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Abstract

In this paper we address the issue of privacy preserving data mining. Specifically, we consider a
scenario in which two parties owning confidential databases wish to run a data mining algorithm on
the union of their databases, without revealing any unnecessary information. Our work is motivated
by the need to both protect privileged information and enable its use for research or other purposes.

The above problem is a specific example of secure multi-party computation and as such, can be
solved using known generic protocols. However, data mining algorithms are typically complex and,
furthermore, the input usually consists of massive data sets. The generic protocols in such a case are
of no practical use and therefore more efficient protocols are required. We focus on the problem of
decision tree learning with the popular ID3 algorithm. Our protocol is considerably more efficient than
generic solutions and demands both very few rounds of communication and reasonable bandwidth.
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1 Introduction

We consider a scenario where two parties having private databases wish to cooperate by computing a
data mining algorithm on the union of their databases. Since the databases are confidential, neither party
is willing to divulge any of the contents to the other. We show how the involved data mining problem of
decision tree learning can be efficiently computed, with no party learning anything other than the output
itself. We demonstrate this on ID3, a well-known and influential algorithm for the task of decision tree
learning. We note that extensions of ID3 are widely used in real market applications.

Data mining. Data mining is a recently emerging field, connecting the three worlds of Databases,
Artificial Intelligence and Statistics. The information age has enabled many organizations to gather
large volumes of data. However, the usefulness of this data is negligible if “meaningful information”
or “knowledge” cannot be extracted from it. Data mining, otherwise known as knowledge discovery,
attempts to answer this need. In contrast to standard statistical methods, data mining techniques search
for interesting information without demanding a priori hypotheses. As a field, it has introduced new
concepts and algorithms such as association rule learning. It has also applied known machine-learning
algorithms such as inductive-rule learning (e.g., by decision trees) to the setting where very large databases
are involved. Data mining techniques are used in business and research and are becoming more and more
popular with time.

Confidentiality issues in data mining. A key problem that arises in any en masse collection of data
is that of confidentiality. The need for privacy is sometimes due to law (e.g., for medical databases) or
can be motivated by business interests. However, there are situations where the sharing of data can lead
to mutual gain. A key utility of large databases today is research, whether it be scientific, or economic
and market oriented. Thus, for example, the medical field has much to gain by pooling data for research;
as can even competing businesses with mutual interests. Despite the potential gain, this is often not
possible due to the confidentiality issues which arise.

We address this question and show that highly efficient solutions are possible. Our scenario is the
following:

Let P1 and P2 be parties owning (large) private databases D1 and D2. The parties wish to
apply a data-mining algorithm to the joint database D1∪D2 without revealing any unnecessary
information about their individual databases. That is, the only information learned by P1

about D2 is that which can be learned from the output of the data mining algorithm, and
vice versa. We do not assume any “trusted” third party who computes the joint output.

Very large databases and efficient secure computation. We have described a model which is
exactly that of multi-party computation. Therefore, there exists a secure protocol for any probabilistic
polynomial-time functionality [10, 17]. However, as we discuss in Section 1.1, these generic solutions are
very inefficient, especially when large inputs and complex algorithms are involved. Thus, in the case of
private data mining, more efficient solutions are required.

It is clear that any reasonable solution must have the individual parties do the majority of the
computation independently. Our solution is based on this guiding principle and in fact, the number
of bits communicated is dependent on the number of transactions by a logarithmic factor only. We
remark that a necessary condition for obtaining such a private protocol is the existence of a (non-private)
distributed protocol with low communication complexity.

Semi-honest adversaries. In any multi-party computation setting, a malicious adversary can always
alter its input. In the data-mining setting, this fact can be very damaging since the adversary can define
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its input to be the empty database. Then, the output obtained is the result of the algorithm on the other
party’s database alone. Although this attack cannot be prevented, we would like to prevent a malicious
party from executing any other attack. However, for this initial work we assume that the adversary is
semi-honest (also known as passive). That is, it correctly follows the protocol specification, yet attempts
to learn additional information by analyzing the transcript of messages received during the execution. We
remark that although the semi-honest adversarial model is far weaker than the malicious model (where a
party may arbitrarily deviate from the protocol specification), it is often a realistic one. This is because
deviating from a specified program which may be buried in a complex application is a non-trivial task.
Semi-honest adversarial behavior also models a scenario in which both parties that participate in the
protocol are honest. However, following the protocol execution, an adversary may obtain a transcript of
the protocol execution by breaking into one of the parties’ machines.

1.1 Related Work

Secure two party computation was first investigated by Yao [17], and was later generalized to multi-party
computation in [10, 1, 4]. These works all use a similar methodology: the functionality f to be computed
is first represented as a combinatorial circuit, and then the parties run a short protocol for every gate in
the circuit. While this approach is appealing in its generality and simplicity, the protocols it generates
depend on the size of the circuit. This size depends on the size of the input (which might be huge as
in a data mining application), and on the complexity of expressing f as a circuit (for example, a naive
multiplication circuit is quadratic in the size of its inputs). We stress that secure two-party computation
of small circuits with small inputs may be practical using the [17] protocol.1

Due to the inefficiency of generic protocols, some research has focused on finding efficient protocols
for specific (interesting) problems of secure computation. See [2, 5, 7, 13] for just a few examples. In this
paper, we continue this direction of research for the specific problem of distributed ID3.

1.2 Organization

In the next section we describe the problem of classification and a widely used solution to it, the ID3
algorithm for decision tree learning. Then, the definition of security is presented in Section 3 followed
by a description of the cryptographic tools used in Section 4. Section 5 contains the protocol for private
distributed ID3 and in Section 6 we describe the main subprotocol that privately computes random
shares of f(v1, v2)

def= (v1 + v2) ln(v1 + v2). Finally, in Section 7 we discuss practical considerations and
the efficiency of our protocol.

2 Classification by Decision Tree Learning

This section briefly describes the machine learning and data mining problem of classification and ID3,
a well-known algorithm for it. The presentation here is rather simplistic and very brief and we refer
the reader to Mitchell [12] for an in-depth treatment of the subject. The ID3 algorithm for generating
decision trees was first introduced by Quinlan in [15] and has since become a very popular learning tool.

2.1 The Classification Problem

The aim of a classification problem is to classify transactions into one of a discrete set of possible
categories. The input is a structured database comprised of attribute-value pairs. Each row of the
database is a transaction and each column is an attribute taking on different values. One of the attributes

1The [17] protocol requires only two rounds of communication. Furthermore, since the circuit and inputs are small, the
bandwidth is not too great and only a reasonable number of oblivious transfers need be executed.
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in the database is designated as the class attribute; the set of possible values for this attribute being the
classes. We wish to predict the class of a transaction by viewing only the non-class attributes. This can
then be used to predict the class of new transactions for which the class is unknown.

For example, a bank may wish to conduct credit risk analysis in an attempt to identify non-profitable
customers before giving a loan. The bank then defines “Profitable-customer” (obtaining values “yes” or
“no”) to be the class attribute. Other database attributes may include: Home-Owner, Income, Years-
of-Credit, Other-Delinquent-Accounts and other relevant information. The bank is interested in learning
rules such as:

If (Other-Delinquent-Accounts = 0) and (Income > 30k or Years-of-Credit > 3)
then Profitable-customer = YES [accept credit-card application]

A collection of such rules covering all possible transactions can then be used to classify a new customer
as potentially profitable or not. The classification may also be accompanied with a probability of error.
Not all classification techniques output a set of meaningful rules, we have brought just one example here.

Another example application is to attempt to predict whether a woman is at high risk for an Emer-
gency Caesarean Section, based on data gathered during the pregnancy. There are many useful examples
and it is not hard to see why this type of learning or mining task has become so popular.

The success of an algorithm on a given data set is measured by the percentage of new transactions
correctly classified. Although this is an important data mining (and machine learning) issue, we do not
go into it here.

2.2 Decision Trees and the ID3 Algorithm

A decision tree is a rooted tree containing nodes and edges. Each internal node is a test node and
corresponds to an attribute; the edges leaving a node correspond to the possible values taken on by that
attribute. For example, the attribute “Home-Owner” would have two edges leaving it, one for “Yes” and
one for “No”. Finally, the leaves of the tree contain the expected class value for transactions matching
the path from the root to that leaf.

Given a decision tree, one can predict the class of a new transaction t as follows. Let the attribute of
a given node v (initially the root) be A, where A obtains possible values a1, ..., am. Then, as described,
the m edges leaving v are labeled a1, ..., am respectively. If the value of A in t equals ai, we simply go to
the son pointed to by ai. We then continue recursively until we reach a leaf. The class found in the leaf
is then assigned to the transaction.

We use the following notation:

• R: the set of attributes

• C: the class attribute

• T : the set of transactions

The ID3 algorithm assumes that each attribute is categorical, that is containing discrete data only, in
contrast to continuous data such as age, height etc.

