coquand) The domain-erased term from
Hurkens’ inconsistency proof is a fixed-point combinator, so
the term is also a fixed-point combinator in λ∗βη:

Yi A f � f (Yi+1 A f) =βη f (Yi A f)

(By the Domain Lemma: C [λx : A.M] =βη C [λx : B.M].)

I No ... (G., Verkoelen) In λU−, we cannot type an untyped
λ-term of the shape

(λx (x x) . . .) (λy (y y) . . .).

So: Curry’s fixed-point combinator
Y := λf .(λx .f (x x))(λx .f (x x)) and Turing’s fixed-point
combinator Θ := (λx y .y (x x y))(λx y .y (x x y)) are not
typable in λU−.

Normalization

Is there a generic proof of normalization?

I Known proofs proceed by defining a saturated sets or candidat
de réducibilité interpretation.

I These are proofs for strong normalization (SN)

I Terlouw:
Given a PTS, define TYPE := {A | ∃s ∈ cS(` A : s)}.
Define the relation ≺ on well-typed terms as follows:

If P B ~C ∈ TYPE, then B ≺ P and P B ≺ P.

Theorem (Terlouw): If ≺ is well-founded, then the PTS is SN.

Normalization

Is there a generic proof of normalization?

I Known proofs proceed by defining a saturated sets or candidat
de réducibilité interpretation.

I These are proofs for strong normalization (SN)

I Terlouw:
Given a PTS, define TYPE := {A | ∃s ∈ cS(` A : s)}.
Define the relation ≺ on well-typed terms as follows:

If P B ~C ∈ TYPE, then B ≺ P and P B ≺ P.

Theorem (Terlouw): If ≺ is well-founded, then the PTS is SN.

Weak and Strong Normalization

Observation

I All type theories we know are either SN or not WN ...
I The set of well-typed terms of a PTS is not just some subset

of T: it is
I closed under sub-terms
I closed under reduction
I closed under freezing of redexes

Closure under freezing:

If C [(λx : A.M)P] is well-typed, then C [d P] is well-typed

for some “neutral term” d . (So d P cannot reduce.)

Conjecture: Every PTS that is WN is also SN.
Idea: if there is a well-typed term M that exhibits an infinite
reduction path (M is not SN), then we can create out of M a
well-typed term P that has only infinite reduction paths (P is not
WN).

Weak and Strong Normalization

Observation

I All type theories we know are either SN or not WN ...
I The set of well-typed terms of a PTS is not just some subset

of T: it is
I closed under sub-terms
I closed under reduction
I closed under freezing of redexes

Closure under freezing:

If C [(λx : A.M)P] is well-typed, then C [d P] is well-typed

for some “neutral term” d . (So d P cannot reduce.)

Conjecture: Every PTS that is WN is also SN.
Idea: if there is a well-typed term M that exhibits an infinite
reduction path (M is not SN), then we can create out of M a
well-typed term P that has only infinite reduction paths (P is not
WN).

Weak and Strong Normalization

Observation

I All type theories we know are either SN or not WN ...
I The set of well-typed terms of a PTS is not just some subset

of T: it is
I closed under sub-terms
I closed under reduction
I closed under freezing of redexes

Closure under freezing:

If C [(λx : A.M)P] is well-typed, then C [d P] is well-typed

for some “neutral term” d . (So d P cannot reduce.)

Conjecture: Every PTS that is WN is also SN.
Idea: if there is a well-typed term M that exhibits an infinite
reduction path (M is not SN), then we can create out of M a
well-typed term P that has only infinite reduction paths (P is not
WN).

WN =⇒ SN?

Consider the following conjecture.
Given a set X ⊆ Λ that is

1. closed under sub-terms

2. closed under reduction

3. closed under freezing of redexes

Then X |= WNβ =⇒ X |= SNβ.
NB. X is closed under freezing if

C [(λx : A.M)P] ∈ X =⇒ C [d P]

Gonthier: this conjecture is false!
Counterexample: consider X to be the closure under 1, 2, 3 of

{ω (λz .F (z u z z))}

where F = λx y .y and u is a variable.

WN =⇒ SN?

Consider the following conjecture.
Given a set X ⊆ Λ that is

1. closed under sub-terms

2. closed under reduction

3. closed under freezing of redexes

Then X |= WNβ =⇒ X |= SNβ.
NB. X is closed under freezing if

C [(λx : A.M)P] ∈ X =⇒ C [d P]

Gonthier: this conjecture is false!
Counterexample: consider X to be the closure under 1, 2, 3 of

{ω (λz .F (z u z z))}

where F = λx y .y and u is a variable.

