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Abstract. We introduce a search problem called “mutual search” where k agents, arbitrarily
distributed over n sites, are required to locate one another by posing queries of the form “Anybody at
site i?”. We ask for the least number of queries that is necessary and sufficient. For the case of two
agents using deterministic protocols, we obtain the following worst-case results: In an oblivious
setting (where all pre-planned queries are executed), there is no savings: n 2 1 queries are required
and are sufficient. In a nonoblivious setting, we can exploit the paradigm of “no news is also news” to
obtain significant savings: in the synchronous case 0.586n queries suffice and 0.536n queries are
required; in the asynchronous case 0.896n queries suffice and a fortiori 0.536n queries are required;
for o(=n) agents using a synchronous deterministic protocol less than n queries suffice; there is a
simple randomized protocol for two agents with worst-case expected 0.5n queries and all randomized
protocols require at least 0.25n worst-case expected queries. The graph-theoretic framework we
formulate for expressing and analyzing algorithms for this problem may be of independent interest.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; E.1 [Data]: Data Structures; E.5 [Data]: Files—sorting/searching; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems; G.2.2 [Discrete Mathematics]:
Graph Theory; G.3 [Probability and Statistics]; H.2.4 [Database Management]: Systems; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and Search

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Coalition forming, computational complexity, computer net-
works, datastructures, discrete algorithms, distributed computation, mutual search

1. Introduction

Search problems come in many forms [Knuth 1998]. Perhaps the following
problem is new: Suppose you and a friend check separately into the same hotel in
Las Vegas and are given different rooms. For reasons we don’t go into here, you
both don’t want to draw any attention to your relation. You are supposed to
phone one another at noon, but unfortunately you don’t know each others’ room
number. What to do? Every room contains a room phone and room number. You
can phone all other rooms in the hotel to find your friend and she can do the
same (if the wrong person picks up the phone you simply hang up and nobody is
the wiser). This will cost a lot of calls: there are 1000 rooms. In the worst case,
you use almost 2000 room calls together. Luckily you and your friend know the
protocol in this paper: you locate one another using only 586 room calls together
in the worst case. There are more serious problems of the same nature that are
listed in Appendix A.

In general, we can think of k $ 2 agents having to find each others’ locations
in a uniform unstructured search space consisting of n sites (n $ k). The sites
have distinct identities, say 0, . . . , n 2 1 (k # n), every site can contain zero or
one agent, and the agents execute identical protocols based on the values n, k
with their site identity as input. The agents can execute queries of the form
“Anybody at site i?” and every such query results in an answer “yes” or “no.” We
say that two agents know each others’ location as soon as one agent queries the
location of the other agent or the other way around. Before that happens, they
don’t know each other’s location. The relation “know location” is transitive and
the problem is solved if all k agents know one another’s location. This type of
search can be called Mutual Search (MS). We analyze the cost in number of
queries for the case k 5 2 under various timing assumptions for deterministic
and randomized algorithms. We also give a result for the general case of k 5
o(=n) agents.
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Our Results: We first look at deterministic protocols for two agents. If the
protocol is oblivious, so that the cost for each agent is a fixed number of queries,
then there are no significant savings possible: two agents need to place at least
n 2 1 queries in total in the worst case.1 Namely, given a protocol, construct the
directed graph on {0, . . . , n 2 1} with an arc from i to j if an agent at i queries
node j. For every pair there must be at least one arc. Hence, there are at least
(2

n) arcs in total, and the average number of outgoing arcs per node is at least
(n 2 1)/ 2. It follows that some pair of nodes must together have twice this
number, or n 2 1, of outgoing edges (this can be refined to 2(n 2 1)/ 2 for all
n . 2). The tightness of this bound is witnessed by an algorithm called
HalfInTurn, to be discussed in Section 2.2.

Oblivious case (k 5 2). Both upper bound and lower bound are 2(n 2
1)/ 2 queries in the deterministic worst-case.

In the remainder of the paper, we analyze the nonoblivious case. We obtain
savings by exploiting the information inherent in timing (“no news is also news”)
and a prescribed order of events.

Synchronous case (k 5 2). In Section 2.5, we present the protocol SRn, an
algorithm with a worst-case cost of only (2 2 =2)n ' 0.586n. We also show
this algorithm to be close to optimal, by proving a (4 2 2=3)n ' 0.536n lower
bound on the number of queries required by any mutual search algorithm in
Section 2.4.

Asynchronous case (k 5 2). In Section 3, we show that there is a mutual
search algorithm that uses asymptotically 0.896n queries. The best lower bound
we know of is the 0.536n lower bound in Section 2.4.

Randomized case (k 5 2). We consider randomized algorithms for the prob-
lem in Section 4. A synchronous randomized algorithm is shown to have a
worst-case (over agent location) expected (over random coin flips) cost of about
(n 1 1)/ 2, thus beating the deterministic lower bound. We show a lower bound
on the worst-case expected number of queries of n/4.

Synchronous multi-agent case (k 5 o(=n)). In Section 5, we present RSn, k, a
synchronous deterministic algorithm for k $ 2 agents with a cost well below n
for all k 5 o(=n).

The framework we develop for reasoning about the Mutual Search problem
may be of independent interest. Mutual search can serve as a preliminary stage
to sharing random resources in a distributed setting or forming coalitions for
Byzantine attacks and various cryptographic settings.