The principle of the ID3 algorithm is as follows. The tree is constructed top-down in a recursive fashion.
At the root, each attribute is tested to determine how well it alone classifies the transactions. The “best”
attribute (to be discussed below) is then chosen and the remaining transactions are partitioned by it. ID3
is then recursively called on each partition (which is a smaller database containing only the appropriate
transactions and without the splitting attribute). See Figure 1 for a description of the ID3 algorithm.
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ID3(R, C, T )

1. If R is empty, return a leaf-node with the class value assigned to the most transactions in T .

2. If T consists of transactions which all have the same value c for the class attribute, return a leaf-node
with the value c (finished classification path).

3. Otherwise,

(a) Determine the attribute that best classifies the transactions in T , let it be A.

(b) Let a1, ..., am be the values of attribute A and let T (a1), ..., T (am) be a partition of T such that
every transaction in T (ai) has the attribute value ai.

(c) Return a tree whose root is labeled A (this is the test attribute) and has edges labeled a1, ..., am

such that for every i, the edge ai goes to the tree ID3(R− {A}, C, T (ai)).

Figure 1: The ID3 Algorithm for Decision Tree Learning

What remains is to explain how the best predicting attribute is chosen. This is the central principle of
ID3 and is based on information theory. The entropy of the class attribute clearly expresses the difficulty
of prediction. We know the class of a set of transactions when the class entropy for them equals zero. The
idea is therefore to check which attribute reduces the information of the class-attribute to the greatest
degree. This results in a greedy algorithm which searches for a small decision tree consistent with the
database. The bias favoring short descriptions of a hypothesis is based on Occam’s razor. As a result of
this, decision trees are usually relatively small, even for large databases.2

The exact test for determining the best attribute is defined as follows. Let c1, ..., c` be the class-
attribute values and let T (ci) denote the set of transactions with class ci. Then the information needed
to identify the class of a transaction in T is the entropy, given by:

HC(T ) =
∑̀

i=1

−|T (ci)|
|T | log

|T (ci)|
|T |

Let T be a set of transactions, C the class attribute and A some non-class attribute. We wish to quantify
the information needed to identify the class of a transaction in T given that the value of A has been
obtained. Let A obtain values a1, ..., am and let T (aj) be the transactions obtaining value aj for A. Then,
the conditional information of T given A, equals:

HC(T |A) =
m∑

j=1

|T (aj)|
|T | HC(T (aj))

Now, for each attribute A the information-gain is defined by,

Gain(A) def= HC(T )−HC(T |A)

The attribute A which has the maximum gain (or equivalently minimum HC(T |A)) over all attributes in
R is then chosen.

2We note that the resulting decision tree is not guaranteed to be small. A large tree may result in situations where the
entropy reduction at many of the nodes is very small. Intuitively, this means that no attribute classifies the remaining
transaction in a meaningful way (this occurs, for example, in a random database but is also common close to the leaves
of the tree of a well-structured database). In such a case, continuing to develop the decision tree is unlikely to yield a
better classification (and may actually make it worse). One relatively simple solution to this problem is simply to cease the
development of the tree (outputting the majority class of the remaining transactions) if the information gain is below some
predetermined threshold. This ensures that the resulting decision tree is usually small, in accordance with Occam’s razor.
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Extensions of ID3. Since its inception there have been many extensions to the original algorithm, the
most well-known being C4.5. We now briefly describe some of these extensions. One of the immediate
shortcomings of ID3 is that it only works on discrete data, whereas most databases contain continuous
data. A number of methods enable the incorporation of continuous-value attributes, even as the class
attribute. Other extensions include handling missing attribute values, alternative measures for selecting
attributes and reducing the problems of overfitting by pruning. (The strategy described in footnote 2
also addresses the problem of overfitting.)

See Appendix A for a short example of a database and its resulting decision tree.

2.3 The ID3δ Approximation

The ID3 algorithm chooses the “best” predicting attribute by comparing entropies that are given as
real numbers. If at a given point, two entropies are very close together, then the two (different) trees
resulting from choosing one attribute or the other are expected to have almost the same predicting
capability. Formally stated, let δ be some small value. Then, for a pair of attributes A1 and A2, we say
that A1 and A2 have δ-close information gains if

|HC(T |A1)−HC(T |A2)| ≤ δ

This definition gives rise to an approximation of ID3 as follows. Let A be the attribute for which HC(T |A)
is minimum (over all attributes). Then, let Aδ equal the set of all attributes A′, for which A and A′

have δ-close information gains. Now, denote by ID3δ the set of all possible trees which are generated by
running the ID3 algorithm with the following modification to Step 3(a). Let A be the best predicting
attribute for the remaining subset of transactions. Then, the algorithm can choose any attribute from
Aδ as the best predicting attribute (instead of A itself). Thus, any tree taken from ID3δ approximates
ID3 in that the difference in information gain at any given node is at most δ. We actually present a
protocol for the secure computation of a specific algorithm ID3δ ∈ ID3δ, in which the choice of A′ from
Aδ is implicit by an approximation that is used instead of the log function. The value of δ influences the
efficiency, but only by a logarithmic factor.

Note that any naive implementation of ID3 that computes the logarithm function to a predefined
precision level has an approximation error, and therefore essentially computes a tree from ID3δ. However,
a more elaborate implementation of ID3 can resolve this problem as follows. First, the information gain
for each attribute is computed using a predefined precision level that results in a log approximation of
error at most δ. Then, if two information gains compared are found to be within δ′ of each other (where
δ′ is the precision error of the information gain resulting from a δ error in the log function), then the
information gains are recomputed using a higher precision level for the log function. This is continued
until it is ensured that the attribute with the maximal information gain is found. We do not know how
to achieve similar accuracy in a privacy preserving implementation.

3 Definitions

3.1 Private Two-Party Protocols

The model for this work is that of two-party computation where the adversarial party may be semi-honest.
The definitions presented here are according to Goldreich in [9].

Two-party computation. A two-party protocol problem is cast by specifying a random process that
maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a functionality
and denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every pair of
inputs (x, y), the output-pair is a random variable (f1(x, y), f2(x, y)) ranging over pairs of strings. The
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first party (with input x) wishes to obtain f1(x, y) and the second party (with input y) wishes to obtain
f2(x, y). We often denote such a functionality by (x, y) 7→ (f1(x, y), f2(x, y)). Thus, for example, the
problem of distributed ID3 is denoted by (D1, D2) 7→ (ID3(D1∪D2), ID3(D1∪D2)).

Privacy by simulation. Intuitively, a protocol is private if whatever can be computed by a party
participating in the protocol can be computed based on its input and output only. This is formalized
according to the simulation paradigm. Loosely speaking, we require that a party’s view in a protocol
execution be simulatable given only its input and output.3 This then implies that the parties learn
nothing from the protocol execution itself, as desired.

Definition of security. We begin with the following notations:

• Let f = (f1, f2) be a probabilistic, polynomial-time functionality and let Π be a two-party protocol
for computing f .

• The view of the first (resp., second) party during an execution of Π on (x, y), denoted viewΠ
1 (x, y)

(resp., viewΠ
2 (x, y)), is (x, r1,m1

1, ..., m
1
t ) (resp., (y, r2,m2

1, ..., m
2
t )) where r1 (resp., r2) represents

the outcome of the first (resp., second) party’s internal coin tosses, and m1
i (resp., m2

i ) represents
the i’th message it has received.

• The output of the first (resp., second) party during an execution of Π on (x, y) is denoted outputΠ1 (x, y)
(resp., outputΠ2 (x, y)), and is implicit in the party’s view of the execution.

Definition 1 (privacy w.r.t. semi-honest behavior): For a functionality f , we say that Π privately
computes f if there exist probabilistic polynomial time algorithms, denoted S1 and S2, such that

{(S1(x, f1(x, y)), f2(x, y))}x,y∈{0,1}∗
c≡

{
(viewΠ

1 (x, y), outputΠ2 (x, y))
}

x,y∈{0,1}∗ (1)

{(f1(x, y), S2(y, f2(x, y)))}x,y∈{0,1}∗
c≡

{
(outputΠ1 (x, y), viewΠ

2 (x, y))
}

x,y∈{0,1}∗ (2)

where
c≡ denotes computational indistinguishability.

Equations (1) and (2) state that the view of a party can be simulated by a probabilistic polynomial-time
algorithm given access to the party’s input and output only. We emphasize that the adversary here is semi-
honest and therefore the view is exactly according to the protocol definition. We note that it is not enough
for the simulator S1 to generate a string indistinguishable from viewΠ

1 (x, y). Rather, the joint distribution
of the simulator’s output and f2(x, y) must be indistinguishable from (viewΠ

1 (x, y), outputΠ2 (x, y)). This
is necessary for probabilistic functionalities; see [3, 9] for a full discussion.

