
Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Dependently typed programming in Coq

Herman Geuvers

Institute for Computing and Information Sciences – Foundations
Radboud University Nijmegen

The Future of Programming
TU Delft

January 16, 2014

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 1 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

We are moving from e to i

From eGovernment to iGovernment
Also from eVisser to iVisser?

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 2 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Vision

Integration of programming and proving

• Find the computational content of (abstract) mathematical
theorems.

• Mathematical proofs become too hard to check by hand
(Flyspeck project)

• Precise mathematical specifications of programs

• Prove the (partial) correctness of programs

Method: Powerful type system that can express

• programs

• specifications

• propositions

• proofs

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 3 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Outline

• Types in functional languages

• Dependent types and the Propositions-as-Types Isomorphism

• The Coq system and inductive types

• Rich types for programming and proving

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 4 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Types in functional languages

quicksort [] = []

quicksort (x:xs) = quicksort [y | y <- xs, y<x]

++ [x]

++ quicksort [y | y <- xs, y>=x]

quicksort : list nat→ list nat

But we can get more out of types

quicksort : list a→ list a??

quicksort now has a polymorphic type ...?
But that is not correct, because the type a must have an ordering
defined on it.

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 5 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Types in functional languages

In Haskell, this can be solved by using type class overloading:

class Ord a where

(<), (>=) : a -> a -> Bool

x >= y = not (y < x)

Then
quicksort : (Ord a)⇒ list a→ list a

Note: this requires type a to have two binary boolean functions <
and ≥ defined on it; these need not be orderings.

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 6 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Proving properties of programs

quicksort should give a sorted list:

Sorted(l) := ∀i < |l |(li ≤ li+1)

Also the output list should be a permutation of the input list. We
define

Perm(l , k) := |l | = |k | ∧ ∀i ≤, |l |(occ(li , k) = occ(li , l))

where occ(n, l) is the number of occurrences of n in l .

∀l : list nat, (Sorted(quicksort(l)) ∧ Perm(l , quicksort(l)))

Gives a complete specification of “sorting”.

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 7 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Curry Howard Isomorphism

Propositions-as-Types

• A constructive proof of a formula is itself a program

• Propositions are Types

• Proofs are Terms

• PAT, or in a modern setting iPAT (interpretation of P-as-T)

M : A

Has two readings:

• A is a type, and M is a program (data) of type A.

• A is a proposition, and M is a proof of A.

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 8 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Curry Howard Isomorphism: another look at sorting

A proof of

∀l : list nat,∃k : list nat, (Sorted(k) ∧ Perm(l , k))

consists of

• a construction of a list k out of a list l

• a proof of Sorted(k)

• a proof of Perm(l , k)

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 9 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Program extraction: A sorting algorithm out of a proof

Given a proof

P : ∀l : list nat,∃k : list nat, (Sorted(k) ∧ Perm(l , k))

One can extract from P

• F : list nat→ list nat;

• a proof of

∀l : list nat, (Sorted(F (l)) ∧ Perm(l ,F (l)))

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 10 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Program extraction: general picture

From a proof
P : ∀x : A,∃y : B,R(x , y)

one can extract

• F : A→ B

• a proof of
∀x : A,R(x ,F (x))

The dependent type system implemented in Coq supports this:
Coq is an integrated system for proving and programming.

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 11 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Dependent type theory and propositions-as-types

Data types Propositions
non-dependent dependent non-dependent dependent

A→ B A→ B
Πx :A.B(x) ∀x :A.B(x)

A× B A ∧ B
Σx :A.B(x) ∃x :A.B(x)

a : A b : B

〈a, b〉 : A× B

a : A b : B(a)

〈a, b〉 : Σx :A.B(x)

x : A ` b : B

λx :A.b : A→ B

x : A ` b : B(x)

λx :A.b : Πx :A.B(x)

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 12 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

The Coq system: Prop versus Set/Type

Coq treats data types and propositions in exactly the same way,
but they are not identified. (E.g. in Agda they are.)
Data types and Logical propositions live in different type universes

• Data types: A : Set or A : Type

• Logical propositions: A : Prop

Advantage: the system can extract a (correct) program from a
proof by “removing everything related to Prop”.

P : Πl : list nat,︸ ︷︷ ︸
:Set

Σk : list nat,︸ ︷︷ ︸
:Set

(Sorted(k) ∧ Perm(l , k)︸ ︷︷ ︸
:Prop

)

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 13 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

The Coq system: program extraction

P : Πl : list nat,︸ ︷︷ ︸
:Set

Σk : list nat,︸ ︷︷ ︸
:Set

(Sorted(k) ∧ Perm(l , k)︸ ︷︷ ︸
:Prop

)

The extraction E gives

E (P) : list nat→ list nat

Extraction can be done to

• Coq itself

• Haskell

• OCaml

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 14 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

The inverse of extraction: from programs to proofs

What if I have a program that I want to prove correct?
Given

• F : A→ B

• R : A→ B → Prop

I want to prove
∀x :A,R(x ,F (x))

This can be done (Program tactic by M. Sozeau):

• “Claim” F : Πx :A,Σy :B,R(x ,F (x)).

• Coq will interpret F as a proof-term with holes

• These holes are returned as proof obligations, that have to be
dealt with by the user.

