
1 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Hashcash

A Denial of Service counter-measure

Jaap-Henk Hoepman

Department of Computer Science

University of Nijmegen, the Netherlands

jhh@cs.kun.nl

www.cs.kun.nl/˜jhh



2 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Reference

Adam Back

Hashcash – A Denial of Service Counter-measure

http://www.cypherspace.org/hashcash/hashcash.pdf



3 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Contents

I Denial of service attacks.

I Cost functions.

I Hashcash.

I Interactive hashcash.

I Applications.

I Cost function classification.

I Conclusions.



4 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

DoS attacks

I Spamming.

I Network flooding:

� TCP SYN flooding.

� shopping basket depletion.

I CPU overloading.



5 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Countering DoS attacks

Mounting a DoS attack is ”free”.

⇓

We need to incur a cost on a client (for accessing a service).

I Money:

� e-cash, micropayment.

I Resources (CPU time, network bandwidth):

� client puzzles / cost functions.



6 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Cost functions

Principle: let client compute/”mint” a token, and verify result at

the server.

Requirements:

I Efficiently verifiable

I (Parameterisably) Expensive to compute

interactive
c ← challenge(s,w)

t ← mint(c)

v ← value(t)

or

non-interactive

t ← mint(s,w)

v ← value(t)



7 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Cost function types

I Publicly auditable:

� Efficiently verifiable by any thrid party.

I Fixed vs. probabilistic cost:

� Bounded vs. unbounded.

I Trapdoor free:

� Server cannot cheaply mint tokens.

I Non-parallelizable.



8 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Hashcash

A non-interactive, publicly auditable, trapdoor-free cost

function.

For bitstrings s ∈ {0,1}∗, let si be the i-th bit of s (s1 being the

leftmost bit). Define

x =b y ,
(

∀i : 1 ≤ i ≤ b :: xi = yi
)

Hashcash function definition (based on a given hash function h

with k output bits) for server s with workload w.

I mint(): find x ∈ {0,1}∗ such that h(s‖x) =w 0k. Return

〈s, x〉.

I value(): find maximal v such that h(s‖x) =v 0k. Return v.



9 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Hashcash: notes

I For ”good” h, computing a token requires brute force

search, taking on average 2w−1 tries.

I Everybody can verify a token.

I But the server needs to prevent double spending:

� Store tokens in database.

� Limit validity of tokens by including timestamp in

service name.

I Non-interactive ⇒ precomputing tokens possible.

� Beacons.

� Interactive hashcash.



10 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Interactive hashcash

Interactive hashcash function definition (based on a given hash

function h with k output bits) for server s with workload w.

I challenge(): choose c ∈ {0,1}k. Return 〈s,w, c〉.

I mint(): find x ∈ {0,1}∗ such that h(s‖c‖x) =w 0k. Return

〈s, x〉.

I value(): find maximal v such that h(s‖c‖x) =v 0k. Return

v.



11 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Applications

I combatting SPAM

I countering DoS attacks



12 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

SPAM

Include a hashcash token in every mail message sent.

I Non-interactive.

� (unless SMTP protocol is changed).

I s equals mail address.

I Include time in s, or use challenge broadcast by a beacon.

� To combat pre-computation attacks.



13 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

SPAM: discussion

I Determining acceptable workload: spammer with fast

hardware vs. ordinary user with slow hardware.

� Compute token while composing message.

� Sending to mailinglists (or Cc:-ing) becomes a

problem?

I Standardisation.



14 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

DoS: TCP/IP connection setup



15 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

DoS: A SYN flooding attack



16 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

DoS: Using SYN-cookies

Problem: the server maintains state for every request.

Solution:



17 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

DoS: Using hashcookies

Problem: Fully open TCP connections still consume space, if

only at the application layer.

Solution: Require an interactive hashcash token for setting up a

connection (to be sent with ACK message). The challenge is sent

with the SYN message.

Note: Use approach similar to SYN-cookies, to avoid storing

state for half-open connections.



18 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

DoS: Dynamic throttling

I Increase workfactor with increasing load on server.

I Backwards compatibility: require hashcookies after reaching

certain load.



19 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

A non-parallelizable cost function

Based on Rivest et. al. time-lock puzzles. Let n = pq be public.

Let ϕ(n) = (p − 1)(q − 1) be known to the server only.

I challenge(): choose c ∈ {0,1}k. Return 〈s,w, c〉.

I mint(): compute x ← h(s, c), then compute y ← xx
w

mod n

and return 〈s, c,w,y〉

� ϕ(n) is unknown: requires w exponentiations.

I value(): compute x ← h(s, c), then compute

z ← xw mod ϕ(n). Return w if xz = y mod n, otherwise

return 0.

� ϕ(n) is known: requires 2 exponentiations.



20 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Parallelisability: a non-issue!



21 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Open problems

The following types of cost-functions are unknown to exist:

I Efficiently-verifiable non-interactive fixed-cost.

� (hashcash has a probabilistic cost).

I Efficiently-verifiable non-interactive non-parallelizable.

� (time-lock puzzles are just practically verifiable).

I Publicly-auditable non-interactive fixed-cost.

� (hashcash has a probabilistic cost).

(where efficient means: equivalent to the cost of applying a

hash function h).



22 J.-H. Hoepman Hashcash, (v 1.3 – 2002/10/03 08:49:22 )

Conclusions

I Cost-functions can be used to mitigate DoS attacks.

I Practical applicability remains to be determined.