Private data mining. We now discuss issues specific to the case of two-party computation where the
inputs x and y are databases. Denote the two parties P1 and P2 and their respective private databases
D1 and D2. First, we assume that D1 and D2 have the same structure and that the attribute names
are public. This is essential for carrying out any joint computation in this setting. There is a somewhat
delicate issue when it comes to the names of the possible values for each attribute. On the one hand,
universal names must clearly be agreed upon in order to compute any joint function. On the other hand,

3A different definition of security for multiparty computation compares the output of a real protocol execution to the
output of an ideal computation involving an incorruptible trusted third party. This trusted party receives the parties’
inputs, computes the functionality on these inputs and returns to each their respective output. Loosely speaking, a protocol
is secure if any real-model adversary can be converted into an ideal-model adversary such that the output distributions are
computationally indistinguishable. We remark that in the case of semi-honest adversaries, this definition is equivalent to
the (simpler) simulation-based definition presented here.
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even the existence of a certain attribute value in a database can be sensitive information. This problem
can be solved by a pre-processing phase in which random value names are assigned to the values such that
they are consistent in both databases. Doing this efficiently is in itself a non-trivial problem. However, in
our work we assume that the attribute-value names are also public (as would be after the above-described
random mapping stage). Next, as we have discussed, each party should receive the output of some data
mining algorithm on the union of their databases, D1 ∪ D2. We note that in actuality we consider a
merging of the two databases so that if the same transaction appears in both databases, then it appears
twice in the merged database. Finally, we assume that an upper-bound on the size of |D1 ∪D2| is known
and public.

3.2 Composition of Private Protocols

In this section, we briefly discuss the composition of private protocols. The theorem and its corollary
brought here are used a number of times throughout the paper.

The protocol for privately computing ID3δ is composed of many invocations of smaller private com-
putations. In particular, we reduce the problem to that of privately computing smaller subproblems and
show how to compose them together in order to obtain a complete ID3δ solution. Although intuitively
clear, this composition requires formal justification. We present a brief, informal discussion and refer the
reader to Goldreich [9] for a complete, formal treatment.

Informally, consider oracle-aided protocols, where the queries are supplied by both parties. The oracle-
answer may be different for each party depending on its definition, and may also be probabilistic. An
oracle-aided protocol is said to privately reduce g to f if it privately computes g when using the oracle
functionality f . The security of our solution relies heavily on the following intuitive theorem.

Theorem 2 (composition theorem for the semi-honest model, two parties): Suppose that g is privately
reducible to f and that there exists a protocol for privately computing f . Then, the protocol defined by
replacing each oracle-call to f by a protocol that privately computes f , is a protocol for privately computing
g.

Since the adversary considered here is semi-honest, this theorem is easily obtained by plugging in the
simulator for the private computation of the oracle functionality. Furthermore, it is easily generalized to
the case where a number of oracle-functionalities f1, f2, ... are used in privately computing g.

Many of the protocols presented in this paper involve the sequential invocation of two private subpro-
tocols, where the parties’ outputs of the first subprotocol are random shares which are then input into
the second subprotocol. The following corollary to Theorem 2 states that such a composed protocol is
private.

Corollary 3 Let Πg and Πh be two protocols that privately compute probabilistic polynomial-time func-
tionalities g and h respectively. Furthermore, let g be such that the parties’ outputs, when viewed inde-
pendently of each other, are uniformly distributed (in some finite field). Then, the protocol Π comprised
of first running Πg and then using the output of Πg as input into Πh, is a private protocol for computing
the functionality f(x, y) = h(g1(x, y), g2(x, y)), where g = (g1, g2).

Proof: By Theorem 2 it is enough to show that the oracle-aided protocol is private. However, this is
immediate because, apart from the final output, the parties’ views consist only of uniformly distributed
shares that can be generated by the required simulators.

3.3 Private Computation of Approximations and of ID3δ

Our work takes ID3δ as the starting point and privacy is guaranteed relative to the approximated algo-
rithm, rather than to ID3 itself. That is, we present a private protocol for computing ID3δ. This means
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that P1’s view can be simulated given D1 and ID3δ(D1 ∪D2) only (and likewise for P2’s view). However,
this does not mean that ID3δ(D1 ∪D2) reveals the “same” (or less) information as ID3(D1 ∪D2) does
(in particular, given D1 and ID3(D1 ∪D2) it may not be possible to compute ID3δ(D1 ∪D2)). In fact,
it is clear that although the computation of ID3δ is private, the resulting tree may be different from the
tree output by the exact ID3 algorithm itself (intuitively though, no “more” information is revealed).

The problem of secure distributed computation of approximations was introduced by Feigenbaum
et. al. [8]. Their motivation was a scenario in which the computation of an approximation to a function
f might be considerably more efficient than the computation of f itself. According to their definition, a
protocol constitutes a private approximation of f if the approximation reveals no more about the inputs
than f itself does. Thus, our protocol is not a private approximation of ID3, but rather a private protocol
for computing ID3δ.4

4 Cryptographic Tools

Oblivious transfer. The notion of 1-out-2 oblivious transfer (OT 2
1 ) was suggested by Even, Goldreich

and Lempel [6] as a generalization of Rabin’s “oblivious transfer” [16]. This protocol involves two parties,
the sender and the receiver. The sender’s input is a pair (x0, x1) and the receiver’s input is a bit σ ∈ {0, 1}.
The protocol is such that the receiver learns xσ (and nothing else) and the sender learns nothing. In
other words, the oblivious transfer functionality is denoted by ((x0, x1), σ) 7→ (λ, xσ). In the case of
semi-honest adversaries, there exist simple and efficient protocols for oblivious transfer [6, 9].

Oblivious polynomial evaluation. The problem of “oblivious polynomial evaluation” was first con-
sidered in [13]. As with oblivious transfer, this problem involves a sender and a receiver. The sender’s
input is a polynomial Q of degree k over some finite field F and the receiver’s input is an element z ∈ F
(the degree k of Q is public). The protocol is such that the receiver obtains Q(z) without learning any-
thing else about the polynomial Q, and the sender learns nothing. That is, the problem considered is
the private computation of the following functionality: (Q, z) 7→ (λ,Q(z)). An efficient solution to this
problem was presented in [13]. The overhead of that protocol is O(k) exponentiations (using the method
suggested in [14] for doing a 1-out-of-N oblivious transfer with O(1) exponentiations). (Note that the
protocol suggested there maintains privacy in the face of a malicious adversary, while our scenario only
requires a simpler protocol that provides security against semi-honest adversaries. Such a protocol can
be designed based on any homomorphic encryption scheme, with an overhead of O(k) computation and
O(k|F|) communication.)

Yao’s two-party protocol. In [17], Yao presented a constant-round protocol for privately computing
any probabilistic polynomial-time functionality (where the adversary may be semi-honest). Denote Party
1 and Party 2’s respective inputs by x and y and let f be the functionality that they wish to compute
(for simplicity, assume that both parties wish to receive the same value f(x, y)). Loosely speaking, Yao’s
protocol works by having one of the parties (say Party 1) first generate an “encrypted” or “garbled” circuit
computing f(x, ·) and send it to Party 2. The circuit is such that it reveals nothing in its encrypted
form and therefore Party 2 learns nothing from this stage. However, Party 2 can obtain the output
f(x, y) by “decrypting” the circuit. In order to ensure that nothing is learned beyond the output itself,
this decryption must be “partial” and must reveal f(x, y) only. Without going into details here, this is
accomplished by Party 2 obtaining a series of keys corresponding to its input y such that given these
keys and the circuit, the output value f(x, y) (and only this value) may be obtained. Of course, Party 2
must obtain these keys from Party 1 without revealing anything about y and this can be done by running

4We note that our protocol uses many invocations of an approximation of the natural logarithm function. However, none
of these approximations are revealed (they constitute intermediate values which are hidden from the parties). The only
approximation which becomes known to the parties is the final ID3δ decision tree.
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|y| instances of a private 1-out-of-2 Oblivious Transfer protocol. See Appendix B for a more detailed
description of Yao’s protocol.

The overhead of the protocol involves: (1) Party 1 sending Party 2 tables of size linear in the size of
the circuit (each node is assigned a table of keys for the decryption process), (2) Party 1 and Party 2
engaging in an oblivious transfer protocol for every input wire of the circuit, and (3) Party 2 computing a
pseudo-random function a constant number of times for every gate (this is the cost incurred in decrypting
the circuit). Therefore, the number of rounds of the protocol is constant (namely, two rounds using the
oblivious transfer of [6, 9]), and if the circuit is small (e.g., linear in the size of the input) then the main
computational overhead is that of running the oblivious transfers.

5 The Protocol

In our protocol, we use the paradigm that all intermediate values of the computation seen by the players
are pseudorandom. That is, at each stage, the players obtain random shares v1 and v2, such that their
sum equals an appropriate intermediate value. Efficiency is achieved by having the parties do most of
the computation independently. Recall that there is a known upper bound on the size of the union of
the databases, and that the attribute-value names are public.

5.1 A Closer Look at ID3δ

Distributed ID3 (the non-private case). First, consider the problem of computing distributed ID3
in a non-private setting. In such a scenario, it is always possible for one party to send the other its entire
database. However, ID3 yields a solution with far lower communication complexity (with respect to
bandwidth). As with the non-distributed version of the algorithm, the parties recursively compute each
node of the decision tree based on the remaining transactions. At each node, the parties first compute the
value HC(T |A) for every attribute A. Then, the node is labeled with the attribute A for which HC(T |A)
is minimum (as this is the attribute causing the largest information gain).