Revisiting Contexts

Traditional presentation of dependent type theory

I Terms considered with respect to an explicit context Γ

Γ ` M : A

I A bound variable is bound locally by a λ or Π

I A free variable is bound globally by Γ

Can we present dependent type theory without contexts?

Motivation
First-order logic and contexts

Predicate logic Type theory

A ` P(x)

A ` ∀x .P(x)

` A→ ∀x .P(x)

H : A, x : D ` M3 : P(x)

H : A ` M2 : Πx : D.P(x)

` M1 : A→ Πx : D.P(x)

‘sea’ of free variables context of ‘free’ variables

What about?
(∀x .P(x))→ (∃x .P(x))

Motivation
Theorem provers

I Correctness of a theorem prover based on the
LCF-architecture relies on the kernel

I Kernels always have a state

definitions from the formalization that already have
been processed

I Corresponds to a context in the formal treatment

Γ ` M : A

Dependent Type Theory without Contexts

H.G., R. Krebbers, J. McKinna, F. Wiedijk, LFMTP 2010

I We simulate the sea of free variables

I Infinitely many variables xA for each type A

I This gives an “infinite context” called Γ∞
I For example

sN
∗→N∗

I Variable carries history of how it comes to be well-typed

I Judgments of the shape A : B

I Should be imagined as Γ∞ ` A : B

Dependent Type Theory without Contexts

H.G., R. Krebbers, J. McKinna, F. Wiedijk, LFMTP 2010

I We simulate the sea of free variables

I Infinitely many variables xA for each type A

I This gives an “infinite context” called Γ∞
I For example

sN
∗→N∗

I Variable carries history of how it comes to be well-typed

I Judgments of the shape A : B

I Should be imagined as Γ∞ ` A : B

Labelled PTS terms
I Type labels should be considered as strings
I Labels are insensitive to α and β-conversion
I That is to say

xA[A := B] 6≡ xB

and

(λȦ : ∗.Ȧ) B∗ =β B∗

x (λȦ:∗.Ȧ)B∗ 6=β xB∗

I But we do have (by type conversion)

x (λȦ:∗.Ȧ)B∗ : B∗

I We avoid the need to consider substitution in labels of bound
variables, e.g. in

(λxAλPA→∗λyPA→∗xA . . .)aA →β λPA→∗λyPA→∗aA . . .

Labelled PTS terms
I Type labels should be considered as strings
I Labels are insensitive to α and β-conversion
I That is to say

xA[A := B] 6≡ xB

and

(λȦ : ∗.Ȧ) B∗ =β B∗

x (λȦ:∗.Ȧ)B∗ 6=β xB∗

I But we do have (by type conversion)

x (λȦ:∗.Ȧ)B∗ : B∗

I We avoid the need to consider substitution in labels of bound
variables, e.g. in

(λxAλPA→∗λyPA→∗xA . . .)aA →β λPA→∗λyPA→∗aA . . .

Typing rules
Two of the six rules

PTS rules Γ∞ rules

Γ ` A : s
x /∈ Γ

Γ, x : A ` x : A
A : s

xA : A

Γ ` A : s1 Γ, x : A ` B : s2
Γ ` Πx : A.B : s3

A : s1 B : s2

Πẋ : A.B[yA := ẋ] : s3

Remark:

I Binding a variable in Γ∞

replace a free variable by a bound variable

I No weakening rule

But this does not correspond to PTSs!

Now we would have

xA∗ : A∗

λȦ : ∗.xA∗ : ΠȦ : ∗.Ȧ

but, in ordinary PTS-style

A : ∗, x : A ` x : A

x : A ` λA : ∗.x : ΠA : ∗.A

which is nonsense because A∗ occurs free in the type label of x .

Taking the type annotations seriously

It is not enough to consider the free variables in a type label, but
the hereditary free variables of a type label.

A : s1 B : s2
Incorrect

yA /∈ hfvT(B)

Πẋ : A.B[yA := ẋ] : s3

M : B Πẋ : A.B[yA := ẋ] : s
yA /∈ hfvT(M) ∪ hfvT(B)

λẋ : A.M[yA := ẋ] : Πẋ : A.B[yA := ẋ]

Taking the type annotations seriously

It is not enough to consider the free variables in a type label, but
the hereditary free variables of a type label.