1 “Oblivious” means that the queries scheduled at certain time slots take place independent of the
replies received. The same lower bound holds if there is no FIFO discipline: the answer to a query
can arrive after the following queries are executed. This is the case when the sites are nodes in a
computer network, the agents are processes at those nodes that query by sending messages over
communication links with unknown bounded (or possibly unbounded as in the FLP model [Fischer et
al. 1985]) communication delay without waiting for the answers to earlier messages. Then, a process
may have to send all its messages before an affirmative reply to one of the early messages is received.
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Related Work. The authors believe that this is a novel type of search problem
that has not been considered before. We do not know of any directly related
previous research. Several topics that are more or less related can be found in
the Appendix A.

2. Synchronous Case for Two Agents

In Section 2.1, we formulate the model for the synchronous case with k 5 2 agents
located at n sites and give a framework for expressing and analyzing the structure of
algorithms for this problem. We analyze this case fairly completely, but in later
sections we also present results for other instances of the MS problem.

2.1. MODEL AND DEFINITIONS. Consider n sites numbered 0, . . . , n 2 1 with
k # n agents distributed over the n sites with zero or one agent per site. Time is
discrete, with time slots numbered 0, 1, . . . . An agent at site i can perform
queries of the form q 5 q(i, j) with the following semantics: if site j contains an
agent then the associated answer from site j to the agent at i is 1 (yes) otherwise
0 (no), 0 # i Þ j # n 2 1. For definitional reasons, we also require an empty
query ' (skipped query) with an empty associated answer (skipped answer). The
query and answer take place in the same time slot. Given the number n of sites
and the number k of agents, a mutual search protocol A consists of a (possibly
randomized) algorithm to produce the sequence of queries an agent at site i
(0 # i # n 2 1) executes together with the time instants it executes them:
A(i) 5 q1, . . . , qmi

where qt is the query executed in the tth time slot, t :5
0, . . . , mi. If qt 5 ', then at the tth time slot an agent in site i skips a query. A
mutual search execution of k agents located at sites i1, . . . , ik consists of the list
! 5 A(i1), . . . , A(ik). We require that in every time slot t there are zero or
one queries from this list that are Þ'. Hence, we can view ! as a total order on
all queries by the k agents and A(i) as a restriction to the entries performed by
an agent at site i (i :5 i1, . . . , ik). The cost of an execution is the number of
queries qt Þ ' with t # t0 and t0 is the least index such that the answer to query
qt0

equals 1. That is, we are interested in the number of queries until first contact
is made.2 The (worst-case) cost of a mutual search protocol is the maximum cost of
an execution of the protocol. The worst-case cost of mutual search is the
minimum (worst-case) cost taken over all mutual search protocols.

In this paper we consider the case of k 5 2 agents unless explicitly stated
otherwise. The case k . 2 is open except for the result in Section 5. Informally,
a mutual search protocol specifies, for every site that an agent can find itself in,
what to do in every time slot: either stay idle or query another site as specified by
the protocol and receive the reply. Every time slot harbours at most one query
and its answer.3

2 This is the cost of a nonoblivious execution. The cost of an oblivious execution is simply the number
queries Þ' occurring in the list !. This case was already completely analyzed in the Introduction.
Therefore, in the remainder of the paper we only consider nonoblivious executions without stating
this every time.
3 We can allow simultaneous queries. If there are k agents, then every time slot can have at most k
queries Þ'. The precise cost then depends only on how we account the at most k queries in the time
slot containing the first query with answer 1. Under different conventions the results can only vary by
k 2 1, that is, by only 1 unit for k 5 2.
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For every pair of sites such a protocol determines what site will first query the
other. After the first such query takes place, the execution terminates, so that the
latter site need never execute the now redundant query of the former site. Every
such algorithm implies a tournament: a directed graph having a single arc
between every pair of nodes. An edge from node i to node j represents site i
querying site j. The different times at which the (2

n) queries/edges are scheduled
induce a total timing order on the edges. Since the cost of running the algorithm
depends only on which queries are made before a certain contacting query, this
total order by itself captures the essence of the timing of queries.

An algorithm can thus be specified by a tournament (telling us who queries
whom) plus a separate total timing order on its edges (telling us when). Note that
the timing order is completely unrelated to the ordering of the arcs; the
tournament may well be cyclic in the sense of containing cycles of arcs.4 For us
an ordered tournament is a (tournament, order) pair where the order is a separate
total order on the arcs of the tournament.

Definition 1. An algorithm for MS is an ordered tournament T 5 (V, E, a),
where the set of nodes (sites) is V 5 {0, 1, . . . , n 2 1}, E is a set of (2

n) 5
1
2 n(n 2 1) directed edges (queries), and a is a total order on E. For a node i,
Ei is the set of outgoing edges from i, and is called row i . The number of queries
uEiu is called the length of row i.

This way Ei is the set of queries agent i can potentially make. Define the cost
of an edge as the number of queries that will be made if the two agents happen
to reside on its incident nodes.

Definition 2. The cost c(T) of an algorithm T is the maximum over all
directed edges e 5 (i, j) of the edge cost c(e) 5 uEi

aeu 1 1 1 uEj
aeu, where for

an F # E, Fae denotes { f [ F;f a e}.