We now show that it is possible for the parties to determine the attribute with the highest information
gain with very little communication. We begin by describing a simple way for the parties to jointly
compute HC(T |A) for a given attribute A. Let A have m possible values a1, . . . , am, and let the class
attribute C have ` possible values c1, . . . , c`. Denote by T (aj) the set of transactions with attribute A
set to aj , and by T (aj , ci) the set of transactions with attribute A set to aj and with class ci. Then,

HC(T |A) =
m∑

j=1

|T (aj)|
|T | HC(T (aj))

=
1
|T |

m∑

j=1

|T (aj)|
∑̀

i=1

−|T (aj , ci)|
|T (aj)| · log(

|T (aj , ci)|
|T (aj)| )

=
1
|T |


−

m∑

j=1

∑̀

i=1

|T (aj , ci)| log(|T (aj , ci)|) +
m∑

j=1

|T (aj)| log(|T (aj)|)

 (3)

Therefore, it is enough for the parties to jointly compute all the values T (aj) and T (aj , ci) in order to
compute HC(T |A). Recall that the database for which ID3 is being computed is a union of two databases:
party P1 has database D1 and party P2 has database D2. The number of transactions for which attribute
A has value aj can therefore be written as |T (aj)| = |T1(aj)| + |T2(aj)|, where Tb(aj) equals the set of
transactions with attribute A set to aj in database Db. Therefore, Eq. (3) is easily computed by party
P1 sending P2 all of the values |T1(aj)| and |T1(aj , ci)| from its database. Party P2 then sums these
together with the values |T2(aj)| and |T2(aj , ci)| from its database and completes the computation. The
communication complexity required here is only logarithmic in the number of transactions and linear in
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the number of attributes and attribute-values/class pairs. Specifically, the number of bits sent for each
attribute is at most O(m · ` · log |T |) (where the log |T | factor is due to the number of bits required to
represent the values |T (aj)| and |T (aj , ci)|). This is repeated for each attribute and thus O(|R|m` log |T |)
bits are sent overall for each node of the decision tree output by ID3.

Private distributed ID3. Our aim is to privately compute ID3 such that the communication com-
plexity is close to that of the non-private protocol described above. A key observation enabling us to
achieve this is that each node of the tree can be computed separately, with the output made public,
before continuing to the next node. In general, private protocols have the property that intermediate
values remain hidden. However, in this specific case, some of these intermediate values (specifically, the
assignments of attributes to nodes) are actually part of the output and may therefore be revealed. We
stress that although the name of the attribute with the highest information gain is revealed, nothing is
learned of the actual HC(T |A) values themselves. Once the attribute of a given node has been found,
both parties can separately partition their remaining transactions accordingly for the coming recursive
calls. We therefore conclude that private distributed ID3 can be reduced to privately finding the attribute
with the highest information gain. (We note that this is slightly simplified as the other steps of ID3 must
also be carefully dealt with. However, the main issues arise within this step.)

As we have mentioned, our aim is to privately find the attribute A for which HC(T |A) is minimum.
We do this by computing random shares of HC(T |A) for every attribute A. That is, Parties 1 and 2
receive random values SA,1 and SA,2 respectively, such that SA,1 + SA,2 = HC(T |A). Thus, neither party
learns anything of these intermediate values, yet given shares of all these values, it is easy to privately
find the attribute with the smallest HC(T |A).

Now, notice that the algorithm needs only to find the name of the attribute A which minimizes
HC(T |A); the actual value is irrelevant. Therefore, in Eq. (3), the coefficient 1/|T | can be ignored (it
is the same for every attribute). Furthermore, natural logarithms can be used instead of logarithms
to base 2. As in the non-private case the values |T1(aj)| and |T1(aj , ci)| can be computed by party P1

independently, and the same holds for P2. Therefore the value HC(T |A) can be written as a sum of
expressions of the form

(v1 + v2) · ln(v1 + v2)

where v1 is known to P1 and v2 is known to P2 (e.g., v1 = |T1(aj)|, v2 = |T2(aj)|). The main task is
therefore to privately compute x lnx using a protocol that receives private inputs x1 and x2 such that
x1 + x2 = x and outputs random shares of an approximation of x lnx. In Section 6 a protocol for this
task is presented. In the remainder of this section, we show how the private x ln x protocol can be used
in order to privately compute ID3δ.

5.2 Finding the Attribute with Maximum Gain

Given the above described protocol for privately computing shares of x ln x, the attribute with the
maximum information gain can be determined. This is done in two stages: first, the parties obtain
shares of HC(T |A) · |T | · ln 2 for all attributes A and second, the shares are input into a small circuit
which outputs the appropriate attribute. In this section we refer to a field F which is defined so that
|F| > HC(T |A) · |T | · ln 2.

Stage 1 (computing shares): For every attribute A, every attribute-value aj ∈ A and every class
ci ∈ C, parties P1 and P2 use the private x ln x protocol in order to obtain random shares wA,1(aj),
wA,2(aj), wA,1(aj , ci) and wA,2(aj , ci) ∈R F such that

wA,1(aj) + wA,2(aj) ≈ |T (aj)| · ln(|T (aj)|) mod |F|
wA,1(aj , ci) + wA,2(aj , ci) ≈ |T (aj , ci)| · ln(|T (aj , ci)|) mod |F|

10



where the quality of the approximation can be determined by the parties. Specifically, the approxima-
tion factor is set so that the resulting approximation to HC(T |A) ensures that the output tree is from
ID3δ. The choice of the approximation level required is discussed in detail in Section 6.4. Now, define
ĤC(T |A) def= HC(T |A) · |T | · ln 2. Then,

ĤC(T |A) = −
m∑

j=1

∑̀

i=1

|T (aj , ci)| · ln(|T (aj , ci)|) +
m∑

j=1

|T (aj)| · ln(|T (aj)|)

Therefore, given the above shares, P1 (and likewise P2) can compute its own share in ĤC(T |A) as follows:

SA,1 = −
m∑

j=1

∑̀

i=1

wA,1(aj , ci) +
m∑

j=1

wA,1(aj) mod |F|

It follows that SA,1 +SA,2 ≈ ĤC(T |A) mod |F| and we therefore have that for every attribute A, parties
P1 and P2 obtain (approximate) shares of ĤC(T |A) (with this last step involving local computation only).

Stage 2 (finding the attribute): It remains to find the attribute minimizing ĤC(T |A) (and therefore
HC(T |A)). This is done using Yao’s protocol for two-party computation [17]. The functionality to be
computed is defined as follows:

• Input: The parties’ input consists of their respective shares SA,1 and SA,2 for every attribute A.

• Output: The name of the attribute A for which SA,1 + SA,2 mod |F| is minimum (recall that
SA,1 + SA,2 ≈ ĤC(T |A) mod |F|).

The above functionality can be computed by a small circuit. First notice that since ĤC(T |A) < |F|,
it holds that either SA,1 + SA,2 ≈ ĤC(T |A) or SA,1 + SA,2 ≈ ĤC(T |A) + |F|. Therefore, the modular
addition can be computed by first summing SA,1 and SA,2 and then subtracting |F| if the sum of the
shares is larger than |F| − 1, or leaving it otherwise. The circuit computes this value for every attribute
and then outputs the attribute name with the minimum value. This circuit has 2|R| inputs of size log |F|
and its size is O(|R| log |F|). Note that |R| log |F| is a small number and thus this circuit evaluation is
efficient.

Privacy: The above protocol for finding the attribute with the smallest HC(T |A) involves invoking
two private subprotocols. The parties’ outputs of the first subprotocol are random shares which are
then input into the second subprotocol. Therefore, the privacy of the protocol is obtained directly from
Corollary 3. (We note that Stage 1 actually contains the parallel composition of many private x ln x
protocols. However, in the semi-honest case, parallel composition holds. Therefore, we can view Stage 1
as a single private protocol for computing many x ln x values simultaneously.)

Efficiency: Note the efficiency achieved by the above protocol. Each party has to compute the same
set of values |T (aj , ci)| as it computes in the non-private distributed version of ID3. For each of these
values it engages in the x ln x protocol. (We stress that the number of values here does not depend on the
number of transactions, but rather on the number of different possible values for each attribute, which
is usually smaller by orders of magnitude.) The party then locally sums the results of these protocols
together and runs Yao’s protocol on a circuit whose size is only linear in the number of attributes.
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Privacy-Preserving Protocol for ID3:

Step 1: If R is empty, return a leaf-node with the class value assigned to the most transactions in T .
Since the set of attributes is known to both parties, they both publicly know if R is empty. If yes, the
parties run Yao’s protocol for the following functionality: Parties 1 and 2 input (|T1(c1)|, . . . , |T1(c`)|)
and (|T2(c1)|, . . . , |T2(c`)|) respectively. The output is the class index i for which |T1(ci)| + |T2(ci)| is
largest. The size of the circuit computing the above functionality is linear in ` and log |T |.