A : s1 B : s2

Incorrect

yA /∈ hfvT(B)
Πẋ : A.B[yA := ẋ] : s3

M : B Πẋ : A.B[yA := ẋ] : s
yA /∈ hfvT(M) ∪ hfvT(B)

λẋ : A.M[yA := ẋ] : Πẋ : A.B[yA := ẋ]

Taking the type annotations seriously

It is not enough to consider the free variables in a type label, but
the hereditary free variables of a type label.

A : s1 B : s2

Incorrect

yA /∈ hfvT(B)
Πẋ : A.B[yA := ẋ] : s3

M : B Πẋ : A.B[yA := ẋ] : s
yA /∈ hfvT(M) ∪ hfvT(B)

λẋ : A.M[yA := ẋ] : Πẋ : A.B[yA := ẋ]

Taking the type annotations seriously

Hereditary free type-variables are defined as

hfvT(s) = hfvT(ẋ) = ∅
hfvT(F N) = hfvT(F) ∪ hfvT(N)

hfvT(λẋ : A.N) = hfvT(Πẋ : A.N) = hfvT(A) ∪ hfvT(N)

hfvT(xA) = hfv(A)

Where the hereditary free variables are defined as

hfv(s) = hfv(ẋ) = ∅
hfv(F N) = hfv(F) ∪ hfv(N)

hfv(λẋ : A.N) = hfv(Πẋ : A.N) = hfv(A) ∪ hfv(N)

hfv(xA) = {xA} ∪ hfv(A)

Back to the example

xA∗ : A∗

λȦ : ∗.xA∗ : ΠȦ : ∗.Ȧ
Not correct, because

A∗ ∈ hfvT(xA∗) ∪ hfvT(A∗) = {A∗} ∪ ∅

The correspondence theorems

derivable PTS judgment ←→ derivable Γ∞ judgment

(α-)rename Γ ` M : A to Γ′ ` M ′ : A′ such that Γ′ ⊂ Γ∞ and

Γ ` M : A =⇒ M ′ : A′

for M : A generate a context Γ(M,A) such that

Γ(M,A) ` M : A ⇐= M : A

Remarks

Advantages of the context-free approach:

I Strengthening is implicit

I Some theorems might be easier to prove

I Closer to LCF-style provers

Formalization in Coq

I One direction completely finished

I Locally nameless approach: bound variables are De Bruijn
indices

I Suits distinction between variables well

Future work

I Γ∞ presentation for other type theories, e.g. theories with
definitions

I LCF-style kernel based on Γ∞. Efficiency?

Revisiting the conversion rule

Three uses of β-reduction and the conversion rule in Logical
Frameworks

1. To deal with substitution (and the proper renaming of bound
vars etc).

2. For comprehension

3. To define functions as (executable) programs

I The first 2 are typically used in HOL and LF and involve
β-reduction in simple type theory or first order dependent type
theory, which is relatively easy.

I The third is available in CC and Coq, and used heavily for
proof automation.

The conversion rule: examples in Church’ HOL
Church’ HOL:
∀x : N.x + 0 = x is defined as ∀(λx : N.x + 0 = x).
A derivation involving substitution:

∀(λx : N.x + 0 = x)
∀-elim

(λx : N.x + 0 = x) 5
β-conv

5 + 0 = 5

Comprehension: for all formulas ϕ:

∃X∀~x .X ~x ↔ ϕ

In type theory this is easy, because we have X := λ~x .ϕ available in
the language.

ϕ↔ ϕ
β-conv

(λ~x .ϕ)~x ↔ ϕ
∃-in

∃X∀~x .X ~x ↔ ϕ

The conversion rule: examples in Church’ HOL
Church’ HOL:
∀x : N.x + 0 = x is defined as ∀(λx : N.x + 0 = x).
A derivation involving substitution:

∀(λx : N.x + 0 = x)
∀-elim

(λx : N.x + 0 = x) 5
β-conv

5 + 0 = 5

Comprehension: for all formulas ϕ:

∃X∀~x .X ~x ↔ ϕ

In type theory this is easy, because we have X := λ~x .ϕ available in
the language.

ϕ↔ ϕ
β-conv

(λ~x .ϕ)~x ↔ ϕ
∃-in

∃X∀~x .X ~x ↔ ϕ

More computation in the system

I Inductive types and (well-founded) recursive functions turn a
PA (Coq, Matita, Agda, Nuprl, . . .) into a programming
language.

I This allows programming automated theorem proving
techniques inside the system. (Via Reflection)
To prove A, type-check

reflexivity : solve[[A]] = true

I When the power of this was first shown to Per Martin-Löf
(Kloster Irsee 1998), his first reaction was . . .
“But these aren’t proofs!”