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 15 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Inductive types in Coq

Inductive nat : Set :=

| 0 : nat

| S : nat -> nat

This yields

• a type nat and terms 0 : nat and S : nat→ nat

• a function definition principle (structural recursion)

• a proof principle (induction)

Fixpoint plus (n m : nat) {struct n} : nat :=

match n with

| 0 => m

| S p => S (plus p m)

end.

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 16 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Inductive types in Coq

Inductive nat : Set :=

| 0 : nat

| S : nat -> nat

This yields

• a type nat and terms 0 : nat and S : nat→ nat

• a function definition principle (structural recursion)

• a proof principle (induction)

nat_ind

: forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n))

-> forall n : nat, P n

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 17 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Other Inductive types in Coq

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

Also relations are defined inductively:

Inductive le (n : nat) : nat -> Prop :=

| le_n : n <= n

| le_S : forall m : nat, n <= m -> n <= S m

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 18 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Structures are also Inductive types in Coq

Structure OrderedType:= {

car :> Type;

ord : car -> car -> Prop;

ord_refl : forall x, ord x x;

ord_symm : forall x y, ord x y -> ord y x;

ord_trans : forall x y z, ord x y -> ord y z -> ord x z}.

A term of type OrderedType is a tuple 〈A,R, p1,P2, p3〉 with

• A : Type

• R : A→ A→ Prop

• p1 proves that R is reflexive

• p2 proves that R is symmetric

• p3 proves that R is transitive

The labels allow to project to the appropriate field.
H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 19 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Back to sorting

We can now program

sort : ∀A : OrderedType, listA→ listA

Or it can be extracted from a proof of

∀A : OrderedType,∀l : listA, ∃k : listA, (Sorted(k)∧Perm(l , k))

So: we can build very precise abstract interfaces for data structures
and program with them.

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 20 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Using the rich types to guide your program

A type of vectors (list of a given length):

Inductive vec (A:Type): nat ->Type :=

vnil : vec A 0

| vcons : forall n : nat, A -> vec A n -> vec A (S n).

So vec A n denotes the lists over A of length n.
Definining the head of a list is annoying, because nil has no head ...
For the vector type we want

hd : forall (A : Type) (n : nat), vec A (S n) -> A

Definition hd (A:Type)(n:nat)(v:vec A (S n)) : A :=

match v with

vcons n a v => a

end.

Dependently typed pattern matching: there is no “nil case”!
H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 21 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

More interesting way of using the rich type system

A type of (untyped) λ-terms

Inductive term : Type :=

| Var : nat -> term

| Lam : nat -> term -> term

| App : term -> term -> term.

Simple typed terms: term of a type in a context (Γ ` M : A)

Inductive type :=

iota : type

| arr : type -> type -> type.

Definition context := list type.

In order to define Term Γ A as the type of terms of type A in
context Γ.
H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 22 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

More interesting way of using the rich type system

Inductive Term : context -> type -> Type :=

| var : forall c t i,

lookup c i = Some t -> Term c t

| app : forall c t s,

Term c (arr t s) -> Term c t -> Term c s

| abs : forall c t s,

Term (t :: c) s -> Term c (arr t s).

Now we can prove, e.g.

Lemma weaken : forall (c: context)(t s:type),

Term c t -> Term (s :: c) t.

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 23 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Combining programming and proving: CoRN

In CoRN (Coq Repository at Nijmegen) we have developed a lot of
results for real numbers. Goal:

• Develop abstract mathematical results

• Program with concrete mathematical data in a reliable way

• Especially: Exact Real Arithmetic

Example: Fundamental Theorem of Algebra

• Every polynomial over the complex numbers has a root.

• Result in (abstract) mathematics that has computational
content.

• For given coefficients, a root should be computed at arbitrary
precision.

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 24 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Real Numbers in Coq

• Axiomatic: a ‘Real Number Structure’ is a
Cauchy-complete Archimedean ordered field.

• Prove FTA ‘for all real numbers structures’.

• Construct a model to show that real number structures exist.
(Cauchy sequences over an Archimedean ordered field, say the
rational numbers)

• Prove that any two real number structures are isomorphic.

• Construct computationally “better” models that allow
infinitary approximation of real numbers (exact real
arithmetic).

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 25 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Axioms for Real Numbers

The reciprocal operation is essentially partial

1

−
: Πx :F .x 6= 0→ F

So, for x : F , 1
x is actually 1

x ,H with H : x 6= 0.

The term 1
x ,H depends on H : x 6= 0 and we have to show that this

is not a real dependency:

1

x ,H
=

1

x ,H ′

for all H,H ′ : x 6= 0.

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 26 / 27

Types in functional languages
Dependent types and the Propositions-as-Types Isomorphism

The Coq system and inductive types
Rich types for programming and proving

Radboud University Nijmegen

Further Reading on (dependent typed programming in)
Coq

• Coq in a hurry (Yves Bertot)

• Coq’Art book (Yves Bertot & Pierre Castéran)

• Certified programming with dependent types, book on-line
(Adam Chlipala).

• Software Foundations course (Benjamin Pierce et al.)

• For the Agda angle: ask Wouter Swierstra (UU)

• For formalization of real programming language (C) features
in Coq: ask Robbert Krebbers or Freek Wiedijk (RU)

H. Geuvers The Future of Programming TU Delft January 16, 2014Dependently typed programming in Coq 27 / 27

	Types in functional languages
	Dependent types and the Propositions-as-Types Isomorphism
	The Coq system and inductive types
	Rich types for programming and proving