Step 2: If T consists of transactions which all have the same value c for the class attribute, return a leaf-node
with the value c.
In order to compute this step privately, we must determine whether both parties remain with the same
single class or not. We define a fixed symbol ⊥ symbolizing the fact that a party has more than one
remaining class. A party’s input to this step is then ⊥, or ci if it is its one remaining class. All that
remains to do is check equality of the two inputs. The value causing the equality can then be publicly
announced as ci (halting the tree on this path) or ⊥ (to continue growing the tree from the current
point). For efficient secure protocols for checking equality, see [7, 13] or simply run Yao’s protocol with
a circuit for testing equality.

Step 3: (a) Determine the attribute that best classifies the transactions in T , let it be A.
For every value aj of every attribute A, and for every value ci of the class attribute C, the parties run
the x ln x protocol of Section 6 for |T (aj)| and |T (aj , ci)|. They then continue as described in Section 5.2
by computing independent additions, and inputting the results into Yao’s protocol for a small circuit
computing the attribute with the highest information gain. This attribute is public knowledge as it
becomes part of the output.
(b,c) Recursively call ID3δ for the remaining attributes on the transaction sets T (a1), . . . , T (am) (where
a1, . . . , am are the values of attribute A).
The result of 3(a) and the attribute values of A are public and therefore both parties can individually
partition the database and prepare their input for the recursive calls.

Figure 2: Protocol for Privately Computing ID3δ

5.3 The Private ID3δ Protocol

In the previous subsection we showed how each node can be privately computed. The complete protocol
for privately computing ID3δ can be seen in Figure 2. The steps of the protocol correspond to those in
the original algorithm (see Figure 1).

Although each individual step of the complete protocol is private, we must show that the composition
is also private. Recall that the composition theorem (Theorem 2) only states that if the oracle-aided
protocol is private, then so too is the protocol for which we use private protocols instead of oracles. Here
we prove that the oracle-aided ID3δ protocol is indeed private.

The central issue in the proof involves showing that despite the fact that the control flow depends on
the input (and is not predetermined), a simulator can exactly predict the control flow of the protocol
from the output. This is non-trivial and in fact, as we remark below, were we to switch Steps (1) and
(2) in the protocol (as the algorithm is in fact presented in [12]) the protocol would no longer be private.
Formally, of course, we show how the simulator generates a party’s view based solely on the input and
output.

Theorem 4 The protocol for computing ID3δ is private.

Proof: In this proof the simulator is described in generic terms as it is identical for P1 and P2. Fur-
thermore, we skip details which are obvious. Recall that the simulator is given the output decision
tree.
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We need to show that a party’s view can be correctly simulated based solely on its input and output.
Recall that the computation of the tree is recursive beginning at the root. For each node, a “splitting”
class is chosen (due to it having the highest information gain) developing the tree to the next level.
Any implementation defines the order of developing the tree and this order is the one followed by the
simulator as well. According to this specified order, at any given step the computation is based on finding
the highest information gain for a known node (for the proof we ignore optimizations which find the gain
for more than one node in parallel, although this is easily dealt with). We now describe the simulator
for each node.

We differentiate between two cases: (1) a given node is a leaf node and (2) a given node is not a leaf.

1. The current node in the computation is a leaf-node: The simulator checks, by looking at the input,
if the set of attributes R at this point is empty or not. If it is not empty (this can be deduced from
the tree and the attribute-list which is public), then the computation proceeds to Step (2). In this
case, the simulator writes that the oracle-answer from the equality call in Step (2) is equal (or else
it would not be a leaf). On the other hand, if the list of attributes is empty, the computation is
executed in Step (1) and the simulator writes the output of the majority evaluation to be the class
appearing in the leaf.

2. The current node in the computation is not a leaf-node: In this case Step (1) is skipped and the
oracle-answer of Step (2) must be not-equal; this is therefore what the simulator writes. The
computation then proceeds to Step (3) which involves many invocations of the x lnx protocol,
returning values uniformly distributed in F . Therefore, the simulator simply chooses the correct
number of random values (based on the public list of attribute names, values and class values) and
writes them. The next step of the algorithm is a local computation (not included in the view)
and a private protocol for finding the best attribute. The simulator simply looks to see which
attribute is written in the tree at this node and writes the attribute name as the oracle-answer for
this functionality query.

We have therefore shown that for each party there exists a simulator that given the party’s input and
the output decision tree, generates a string that is computationally indistinguishable from the party’s
view in a real execution. (In fact, in the oracle-aided protocol, the view generated by the simulator is
identically distributed to that of a real execution.) This completes the proof.

Remark. It is interesting to note that if Steps (1) and (2) of the protocol are switched (as the algorithm
is in fact presented in [12]), then it is no longer private. This is due to the equality evaluation in Step
(2), which may leak information about the other party’s input. Consider the case of a computation in
which at a certain point the list of attributes is empty and P1 has only one class c left in its remaining
transactions. The output of the tree at this point is a leaf with a class, assume that the class is c. From
the output it is impossible for P1 to know if P2’s transactions also have only one remaining class or if
the result is because the majority of the transactions of both databases together have the class c. The
majority circuit of Step (1) covers both cases and therefore does not reveal this information. However, if
P1 and P2 first execute the equality evaluation, this information is revealed.

Extending the ID3δ protocol. In footnote 2 we discussed the problem of decision trees which may
be very large. As we mentioned, one strategy employed to prevent this problem is to halt in the case
that no attributes have information gain above some predetermined threshold. Such an extension can
be included by modifying Step 2 of the private ID3δ protocol as follows. In the new Step 2, the parties
privately check whether or not there exists an attribute with information gain above the threshold. If
there is no such attribute, then the output is defined to be the class assigned to the most transactions
in T . (Notice that this replaces Step 2 because in the case that all the transactions have the same class,
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the information gain for every attribute equals zero.) As in Step 3, most of the work involves computing
shares of HC(T |A). These shares (along with shares of HC(T )) are then input into a circuit that outputs
the desired functionality. Of course, in order to improve efficiency, Steps 2 and 3 should then be combined
together.

5.4 Complexity

The complexity (measuring both communication and computational complexity) for each node is as
follows (recall that R denotes the set of attributes and T the set of transactions):

• The x lnx protocol is repeated m(` + 1) times for each attribute where m and ` are the number
of attribute and class values respectively (see Eq. (3)). For all |R| attributes we thus have O(m ·
` · |R|) invocations of the x lnx protocol. The complexity of the x lnx protocol can be found in
Section 6.3. In short, the computational overhead of the x ln x protocol is dominated by O(log |T |)
oblivious transfers and the bandwidth is O(k · log |T | · |S|) bits, where k is a parameter depending
logarithmically on δ that determines the accuracy of the x ln x approximation and |S| is the length
of the key for a pseudorandom function (say 128 bits).

• As we have mentioned, the size of the circuit computing the attribute with the minimum conditional
entropy is O(|R| log |F|) where |F| = O(|T |).5 The bandwidth involved in sending the garbled circuit
of Yao’s protocol is thus O(|R| log |T | · |S|) where |S| is the length of the key for a pseudorandom
function. (This factor is explained in the paragraph titled “overhead” in Appendix B.)

The computational complexity of the above circuit evaluation involves |R| log |F| = O(|R| log |T |)
oblivious transfers (one for each bit of the circuit input) and O(|R| log |T |) pseudorandom function
evaluations.

• The number of rounds needed for each node is constant (the x ln x protocol also requires only a
constant number of rounds, see Section 6).

The overhead of the x lnx invocations far outweighs the circuit evaluation that completes the computa-
tion. We thus consider only these invocations in the overall complexity. The analysis is completed by
multiplying the above complexity by the number of nodes in the resulting decision tree (expected to be
quite small).6 We note that by computing nodes on the same level of the tree in parallel, the number of
rounds of communication can be reduced to the order of the depth of the tree (which is bounded by |R|
but is expected to be far smaller).

Comparison to non-private distributed ID3. We conclude by comparing the communication com-
plexity to that of the non-private distributed ID3 protocol (see Section 5.1). In the non-private case, the
bandwidth for each node is exactly |R|m` log |T | bits. On the other hand, in order to achieve a private
protocol, an additional multiplicative factor of k · |S| is incurred (plus the constants incurred by the x ln x
and Yao protocols). Thus, the communication complexity of the private protocol is reasonably close to
that of its non-private counterpart.

5We note that the size of the field F needed for the x ln x protocol is actually larger than that required for this part of
the protocol. As is described in Section 6, log |F| = O(k log |T |) where k is a parameter depending on δ as described above.
However, k ≈ 12 provides high accuracy and therefore this does not make a significant difference.

6Note that the overhead is actually even smaller since the effective number of attributes in a node of depth d′ is |R| − d′.
Since most nodes are at lower levels of the tree and since this is a multiplicative factor in the expression of the overhead, the
overhead is decreased substantially. The effective value of |R| for the overall overhead can be reduced to about |R| minus
the depth of the resulting decision tree.
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6 A Private Protocol for Approximating x ln x

This section describes an efficient protocol for privately computing an approximation of the x ln x function,
as defined in Figure 3.