If the agents are located at nodes i and j and the edge e between them is
directed from i to j, then at the time i queries j, agent i has made all queries in
Ei

ae, while agent j has made all queries in Ej
ae. We have now all what is needed

to present and analyze some basic algorithms for the problem that will form the
basis of a better algorithm.

2.2. SOME SIMPLE MUTUAL SEARCH ALGORITHMS. The first algorithm,
AllInTurnn, lets each site in turn query all the other sites. For instance,
AllInTurn4 can be depicted as5

0: 1 2 3
1: 2 3
2: 3
3:

Here, the sites are shown as labeling the rows of a matrix, whose columns
represent successive time instances. A number j appearing in row i and column t

4 For example, algorithm HalfInTurnn below has cycles of arcs.
5 Another way would be to draw the tournament on nodes 0, . . . , 3 and label every arc with a time.
The matrix representation we use seems more convenient to obtain the results.
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of the matrix represents the query from i to j scheduled at time t. As an example
execution, suppose the agents are situated at sites 0 and 2. Then at time 0, (the agent
at site) 0 queries 1 and receives reply “no”: the second agent is not there. Next 0
queries 2 and contacts the second agent, finishing the execution at a cost of 2
queries.

LEMMA 1. Algorithm AllInTurnn has cost n 2 1.

PROOF. It is in fact easy to see that c(i, j) 5 j 2 i (i , j). An agent at site
i makes this many queries to contact the other agent at site j, and the latter never
gets to make any queries. The maximum value of j 2 i is n 2 1. e

A somewhat more balanced algorithm is HalfInTurnn, where each site in turn
queries the next n/ 2 sites (modulo n). HalfInTurn5 looks like

0: 1 2
1: 2 3
2: 3 4
3: 4 0
4: 0 1

For even n, sites n/ 2 . . . n 2 1 only get to make n/ 2 2 1 queries.

LEMMA 2. Algorithm HalfInTurnn has cost n 2 1.

PROOF. Suppose i , j. If j 2 i # n/ 2, we find c(i, j) 5 j 2 i, otherwise,
i 2 j mod n 5 n 1 i 2 j giving c( j, i) 5 n/ 2 1 n 1 i 2 j. Taking j 5 i 1
n/ 2 1 1 achieves the maximum of n/ 2 1 n 2 (n/ 2 1 1) 5 n 2 1. e

Our next result shows HalfInTurnn to be the basis of a much better algorithm.

Definition 3. An algorithm is called saturated if its cost equals its maximum
row length.

An example of a saturated algorithm is AllInTurnn, whose cost of n 2 1
equals the length of row 0.

LEMMA 3. An algorithm that is not saturated can be extended with another site
without increasing its cost.

PROOF. Let T be an algorithm on n nodes whose cost exceeds all row lengths.
Add a new node n, and an edge from every other node to this new node. Order
the new edges after the old edges (and arbitrarily amongst each other). This does
not affect the cost of the old edges, while the cost of edge (i, n) becomes one
more than the length of row i, hence not exceeding the old algorithm cost. e

As the proof shows, the maximum row length increases by exactly one, so we
may add as many sites as the cost exceeds the former. HalfInTurn2k11 has cost
2k and uniform row length k so we may add k more sites to get a saturated
algorithm SaturatedHalfInTurn3k11 of the same cost:

COROLLARY 1. Algorithm SaturatedHalfInTurnn has cost 2
3 (n 2 1).

2.3. ALGORITHM REFINEMENT. In order to get a better understanding of the
structure of MS algorithms, we need to focus on their essential properties. In this
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section, we consider algorithms with only a partial edge ordering. The question
arises how such a partial ordering can be extended to a good total edge ordering.
The following terminology helps us answer this question.

Definition 4. A partial MS algorithm is a partially ordered tournament T 5
(V, E, a, R), where R # E is the subset of retired edges, and a is now a partial
order, which:

—totally orders R,
—orders all of E 2 R before all of R, and
—leaves E 2 R (pairwise) unordered.

A directed edge e 5 (i, j) in row prefix Ei 2 R has retiring cost c(e) 5 uEi 2 R u
1 uEj 2 R u. Retiring an edge e results in a more refined partial algorithm T 5
(V, E, a9, R9), where R9 5 R ø {e} and a9 5 a ø (E 2 R9, e).

Note that relation a is viewed as a set of pairs; (E 2 R9, e) denotes the set
{( f, e);f [ E 2 R9}. The edge e that is added to R was a R and since a9
extends a, becomes the new earliest edge in R9.

Algorithm refinement proceeds backward in time—the queries to be made last
are scheduled first. An example partial tournament, with 2 retired edges, is

~0, 3!

a ~2, 3! a ~3, 1!
~0, 1!

~1, 2!

~2, 0!

Note that any sequence of uE 2 R u refinements yields a (totally ordered)
algorithm, which we call a total refinement of T. A mere tournament corre-
sponds to a partial algorithm with no retired edges.

Observe that the cost of e in a total refinement depends only on its ordering
with respect to the edges in rows i and j, which is determined as soon as it
retires. This shows the following:

FACT 1. If T9 results from T by retiring edge e 5 (i, j), then the retiring cost of e
equals the cost of that edge in every total refinement of T9.