More computation in the system

I Inductive types and (well-founded) recursive functions turn a
PA (Coq, Matita, Agda, Nuprl, . . .) into a programming
language.

I This allows programming automated theorem proving
techniques inside the system. (Via Reflection)
To prove A, type-check

reflexivity : solve[[A]] = true

I When the power of this was first shown to Per Martin-Löf
(Kloster Irsee 1998), his first reaction was . . .
“But these aren’t proofs!”

How can we believe a proof assistant?

I Check the checker. Verify the correctness of the PA inside the
system itself, or in another system.

I The De Bruijn criterion

De Bruijn, July 9, 1918 - February 17, 2012

Some PAs generate proof objects that can be checked
independently from the system by a simple program that a
skeptical user could write him/herself.

How can we believe a proof assistant?

I Check the checker. Verify the correctness of the PA inside the
system itself, or in another system.

I The De Bruijn criterion

De Bruijn, July 9, 1918 - February 17, 2012

Some PAs generate proof objects that can be checked
independently from the system by a simple program that a
skeptical user could write him/herself.

Back to simple (linear time?) type-checking?

Storing a trace of the conversion in the proof-term

I A PTSf is a PTS with conversion replaced by the following
rule

Γ ` t : A Γ ` B : s Γ ` H : A = B
(conv)

Γ ` tH : B

I In addition we have rules to construct expressions H to record
the conversion trace between A and B, H : A = B. This H is
meant to encode the β-conversion-path between A and B.

I The terms H : A = B are also well-typed in a context Γ.

I In λH, type-checking is linear

F. van Doorn, H.G. and F. Wiedijk – Explicit Convertibility Proofs
in Pure Type Systems, LFMTP 2013

Rules for constructing equality proof terms

We have the term-construction rules for reflexivity, symmetry and
transitivity

Γ `f A : B

Γ `f A : A = A

Γ `f H : A = A′

Γ `f H† : A′ = A

Γ `f H : A = A′ Γ `f H ′ : A′ = A′′

Γ `f H · H ′ : A = A′′

Some of the rules for constructing equality proof terms

We have the term-construction rules for Π-types, the β-rule and a
rule to erase equality proof-annotations

Γ `f A : s1
Γ `f A′ : s ′1
Γ `f H : A = A′

Γ, x : A `f B : s2

Γ, x ′ : A′ `f B ′ : s ′2

Γ, x : A `f H ′ : B = B ′[x ′ := xH]
(s1, s2, s3) ∈ R
(s ′1, s

′
2, s

′
3) ∈ R

Γ `f {H, [x : A]H ′} : Πx :A.B = Πx ′:A′.B ′

Γ `f a : A : s1 Γ, x : A `f b : B : s2
(s1, s2, s3) ∈ R

Γ `f β((λx :A.b)a) : (λx :A.b)a = b[x := a]

Γ `f a : A Γ `f A′ : s Γ `f H : A = A′

Γ `f ι(aH) : a = aH

Soundness and Completeness of PTSf with respect to PTS

Let | − | be the map that erases all equality-proof annotations.
If |A′| = A, we call A′ a lift of A.

I (Soundness, easy) If Γ `f M : A, then |Γ| ` |M| : |A|.

I (Completeness for typing, hard!) If Γ ` A : B, then there are
lifts Γ′ , A′ and B ′ of Γ , A and B, such that

Γ′ `f A′ : B ′

I (Completeness for equality, hard!) If Γ ` A : C , Γ ` A : D and
A =β B, then there are lifts Γ′ , A′ and B ′ of Γ , A and B and
a term H such that

Γ′ `f H : A′ = B ′

All proofs have been completely formalized in Coq by F. van Doorn.

Soundness and Completeness of PTSf with respect to PTS

Let | − | be the map that erases all equality-proof annotations.
If |A′| = A, we call A′ a lift of A.

I (Soundness, easy) If Γ `f M : A, then |Γ| ` |M| : |A|.
I (Completeness for typing, hard!) If Γ ` A : B, then there are

lifts Γ′ , A′ and B ′ of Γ , A and B, such that

Γ′ `f A′ : B ′

I (Completeness for equality, hard!) If Γ ` A : C , Γ ` A : D and
A =β B, then there are lifts Γ′ , A′ and B ′ of Γ , A and B and
a term H such that

Γ′ `f H : A′ = B ′

All proofs have been completely formalized in Coq by F. van Doorn.

Questions?

Advertisement: our book
“Type Theory and Formal Proof” will appear with CUP in 2014.
(Authors: Rob Nederpelt, Herman Geuvers)