• Input: P1’s input is a value v1; P2’s input is v2.

• Auxiliary input: A large enough field F , the size of which will be discussed later.

• Output: P1 obtains w1 ∈ F and P2 obtains w2 ∈ F such that:

1. w1+w2 ≈ (v1+v2)·ln(v1+v2) mod |F| (where the quality of the approximation can be determined
by the protocol specification),

2. w1 and w2 are uniformly distributed in F when viewed independently of one another.

Figure 3: Definition of the x ln x protocol.

The protocol for approximating x lnx involves two distinct stages. In the first stage, random shares of
lnx are computed. This is the main challenge of this section and conceptually involves the following two
steps:

1. Yao’s protocol is used to obtain a very rough approximation to lnx. Loosely speaking, the outputs
from this step are (random shares) of the values n and ε such that x = 2n(1+ε) and −1/2 ≤ ε ≤ 1/2.
Thus, n ln 2 is a rough estimate on lnx and ln(1+ε) is the “remainder”. (As we will see, the circuit
required for computing such a function is very small.)

2. The value ε output from the previous step is used to privately compute the Taylor series for ln(1+ε)
in order to refine the approximation. This computation involves a private polynomial evaluation of
an integer polynomial.

Next, we provide a simple and efficient protocol for private, distributed multiplication. Thus, given
random shares of x and of lnx, we are able to efficiently obtain random shares of x ln x.

6.1 Computing Shares of ln x

We now show how to compute random shares u1 and u2 such that u1 + u2 ≈ ln x (assume for now that
x ≥ 1). The starting point for the solution is the Taylor series of the natural logarithm, namely:

ln(1 + ε) =
∞∑

i=1

(−1)i−1εi

i
= ε− ε2

2
+

ε3

3
− ε4

4
+ · · · for − 1 < ε < 1

It is easy to verify that the error for a partial evaluation of the series is as follows:
∣∣∣∣∣ln(1 + ε)−

k∑

i=1

(−1)i−1εi

i

∣∣∣∣∣ <
|ε|k+1

k + 1
· 1
1− |ε| (4)

Thus, the error shrinks exponentially as k grows (see Section 6.4 for an analysis of the cumulative effect
of this error in computing ID3δ).

Given an input x, let 2n be the power of 2 which is closest to x (in the ID3δ application, note that
n < log |T |). Therefore, x = 2n(1 + ε) where −1/2 ≤ ε ≤ 1/2. Consequently,

ln(x) = ln(2n(1 + ε)) = n ln 2 + ε− ε2

2
+

ε3

3
− ε4

4
+ · · ·
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Our aim is to compute this Taylor series to the k’th place. Let N be a predetermined (public) upper-
bound on the value of n (N > n always). In order to do this, we first use Yao’s protocol to privately
evaluate a small circuit that receives as input v1 and v2 such that v1+v2 = x (the value of N is hardwired
into the circuit), and outputs random shares of the following values:

• 2N · n ln 2 (for computing the first element in the series of lnx)

• ε · 2N (for computing the remainder of the series).

This circuit is easily constructed: notice that ε · 2n = x − 2n, where n can be determined by looking at
the two most significant bits of x, and ε · 2N is obtained simply by shifting the result by N − n bits to
the left. The possible values of 2Nn ln 2 are hardwired into the circuit. (Actually, the values here are
also approximations. However, they may be made arbitrarily close to the true values and we therefore
ignore this factor from here on.) Therefore, following this step the parties have shares α1, β1 and α2, β2

such that,
α1 + α2 = ε2N and β1 + β2 = 2Nn ln 2

and the shares αi and βi are uniformly distributed in the finite field F (unless otherwise specified, all
arithmetic is in this field). The above is correct for the case of x ≥ 1. However, if x = 0, then x cannot
be written as 2n(1 + ε) for −1/2 ≤ ε ≤ 1/2. Therefore, the circuit is modified to simply output shares of
zero for both values in the case of x = 0 (i.e., α1 + α2 = 0 and β1 + β2 = 0).

The second step of the protocol involves computing shares of the Taylor series approximation. In fact, it
computes shares of

lcm(2, ...k) · 2N

(
n ln 2 + ε− ε2

2
+

ε3

3
− · · · ε

k

k

)
≈ lcm(2, ...k) · 2N · ln x (5)

(where lcm(2, ..., k) is the lowest common multiple of {2, . . . , k}, and we multiply by it to ensure that
there are no fractions). In order to do this P1 defines the following polynomial:

Q(z) = lcm(2, . . . , k) ·
k∑

i=1

(−1)i−1

2N(i−1)

(α1 + z)i

i
− z1

where z1 ∈R F is randomly chosen. It is easy to see that

z2
def= Q(α2) = lcm(2, ..., k) · 2N ·

(
k∑

i=1

(−1)i−1εi

i

)
− z1

Therefore after a single private polynomial evaluation of the k-degree polynomial Q(·), parties P1 and
P2 obtain random shares z1 and z2 to the approximation in Eq. (5). Namely P1 defines u1 = z1 +
lcm(2, . . . , k)β1 and likewise P2. We conclude that

u1 + u2 ≈ lcm(2, . . . , k) · 2N · ln x

This equation is accurate up to an approximation error which depends on k, and the shares are random as
required. Since N and k are known to both parties, the additional multiplicative factor of 2N ·lcm(2, . . . , k)
is public and can be removed at the end (if desired). Notice that all the values in the computation are
integers (except for 2Nn ln 2 which is given as the closest integer).
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The size of the field F . It is necessary that the field be chosen large enough so that the initial inputs
in each evaluation and the final output be between 0 and |F| − 1. Notice that all computation is based
on ε2N . This value is raised to powers up to k and multiplied by lcm(2, . . . , k). Therefore a field of
size 2Nk+2k is large enough, and requires Nk + 2k bits for representation. (This calculation is based on
bounding lcm(2, . . . , k) by ek < 22k.)

We now summarize the lnx protocol (recall that N is a public upper bound on log |T |):
Protocol 1 (Protocol lnx)

• Input: P1 and P2 have respective inputs v1 and v2 such that v1 + v2 = x. Denote x = 2n(1 + ε)
for n and ε as described above.

• The protocol:

1. P1 and P2, upon input v1 and v2 respectively, run Yao’s protocol for a circuit that outputs the
following: (1) Random shares α1 and α2 such that α1 + α2 = ε2N mod|F|, and (2) Random
shares β1,β2 such that β1 + β2 = 2N · n ln 2 mod|F|.

2. P1 chooses z1 ∈R F and defines the following polynomial

Q(z) = lcm(2, . . . , k) ·
k∑

i=1

(−1)i−1

2N(i−1)

(α1 + z)i

i
− z1

3. P1 and P2 then execute a private polynomial evaluation with P1 inputting Q(·) and P2 in-
putting α2, in which P2 obtains z2 = Q(α2).

4. P1 and P2 define u1 = lcm(2, . . . , k)β1 + z1 and u2 = lcm(2, . . . , k)β2 + z2, respectively. We
have that u1 + u2 ≈ lcm(2, . . . , k) · 2N · lnx

We now prove that the lnx protocol is correct and secure. We prove correctness by showing that the
field and intermediate values are such that the output shares uniquely define the result. On the other
hand, privacy is derived directly from Corollary 3.

Before beginning the proof, we introduce notation for measuring the accuracy of the approximation.
That is, we say that x̃ is a ∆-approximation of x if |x− x̃| ≤ ∆.

Proposition 5 Protocol 1 constitutes a private protocol for computing random shares of a c
2k(k+1)

-

approximation of c · ln x in F , where c = lcm(2, . . . , k) · 2N .

Proof: We begin by showing that the protocol correctly computes shares of an approximation of c ln x.
In order to do this, we must show that the computation over F results in a correct result over the reals.
We first note that all the intermediate values are integers. In particular, ε2n equals x−2n and is therefore
an integer as is ε2N (since N > n). Furthermore, every division by i (2 ≤ i ≤ k) is counteracted by a
multiplication by lcm(2, . . . , k). The only exception is 2Nn ln 2. However, this is taken care of by having
the original circuit output the closest integer to 2Nn ln 2.

Secondly, the field F is defined to be large enough so that all intermediate values (i.e. the sum of
shares) and the final output (as a real number times lcm(2, . . . , k) · 2N ) are between 0 and |F| − 1.
Therefore the two shares uniquely identify the result, which equals the sum (over the integers) of the two
random shares if it is less than |F| − 1, or the sum minus |F| otherwise.