Definition 5. The cost c(T) of a partial algorithm T is the minimal cost among
all its total refinements. A total refinement achieving minimum cost is called
optimal.

LEMMA 4. The cost of a partial algorithm T equals the cost of the partial
tournament that results from retiring the edge e of minimum retiring cost.

Informally, any refinement from T will have cost at least the minimum retiring
cost, and choosing e doesn’t hamper us in any way. The following proof makes
this notion of “nonhampering” precise.

PROOF. Consider an optimal total refinement from T to some algorithm T0,
in which, at some point, say after e1, e2, . . . , ek, edge e is retired. Let algorithm
T9 be the result of retiring e first, and then continuing the same total refinement
with e skipped. Then T0 will have e a0 ek a0 . . . a0 e1 whereas T9 has ek a9
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. . . a9 e1 a9 e. If we compare the costs c0 and c9 for any edge in T0 and T9
respectively, we see that for 1 # i # k, c9(ei) # c0(ei), c9(e) $ c0(e), and all
other edges cost the same. However, c9(e) # c(e1) by assumption, and so T9
must be optimal too. e

Since optimal refinement is a straightforward greedy procedure that can be
performed automatically, an optimal (timed) algorithm is uniquely determined
by just its associated tournament. By graphically showing the tournament’s
adjacency matrix, one obtains a visually insightful representation; for instance,
SaturatedHalfInTurn13 is shown in Figure 1.

Our algorithm HalfInTurnn now betrays a bad ordering for even n. It retires
(n 2 1, 0) first, at a cost of n 2 1, whereas an optimal refinement can keep the
cost down to n 2 2. It takes advantage of the bottom rows being shorter, and
first retires an edge between nodes in this bottom half. For example, the
following reordering of HalfInTurn4 has cost 2:

~0, 1! a ~3, 0! a ~0, 2! a ~1, 3! a ~1, 2! a ~2, 3! .

2.4. LOWER BOUNDS. Given that the maximum row length is a lower bound
on the cost of the algorithm, the following result is easily obtained.

LEMMA 5. Every MS algorithm T for n sites has cost at least n/2.

PROOF. The average outdegree of a node in T is (2
n)/n 5 (n 2 1)/ 2, so some

row has length at least (n 2 1)/ 2 5 n/ 2. It remains to show that for odd n,
an algorithm of cost (n 2 1)/ 2 is not possible. This is because for any collection
of n rows each of length (n 2 1)/ 2, the last edge on every row has retiring cost
(n 2 1)/ 2 1 (n 2 1)/ 2 5 n 2 1. e

The last argument used in the proof shows that the sum length of the shortest
two rows is a lower bound on an algorithm’s cost. An algorithm of cost c thus
necessarily has a row of length at most c/ 2. Careful analysis allows us to prove
the following generalization:

LEMMA 6. Let T be an MS algorithm for n sites with cost c. Then the (k 1 1)st
shortest row of T has length at most c/2 1 k.

PROOF. Let e 5 (i, j) be the last edge for which i and j are not among the
shortest k rows. Consider the moment of e’s retirement in the refinement from

FIG. 1. HalfInTurn13.
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the unordered tournament in T to T. Since R includes at most k edges from each
of the rows i and j, the retiring cost of e equals c(e) 5 uEi 2 R u 1 uEj 2 R u $
uEiu 2 k 1 uEju 2 k $ 2(min( uEiu, uEju) 2 k). Furthermore, c(e) # c, since the
cost of T is the maximum of all retirement costs. It follows that the smallest of
rows i and j has length at most c/ 2 1 k. e

This shows that the best possible distribution of row lengths looks like ,
where the (2

n) entries are divided over n 2 c/ 2 rows of maximum length c,
followed by c/ 2 increasingly shorter rows, producing a triangular “wasted” space
of size about (c/ 2)2/ 2.

THEOREM 1. Every MS algorithm T for n sites has cost at least (4 2 2=3)(n 2
1) ('0.536n).

PROOF. Since every row has length at most c, Lemma 6 implies:

uE u 5
n~n 2 1!

2
# nc 2 O

k50

c/ 2 c

2
2 k

5 nc 2
~c/ 2!~c/ 2 1 1!

2
,

which in turn implies:

f ~c/ 2!2 2 2~n 2 1!c 1 ~n 2 1!2 # 1 2 1.5c 1 n # 0.

The last inequality holds assuming c ¶ (2/3) (n 2 1) (otherwise, the theorem
vacuously holds).

Solving for c, we find c $ (4 2 2=3)(n 2 1). e

2.5. ALGORITHM “SMOOTH RETIRING”. In this section, we present our best
algorithm, building on the insights gained in the previous sections.

Algorithm SRn is not quite as easy to describe as our earlier algorithms. It is
best described as a partial algorithm with ordered rows, an optimal refinement of
which will be presented in its cost analysis.

SRn divides the nodes into two groups: an upper group U 5 {0, . . . , u 2 1}
consisting of u nodes and a lower group L 5 {u, . . . , n 2 1} consisting of c 5
n 2 u nodes (which is the cost we are aiming for). As can be expected,
construction of SRn presumes certain conditions on the relative sizes of u and c,
which will be derived shortly. The value of c will then be chosen as the smallest
that satisfies the conditions.

The upper group engages in HalfInTurnu, while the lower group engages in a
slight variation on AllInTurnc in which each row is reversed.

Row u 1 i will have length c 2 1 2 i/ 2, of which (u 1 i, n 2 1) . . . (u 1
i, u 1 i 1 1) are the last n 2 1 2 (u 1 i) 5 c 2 1 2 i edges. That leaves c 2
1 2 i/ 2 2 (c 2 1 2 i) 5 i/ 2 ‘slots’ available at the front of row u 1 i, to
be filled with edges to U.
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Row i , u starts with the u/ 2 or u/ 2 edges in HalfInTurnu, leaving up to
c 2 u/ 2 slots per row to be filled with edges to L. The picture so far (with u 5
6, c 5 n 2 u 5 8) is

0: 1 2 3 p p p p p

1: 2 3 4 p p p p p

2: 3 4 5 p p p p p

3: 4 5 p p p p p p

4: 5 0 p p p p p p

5: 0 1 p p p p p p

6: 13 12 11 10 9 8 7
7: p 13 12 11 10 9 8
8: p 13 12 11 10 9
9: p p 13 12 11 10

10: p p 13 12 11
11: p p p 13 12
12: p p p 13
13: p p p p

Asterisks indicate empty slots. By simple geometric properties of the picture,
we analyze the requirements. Define block BU as the elements in the upper u
rows determined by U and define block BL as the elements in the lower c 5 n 2
u rows determined by L. The block BU has uc elements of which (2

u) are used for
the edges in U 3 U. There are uc 2 (2

u) slots in U that can be used for edges
from U to L. In the lower block BL, the number of open slots that can be used
for edges from L to U equals (c 2 1) 1 (c 2 3) 1 . . . 1 2 5 (c2 2 1)/4 for
odd c and (c 2 1) 1 (c 2 3) 1 . . . 1 1 5 c2/4 for even c. That is c2/4 open
slots. In order to fit all uc edges between U and L, the number of open slots
must be sufficient:

uc 2 Su
2D 1 c2

4  $ uc.

As it happens, the number of elements in BU, that is uc, equals the number of
edges between U and L. Therefore,

c2

4  $ Su
2D . (1)

In the example, the 16 lower slots make up for the 15 which HalfInTurn6 takes
out of the top section of size 6 z 8 5 48.

2.6. FILLING IN THE SLOTS. The bottom slots are filled in from top to bottom,
left to right, modulo u, starting with (u 1 1, 0). The top slots are then filled
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with the remaining edges, in reverse order:

0: 1 2 3 12 10 9 8 6
1: 2 3 4 12 10 9 7 6
2: 3 4 5 12 10 8 7 6
3: 4 5 p 11 10 8 7 6
4: 5 0 13 11 9 8 7 6
5: 0 1 13 11 9 8 7 6
6: 13 12 11 10 9 8 7
7: 0 13 12 11 10 9 8
8: 1 13 12 11 10 9
9: 2 3 13 12 11 10

10: 4 5 13 12 11
11: 0 1 2 13 12
12: 3 4 5 13
13: 0 1 2 3

We assume that u is at least the maximum number of slots per row c/ 2, to
avoid filling a row twice with the same edge:

c

2 # u. (2)

This condition also finds use in the next subsection to show optimality of a
certain refinement.

The tournament underlying this partial algorithm is shown in Figure 2. Figure
3 makes the pattern clearer with the bigger instance u 5 21, c 5 29.

2.7. COST ANALYSIS

THEOREM 2. Partial algorithm SRn has cost c 5 (2 2 =2)(n 2 1/2)
('0.586n).

FIG. 2. SR618.
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PROOF. To satisfy condition (1), it suffices to have

c2

4
$

~n 2 c 2 1!~n 2 c!

2
,

or equivalently, c2 2 2(2n 2 1)c 1 2n(n 2 1) # 0, which, solving for c, translates to
c $ (2 2 =2)(n 2 1/2). It remains to show that SRn actually has cost c. This we do
by presenting a total refinement sequence and verifying all retiring costs.

First, all edges in L 3 L are retired, bottom-up and right to left. Upon
retirement of edge (u 1 i, u 1 j), uEu1i 2 R u equals uEu1i ù L 3 U u 1 n 2
(u 1 j), while uEu1j 2 R u equals uEu1j ù L 3 U u, giving a retiring cost of

 i

2 1 c 2 j 1  j

2 5 c 1  i

2 2  j

2 # c,

since i , j.
Next, all edges (i, u 1 j) [ U 3 L are retired, in increasing order of j. Upon

retirement of edge (i, u 1 j),

uEi 2 R u 5 c 2 u$k , j;~u 1 k, i! ¸ Eu1k% u

5 c 2 ~ j 2 u$k , j;~u 1 k, i! [ Eu1k% u! # c 2 S j 2  j2

4uD ,

since the number of slots in the first j bottom rows equals ( j 2 1) 1 ( j 2 3) 1 . . .
5 j2/4, while i appears once in every u consecutive slots. Condition (2) implies

j

2u
#

c 2 1

2u
# 1,

and hence

uEi 2 R u # c 2 S j 2  j

2 z  j

2uD # c 2 S j 2  j

2D # c 2  j

2 .

FIG. 3. SR21129.
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Combined with uEu1j 2 R u # j/ 2 we conclude c(i, u 1 j) 5 uEi 2 R u 1
uEu1j 2 R u # c.