Finally, we show that the accuracy of the approximation is as desired. As we have mentioned in
Eq. (4), the ln(1 + ε) error is bounded by |ε|k+1

k+1
1

1−|ε| . Since −1
2 ≤ ε ≤ 1

2 , we have that this error rate is

maximum at |ε| = 1
2 . We therefore have that

∣∣∣l̃n(1 + ε)− ln(1 + ε)
∣∣∣ ≤ 1

2k(k+1)
, where l̃n(1 + ε) denotes
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the approximation of the lnx protocol. Now, c ln x = cn ln 2 + c ln(1 + ε) and therefore by adding cn ln 2
to both c ln(1 + ε) and cl̃n(1 + ε) we have that this has no effect on the error. (We note that we actually
add an approximation of cn ln 2 to cl̃n(1+ε) in the protocol. Nevertheless, the error of this approximation
can be made to be much smaller than c

2k(k+1)
. This is because the approximation of 2Nn ln 2 is hardwired

into the circuit as the closest integer, and thus by increasing N the error can be made as small as desired.)
Therefore, the total error of cl̃nx is c

2k(k+1)
, which means that the effective error of the approximation of

lnx is only 1
2k(k+1)

.

Privacy: The fact that the lnx protocol is private is derived directly from Corollary 3. Recall that
this lemma states that a protocol composed of two private protocols, where the first one outputs random
shares only, is private. The lnx protocol is constructed in exactly this way and thus the privacy follows
from the lemma.

6.2 Computing Shares of x ln x

We begin by describing a multiplication protocol that on private inputs a1 and a2 outputs random shares
b1 and b2 (in some finite field F) such that b1 + b2 = a1 · a2. The protocol is very simple and is based on
a single private evaluation of a linear polynomial.

Protocol 2 (Protocol Mult(a1, a2))

1. P1 chooses a random value b1 ∈ F and defines the linear polynomial Q(z) = a1z − b1.

2. P1 and P2 engage in a private evaluation of Q, in which P2 obtains b2 = Q(a2) = a1 · a2 − b1.

3. The respective outputs of P1 and P2 are defined as b1 and b2, giving us that b1 + b2 = a1 · a2.

The correctness of the protocol (i.e., that b1 and b2 are uniformly distributed in F and sum up to a1 ·a2) is
immediate from the definition of Q. Furthermore, the privacy follows from the privacy of the polynomial
evaluation. We thus have the following proposition:

Proposition 6 Protocol 2 constitutes a private protocol for computing Mult as defined above.

We are now ready to present the complete x ln x protocol (recall that P1 and P2’s respective inputs
are v1 and v2 where v1 + v2 = x):

Protocol 3 (Protocol x lnx)

1. P1 and P2 run Protocol 1 for privately computing shares of lnx and obtain random shares u1 and
u2 such that u1 + u2 ≈ ln x.

2. P1 and P2 use two invocations of Protocol 2 in order to obtain shares of u1 · v2 and u2 · v1.

3. P1 (resp., P2) then defines his output w1 (resp., w2) to be the sum of the two Mult shares and u1 ·v1

(resp., u2 · v2).

4. We have that w1 + w2 = u1v1 + u1v2 + u2v1 + u2v2 = (u1 + u2)(v1 + v2) ≈ x ln x as required.

Applying Corollary 3 we obtain the following theorem:

Theorem 7 Protocol 3 is a private protocol for computing random shares of x lnx.
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6.3 Complexity

The lnx Protocol (Protocol 1):

1. Step 1 of the protocol (computing random shares α1, α2, β1 and β2) involves running Yao’s protocol
on a circuit that is linear in the size of v1 and v2 (these values are of size at most log |T |). The
bandwidth involved in sending the garbled circuit in Yao’s protocol is O(log |F||S|) = O(k log |T |·|S|)
communication bits where |S| is the length of the key for a pseudorandom function. (This is
explained in Appendix B.)

The computational complexity is dominated by the oblivious transfers that are required for every
bit of the circuit input. Since the size of the circuit input is at most 2 log |T |, this upper bounds
the number of oblivious transfers required.

2. Steps 2 and 3 of the protocol (computing the Taylor series) involve the private evaluation of a
polynomial of degree k over the field F . This private evaluation can be computed using O(k)
exponentiations and O(k) messages of total length O(k|E|) where |E| is the length of an element
in the group in which the oblivious transfers and exponentiations are implemented.

The overall computation overhead of the protocol is thus O(max{log |T |, k}) exponentiations. Since |T |
is usually large (e.g. log |T | = 20), and on the other hand k can be set to small values (e.g. k = 12,
see below), the computational overhead can be defined as O(log |T |) oblivious transfers. The main
communication overhead is incurred by Step 1, and is O(k log |T | · |S|) bits.

The Mult Protocol (Protocol 2): This protocol involves a single oblivious evaluation of a linear
polynomial by the players.

The x ln x Protocol (Protocol 3): This step involves one invocation of Protocol 1, and two invoca-
tions of Protocol 2. Its overhead is therefore dominated by Protocol 1. We conclude that the overall
computational complexity is O(log |T |) oblivious transfers and that the bandwidth is O(k log |T | · |S|)
bits.

6.4 Choosing the Parameter k for the Approximation

Recall that the parameter k defines the accuracy of the Taylor approximation of the “ln” function. Given
δ, we analyze the value of k needed in order to ensure that the defined δ-approximation is correctly
estimated. From here on we denote an approximation of a value z by z̃. The approximation definition of
ID3δ requires that if an attribute A′ is chosen for any given node, then |HC(T |A′)−HC(T |A)| ≤ δ, where
A denotes the attribute with the maximum information gain. In order to ensure that only attributes
that are δ-close to A are chosen, it is sufficient to have that for all pairs of attributes A and A′

HC(T |A′) > HC(T |A) + δ ⇒ H̃C(T |A′) > H̃C(T |A) (6)

This is enough because the attribute A′ chosen by our specific protocol is that which has the smallest
H̃C(T |A′). If Eq. (6) holds, then we are guaranteed that HC(T |A′)−HC(T |A) ≤ δ as required (because
otherwise we would have that H̃C(T |A′) > H̃C(T |A) and then A′ would not have been chosen). Eq. (6)
is fulfilled if the approximation is such that for every attribute A,

∣∣∣HC(T |A)− H̃C(T |A)
∣∣∣ <

δ

2

We now bound the difference on each | ln x−l̃nx| in order that the above condition is fulfilled. By replacing
log x by 1

ln 2 | lnx− l̃nx| in Eq. (3) computing HC(T |A) (see Section 5.1), we obtain a bound on the error
of

∣∣∣HC(T |A)− H̃C(T |A)
∣∣∣. A straightforward algebraic manipulation gives us that if 1

ln 2 | ln x− l̃nx| < δ
4 ,
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then the error is less than δ
2 as required.7 By Proposition 5, we have that the lnx error is bounded

by 1
2k(k+1)

(the multiplicative factor of c is common to all attributes and can therefore be ignored).

Therefore, given δ, we set 1
2kk+1

< δ
4 · ln 2 or k + log(k + 1) > log

[
4

δ ln 2

]
(for δ = 0.0001, it is enough to

take k > 12). Notice that the value of k is not dependent on the input database.

7 Practical Considerations and Protocol Efficiency

A detailed analysis of the complexity of the x ln x protocol can be found in Section 6.3 and the overall
ID3δ complexity is analyzed in Section 5.4. In this section we demonstrate the efficiency of our protocol
with a concrete analysis based on example parameters for an input database. Furthermore, a comparison
of the efficiency of our protocol to that of generic solutions is presented.

A Concrete Example. Assume that there are a million transactions (namely |T | = 220), |R| = 15
attributes, each attribute has m = 10 possible values, the class attribute has ` = 4 values, and k = 10
suffices to have the desired accuracy. Say that the depth of the tree is d = 7, and that the length of a
key for the pseudorandom function is |S| = 80 bits.

As is described in Section 5.4 there are at most m · ` · |R| = 600 invocations of the x ln x protocol for
each node and these dominate the overall complexity. (In fact, a node of depth d′ in the tree requires
only m · ` · (|R| − d′) invocations.)

• Bandwidth: Each invocation has a communication overhead of O(k · log |T | · |S|) bits, where the
constant in the “O” notation is fairly small. We conclude that the communication overhead of
evaluating for each node can be transmitted in a matter of seconds using a fast communication
network (e.g. a T1 line with 1.5Mbps bandwidth, or a T3 line with 35Mbps).

• Computation: The computation overhead for each x lnx protocol is O(log |T |) oblivious transfers
(and thus exponentiations). In our example log |T | = 20, and each node requires several hun-
dred evaluations of the x lnx protocol. We can therefore assume that each node requires several
tens of thousands of oblivious transfers (and therefore exponentiations). Assuming that a mod-
ern PC can compute 50 exponentiations per second, we conclude that the computation per node
can be completed in a matter of minutes. The protocol can further benefit from the computa-
tion/communication tradeoff for oblivious transfer suggested in [14], which can reduce the number
of exponentiations by a factor of c at the price of increasing the communication by a factor of 2c.
Since the latency incurred by the computation overhead is much greater than that incurred by the
communication overhead it may make sense to use this tradeoff to balance the two.