Next, all edges in HalfInTurnu are retired in their usual order at maximum
cost u 2 1, which, by condition (1), is bounded by c.

Finally, all edges in L 3 U are retired in arbitrary order, at costs no more than
c/ 2. e

3. Asynchronous Case for Two Agents

In an asynchronous setting, one cannot rely on queries from different agents to
be coordinated in time. In some cases, the agents will have no access to a clock;
in other cases, the clocks may be subject to random fluctuations. In the
asynchronous model, all an agent can control, is what other sites are queried, and
in what order. We formalize an asynchronous mutual search (AMS) algorithm as
a partially ordered tournament in which the rows are totally ordered and edges
from different rows are unordered.6 The cost of an edge is defined as its position
in the row-ordering (querier cost) plus the length of the target row (queree cost),
since it may happen that the queree has already made all of its queries.

Upper bound. With relatively little control over the ordering of queries, it
seems even less likely to find algorithms which improve on the intuitive bound of
n 2 1 queries. For instance, Lemma 3 no longer holds in the asynchronous case.
But, surprisingly, a variation of SRn, called ASRn, achieves about 1.5 times its
cost. It is obtained by reversing within every row the order of edges pointing to
nodes in the lower group L of Section 2.6. The example there now becomes:

0: 1 2 3 6 8 9 10 12
1: 2 3 4 6 7 9 10 12
2: 3 4 5 6 7 8 10 12
3: 4 5 p 6 7 8 10 11
4: 5 0 6 7 8 9 11 13
5: 0 1 6 7 8 9 11 13
6: 7 8 9 10 11 12 13
7: 0 8 9 10 11 12 13
8: 1 9 10 11 12 13
9: 2 3 10 11 12 13

10: 4 5 11 12 13
11: 0 1 2 12 13
12: 3 4 5 13
13: 0 1 2 3

6 There is a subtlety here. In the synchronous case, we allow only one of any two given sites to query
the other (unidirectional), reasoning that if both try to query the other, then one of those queries will
always be made first. In the asynchronous case however, there is no control over which query occurs
first, and thus we need to allow for more general, bidirectional algorithms (which we refrain from
defining formally here). Although there may be possible benefits to having two sites query each other,
we have been unable to find ways of exploiting this. We conjecture that for any bidirectional
algorithm, there exists a unidirectional algorithm of the same or less cost. Since bidirectional
algorithms don’t fit too well in the existing model, and since we lack nontrivial results regarding them,
we use the above unidirectional definition of AMS algorithm in the remainder of this section.
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The key observation is that the shortest row has half the length of the
maximum row and that edges to nodes with shorter rows appear in the later
positions. Using an analysis similar to that of Theorem 2, one arrives at:

THEOREM 3. Asynchronous algorithm ASRn has cost at most ((5 2 =2)/4)n
('0.896n).

PROOF. We check that every one of the four types of edges has an asynchro-
nous cost of at most (note that u 5 n 2 c):

c 1
3

4
u 5

3n 1 c

4
,

where c 5 (2 2 =2)(n 2 1) as in Theorem 2. For some edges, we use the
fact that c # (3/ 2)u, and show that the cost is at most c 1 (1/ 2)c. Recall that
row u 1 j has length c 2 1 2 j/ 2.

Edge (u 1 i, u 1 j) [ L 3 L has asynchronous cost:

 i

2 1 j 2 i 2 1 1 c 2 1 2  j

2
5 c 2 2 1  j

2 2  i

2
# c 2 2 1 c 2 1

2  .

Edge (i, u 1 j) [ U 3 L has asynchronous cost:

#
u

2
1 j 2 u$k , j;~u 1 k, i! [ Eu1k% u 1 c 2 1 2  j

2
# c 2 1 1  j

2 1
u

2
2  j2

4u
# c 1

j 1 u 2 j2/ 2u

2
.

Writing j as xu gives

j 1 u 2
j2

2u
5 S x 1 1 2

x2

2 Du #
3

2
u,

since x 1 1 2 x2/ 2 assumes its maximum at x 5 1. Hence,

c 1
j 1 u 2 j2/ 2u

2
# c 1

3

4
u .
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Edges in HalfInTurnu (U 3 U) have asynchronous cost at most:

u

2
1 c #

3

2
c.

Finally, edges in L 3 U have cost at most:

c 2 1

2  1 c #
3

2
c. e

Lower bound. The (4 2 2=3)(n 2 1) lower bound on the synchronous case
(Theorem 1) holds a fortiori for the asynchronous case.

4. Randomized Case for Two Agents

For a randomized MS protocol the worst-case expected cost is the worst case, over
all agent locations, of the expected (over the random coin flips) number of
queries. We can use randomization to obtain an algorithm for mutual search with
expected complexity below the proven lower bound for deterministic algorithms,
namely, a cost of n/ 2.

Upper Bound. Algorithm RandomHalfInConcertn uses the same tournament
as HalfInTurnn, but each agent randomizes the order of its queries, and the
querying proceeds “in concert,” in rounds that give every row one turn for their
next query. An example where the random choices have already been made can
be depicted as

0: 2 1
1: 2 3
2: 3 4
3: 0 4
4: 1 0

THEOREM 4. Algorithm RandomHalfInConcertn has a worst-case expected cost
n/2.

PROOF. A worst case occurs when an agent located at node n 2 1 ends up
querying the other agent at node 0 (with the latter already having made a query
in that round). The expected number of queries is twice the number of queries
the agent at n 2 1 makes in a uniformly random order of the sites 0, 1, . . . , 2

n
2 1) ending in, and including, the final successful query to site 0. This is n/ 2 for
n is even and (n 1 1)/ 2 for n is odd. e

Asynchronous Randomized Case. Allowing randomness in the algorithm, a
3n/4 upper bound is obtained by a variation on RandomHalfInConcertn in which
each row is ordered randomly. This appears (but is not proven) to be the best
one can do. The best lower bound we have is the synchronous randomized (n/4)
lower bound below.
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Lower Bound. We prove a lower bound for the synchronous case (and hence
for the asynchronous case). 7

THEOREM 5. For every randomized MS algorithm for two agents on n sites using
a finite number of coin flips the worst-case expected cost is at least n/4.

PROOF. Every mutual search algorithm that uses a private random string can
be converted to a mutual search algorithm using a shared random string by
having an agent at site i use the bits at string positions i (mod n). Thus, for the
lower bound it suffices to analyze algorithms using a shared random string.

Fix a randomized MS algorihm for n sites with k 5 2 agents. We assume that
every agent uses a finite number of coin flips. Let the expected number of
queries be c where the expectation is taken over all placements of two agents on
n sites and over the coin flips. Consider a matrix where the rows are indexed with
the positions of the agents (with the first agent making the successful query) and
the colums are indexed with sequences of shared coin flips. There are (2

n) rows
and a finite number of columns. The matrix entries are the mutual search costs of
the algorithm corresponding to the agents’ positions and the coin flip sequence.
There must be a column, say indexed by coin flip sequence a, such that the
expected number of queries per entry is at most c—otherwise, the expectation
over the entire matrix is greater than c. Given a, the executed mutual search
algorithm is completely deterministic. Consider the tournament corresponding to
this algorithm with a directed edge from i to j weighed with the mutual search
cost ci j. Then, (2

n) c $ (ci, j summed over all edges in the tournament. Let ci be
the number of outgoing edges of node i. The algorithm orders the outgoing
edges of node i in order of querying the nodes at the other sides. Summing i’s
part of the weights on the ongoing edges—that is, the queries made by i
itself— gives ( j51

ci j 5 ci(ci 1 1)/ 2—excluding the queries made by the nodes at
the other ends of outgoing edges. Then, (ci, j $ ( i50

n21 ci(ci 1 1)/ 2. The
right-hand side of the inequality achieves its minimum for all ci equal and we
know (i50

n21 5 (2
n). Hence, the minimum is reached for ci 5 (n 2 1)/2 for all 0 # i #

n 2 1, and (i50
n21 ci(ci 1 1)/2 Ä (i50

n21 ((n 2 1)/2) (n/4) 5 n(2
n)/4. The first and last

expression in this chain of inequalities demonstrate c $ n/4. e

5. Synchronous Case for Many Agents

In the case of k . 2 agents we define the mutual search as before, but now the
two agents involved in a query with an affirmative answer, as well as their nodes,
“merge” into one, sharing all the knowledge they acquired previously. A query of
some node then becomes a query to the equivalence class of that node. In this
view the goal of the problem is to merge all agents into one.8

In the two-agent case, an agent has no input or “knowledge” other than the
index of the site he is located at. In the multi-agent case, we assume a “full

7 Added in Proof: The original manuscript contained a (n 2 1)/8 lower bound obtained by a more
complicated proof. Z. Lotker and B. Patt-Shamir, A note on randomized mutual search, Inf. Process.
Lett., to appear, improved the (original) lower bound to (n 1 1)/3 and have shown that this is sharp
for shared random strings.
8 Of course, there are other possibilities to generalize the Mutual Search problem k . 2 agents, in
terms of how agents that have contacted one another coordinate the remainder of their mutual
search.
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information protocol” where every agent is an equivalence class whose knowl-
edge comprises the complete timed querying and answering history of its
constituent agents. Consequently, algorithms in the new setting have a vast scope
for letting the querying behavior depend on all those details in case k . 2.
Limiting the number of agents in the new setting to two reduces exactly to our
old model.9

We now describe algorithm RSn, k (for “RingSegments”) for k agents. The
algorithm has a cost below n for all k 5 o(=n). Algorithm RSn, k splits the
n-node search space into a “ring” R of k(k 2 1)m nodes and a “left-over” group
L of m nodes. For simplicity of description, we assume that n is of the form
(k(k 2 1) 1 1)m.

The algorithm consists of two phases. During the first phase, agents residing
on the ring engage in a sort of HalfInTurn making (k 2 1)m queries ahead in
the ring. During the second phase, if not all the agents are completely joined yet,
agents query all the leftover nodes. If, in the first phase, one agent queries a
node affirmatively, then the agents merge and the merged agent continues where
the front agent left off, adding up the number of remaining ring queries of both.
The latter ensures that a collection of k9 agents on the ring ends up querying
k9(k 2 1)m of ring nodes, with no node queried twice.

THEOREM 6. Algorithm RSn,k has cost k(k 2 1)m.