A Comparison to Generic Solutions. Consider a generic solution for the entire ID3δ task using
Yao’s two party protocol. Such a solution would require a total of |R| · |T | · dlog me oblivious transfers
(one for every input bit). For the above example parameters, we have a total 60, 000, 000 overall oblivious

7The full calculation is as follows:
∣∣∣HC(T |A)− H̃C(T |A)

∣∣∣

≤ 1

|T |

(
m∑

j=1

∑̀
i=1

|T (aj , ci)| ·
∣∣∣log |T (aj , ci)| − ˜log |T (aj , ci)|

∣∣∣ +

m∑
j=1

|T (aj)| ·
∣∣∣log |T (aj)| − ˜log |T (aj)|

∣∣∣
)

<
1

|T |

(
m∑

j=1

`∑
i=1

|T (aj , ci)| · δ

4
+

m∑
j=1

|T (aj)| · δ

4

)
=

1

|T |
(

δ

4
· |T |+ δ

4
· |T |

)
=

δ

2
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transfers. Furthermore, as the number of transactions |T | grows, the gap between the complexity of the
generic protocol and the complexity of our protocol grows rapidly, since the overhead of our protocol is
only logarithmic in |T |. The size of the circuit sent in the generic protocol is also at least O(|R| · |T | · |S|)
(a very optimistic estimate) which is once again much larger than in our protocol.

Consider now a semi-generic solution for which the protocol is exactly as described in Figure 2.
However, a generic (circuit-based) solution is used for the x ln x protocol instead of the protocol of
Section 6. This generic protocol should compute the Taylor series, namely k multiplications in F , with
a communication overhead of O(k log2 |F||S|) = O(k3 log2 |T ||S|) (circuit multiplication is quadratic in
the length of the inputs). This is larger by a factor of k2 log |T | than the communication overhead of our
protocol. On the other hand, the number of oblivious transfers would remain much the same in both
cases, and this overhead dominates the computation overhead of both protocols.
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A A Decision Tree Example

In this appendix we give an example of a data set and the resulting decision tree. (The examples are
taken from Chapter 3 of Tom Mitchell’s book Machine Learning, see [12].) The aim of the task here is
to learn the weather conditions suitable for playing tennis.

Day Outlook Temperature Humidity Wind Play Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

The first attribute chosen in the tree for the above database is Outlook. This is seen by a quick
computation of the Gain. By a quick calculation one can confirm that Gain(T, Outlook) = 0.246 which
is maximum over the gain of all other attributes. We can see the entropy gain calculation for one of the
lower nodes in the tree below.
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Outlook

Sunny Overcast Rain

[9+,5−]

{D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14}

[2+,3−] [4+,0−] [3+,2−]

Yes

{D1, D2, ..., D14}

? ?

Which attribute should be tested here?

Ssunny = {D1,D2,D8,D9,D11}

Gain (Ssunny , Humidity)

sunnyGain (S , Temperature) =  .970  −  (2/5) 0.0  −  (2/5) 1.0  −  (1/5) 0.0  =  .570

Gain (S sunny , Wind) =  .970  −  (2/5) 1.0  −  (3/5) .918  =  .019

 

=  .970  −  (3/5) 0.0  −  (2/5) 0.0  =  .970

It is clear that “Humidity” is the best choice by its Gain value. Intuitively, this is logical as it
completes the classification in the most concise manner (there is no need for any further tests). Below,
we can see the final decision tree.

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

A new transaction is then classified by traversing the tree according to the attribute/values. For example,
the transaction:

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

is classified as No by seeing that it is a sunny and humid day. This example demonstrates ID3’s bias in
favor of short hypotheses (at most two out of the four attributes are tested).

Our aim is to output a tree such as this one, such that nothing can be learned about the other party’s
database that cannot be learned from the output itself.
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B Yao’s Protocol for Private Two-Party Computation

We now describe Yao’s protocol for private two-party computation in the case that the adversary is
semi-honest. Let A and B be parties with respective inputs x and y and let f be the functionality to be
privately computed by the two parties. We note that f may be a probabilistic functionality. In this brief
description, we assume for simplicity that both A and B are to obtain the same value f(x, y).

The protocol is based on expressing f as a combinatorial circuit with gates defined over some fixed
base B (e.g., B can include all the functions g : {0, 1}×{0, 1} 7→ {0, 1}). The bits of the input are entered
into input wires and are propagated through the gates.

Protocol for two-party secure function evaluation

Input: A and B have respective input values x and y.

Output: A and B both receive the value f(x, y).

The Protocol:

• Encrypting the circuit: A constructs an “encrypted” version of the circuit computing f as
follows. First, A hardwires its input into the circuit, thus obtaining a circuit computing f(x, ·).
Then, A assigns to each wire i of the circuit two random values (W 0

i ,W 1
i ) corresponding to values 0

and 1 of the wire (the random values should be long enough to be used as keys to a pseudo-random
function). Denote the value of the wire by bi ∈ {0, 1}. Party A also assigns to the wire a random
permutation over {0, 1}, πi : bi 7→ ci. Denote 〈W bi

i , ci〉 as the ‘garbled value’ of wire i.

Consider a gate g which computes the value of the wire k as a function of wires i and j, bk = g(bi, bj).
A prepares a table Tg which enables computation of the garbled output of g, 〈W bk

k , ck〉, from the
garbled inputs to g, namely the values 〈W bi

i , ci〉, 〈W bj

j , cj〉. Given the two garbled inputs to g, the
table does not disclose information about the output of g for any other inputs, nor does it reveal
the values of the bits bi, bj , bk. The table essentially encrypts the garbled value of the output wire
using the output of a pseudo-random function F keyed by the garbled values of the input wires.

The construction of Tg uses a pseudo-random function F whose output length is |W bk
k | + 1 bits.

Assume that the fan out of each gate is one. The table contains four entries of the form

ci, cj : 〈(W g(bi,bj)
k , ck)⊕ F

W
bi
i

(cj)⊕ F
W

bj
j

(ci)〉

for 0 ≤ i, j ≤ 1, where ci = π(bi), cj = π(bj), and ck = πk(bk) = πk(g(bi, bj)). (The entry does not
include its index ci, cj explicitly, as it can be deduced from the location.)

To verify that the table enables B to compute the garbled output value given the garbled input
values, assume that B knows 〈W bi

i , ci〉, 〈W bj

j , cj〉. B should find the entry (ci, cj) in the table Tk,

and compute its exclusive-or with (F
W

bi
i

(cj)⊕ F
W

bj
j

(ci)). The result is 〈W bk
k = W

g(bi,bj)
k , ck〉.

If the fan out of a a gate is greater than 1, care should be taken to ensure that same value is not
used to mask values in different gates that have the same input. This can be done by assigning a
different id for every gate and using this id as an input to the pseudo-random function F . Namely,
a gate with id g has table entries of the form ci, cj : 〈(W g(bi,bj)

k , ck)⊕ F
W

bi
i

(g, cj)⊕ F
W

bj
j

(g, ci)〉.

• Coding the input: The tables described above enables the computation of the garbled output of
every gate from its garbled inputs. Therefore given these tables and the garbled values 〈W bi

i , ci〉 of
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the input wires of the circuit, it is possible to compute the garbled values of its output wires. Party
B should therefore obtain the garbled values of the input wires.

For each input wire, A and B engage in a 1-out-of-2 oblivious transfer protocol in which A is the
sender, whose inputs are the two garbled values of this wire, and B is the receiver, whose input is
an input bit. As a result of the oblivious transfer protocol B learns the garbled value of its input
bit (and nothing about the garbled value of the other bit), and A learns nothing.

A sends to B the tables that encode the circuit gates and a translation table from the garbled
values of the output wires to output bits.

• Computing the circuit: At the end of the oblivious transfer protocols, party B has sufficient
information to compute the output of the circuit f(x, y) by its own. After receiving f(x, y), party
B sends A this value so that both parties obtain the output.

To show that the protocol is secure it should be proved that the view of the parties can be simulated
based on the input and output only. The main observation regarding the security of each gate is that
every masking value (e.g. F

W
bi
i

(cj)) is used only once, and that the pseudo-randomness of F ensures
that without knowledge of the correct key these values look random. Therefore knowledge of one garbled
value of each of the input wires discloses only a single garbled output value of the gate; the other output
values are indistinguishable from random to A.

As for the security of the complete circuit, the oblivious transfer protocol ensures that B learns only
a single garbled value for each input wire, and A does not learn which value it was. Inductively, B can
compute only a single garbled output value of each gate, and in particular of the circuit. The use of
permuted bit values ck hides the values of intermediate results (i.e. of gates inside the circuit).

It is possible to adapt the protocol for circuits in which gates have more than two inputs, and even
for wires with more than two possible values. The size of the table for a gate with ` inputs which each
can have d values is d`.

Overhead

Note that the communication between the two parties can be done in two rounds (assuming the use of a
two-round oblivious transfer protocol [6, 9]).

Consider a circuit with n inputs and m gates. The protocol requires A to prepare m tables and send
them to B. This is the major communication overhead of the protocol. In the case of binary gates, the
communication overhead is 4m times the length of the output of the pseudo-random function (typically
64 to 128 bits long).

The main computational overhead of the protocol is the computation of the n oblivious transfers.
Afterwards party B computes the output of the circuit, and this stage involves m applications of a
pseudo-random function. For small circuits, the overhead of this stage is typically negligible compared
to the oblivious transfer stage.
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