PROOF. Let k9 be the number of actual agents residing on the ring. Consider
first the case k9 , k. Then

c~RSn , k! 5 k9~k 2 1!m
Ç

ring queries

1 k9m
Ç

left-over queries

# ~k 2 1!@~k 2 1!m 1 m# 5 ~k 2 1!km.

Otherwise (k9 5 k), the agents find each other around the ring, making (k 2
1)m queries each in the worst case. e

6. Conclusion

The lower and upper bounds for the synchronous deterministic two agent case
leave a small gap. We suspect Lemma 6 of being unnecessarily weak. It is
tempting to try and prove a strengthened version claiming a length of no more
than (c 1 k)/ 2 for the (k 1 1)th shortest row, which would immediately imply
the optimality of SRn. All algorithms we have looked at so far satisfy this
condition. Unfortunately, there exist simple counterexamples, as witnessed by
row distribution —where the upper half engages in a HalfInTurn algorithm
before querying the lower half, which in turn engages in an AllInTurn algorithm
(giving a saturated result). Such algorithms however have lots of relatively short
rows, making them far from optimal. It seems reasonable to expect that an
optimal algorithm has only a constant number of rows shorter than half the cost.
In this light we pose the following conjecture as a lead on optimality of SRn: “Let

9 We refrain from giving complicated formal definitions of a multi-player MS protocol and cost
measure which are not needed for the simple upper bound derived here.
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T be an algorithm for n sites with cost c, such that no row is shorter than c/ 2.
Then, the (k 1 1)st shortest row of T has length at most (c 1 k)/ 2.”

The randomized and asynchronous two-agent cases leave large gaps between
lower bound and upper bound. The multi-agent case is almost completely
unexplored for all models. The same holds for bidirectional asynchronous
algorithms as in footnote 6.

Appendix A. Related Work

A1. Distributed Match-Making

In “distributed match-making,” the set-up is similar to mutual search except that
if an agent at node i queries a node k about an agent residing at node j and the
latter agent has posted its whereabout at node k, then the query to node k
returns j [Mullender and Vitanyi 1988; Kranakis and Vitanyi 1992]. In general it
is assumed that the search is in a structured database in the sense that there have
been an initial set of queries from agents at all nodes to leave traces of their
whereabouts at other nodes. This problem is basic to distributed mutual exclu-
sion [Maekawa 1985] and distributed name server [Mullender and Vitanyi 1988].
The difference is that distributed match-making operates in a cooperative
structured environment while mutual search operates in a noncooperative un-
structured environment. Some of our protocol representation ideas were inspired
by this seminal paper.

A2. Tracking of Mobile Users

Another related search problem is the (on-line) tracking of a mobile user defined
by Awerbuch and Peleg [1989; 1990], where the goal is to access an object that
can change location in the network. The mobile user moves among the nodes of
the network. From time to time two types of requests are invoked at the nodes:
move(i, j) (move the user from node i to node j) and find(i) (do a query from
node i to the current location of the user). The overall goal is to minimize the
communication cost. In contrast, our search problem is symmetric, and the
agents are static.

A3. Distributed Tree Construction

The goal of MS can be thought of as forming a clique among the nodes at which
the agents are located. In this sense, the problem is related to tree construction
problems, such as the (distributed) minimum-weight spanning tree (MST) [Gal-
lager et al. 1983] and Steiner tree [Hakimi 1973]. Besides other differences MS is
concerned with optimizing the process, and not the outcome of the construction.

A4. Conspiracy Start-Up

Another possible application of MS is to secure multi-party computation. Fault-
tolerant distributed computing and secure multi-party computation are con-
cerned with n agents, a fraction (t) of which may be faulty. It is traditionally
assumed [Ben-Or et al. 1988, Lamport 1982] that every faulty agent has complete
knowledge of who and where all faulty agents are, and that they can collude and
act in concert. We would like to weaken this assumption and investigate the
complexity and cost of achieving such a perfect coordination. We consider this
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paper as a first step towards the study of such spontaneous adversaries and
coalition forming. In fact, many test-bed problems (Byzantine agreement [Lam-
port et al. 1982]) and secure multi-party primitives (verifiable secret sharing
[Chor et al. 1985]) are bound to have interesting characterizations and efficient
solutions under this new adversary.

A5. Probabilistic Coalition Formation

Billard and Pasquale [1995] study the effect of communication environments on
the level of knowledge concerning group, or coalition, formation in a distributed
system. The motivation is the potential for improved performance of a group of
agents depending on their ability to utilize shared resources. In this particular
model the agents make randomized decisions regarding with whom to coordi-
nate, and the payoffs are evaluated in different basic structures and amounts of
communication (broadcast, master-slave, etc.). Their work has in turn been
influenced by work on computational ecologies [Huberman and Hogg 1988], and
game theory studies [Maynard-Smith 1982]. In contrast, ours is a search problem
with the goal of minimizing the communication cost of achieving a perfect
coalition.

A6. Search Theory

Finally, MS is also related to search theory and optimal search [Koopman 1956a;
1956b; 1957]. Search theory is generally concerned with locating an object in a
set of n locations, given a “target distribution,” which describes the probability of
the object being at the different locations. In turn, optimal search involves
computing how resources (like search time) can be allocated so as to maximize
the probability of detection. Typically, it is assumed that the target distribution is
known, although more recently this assumption has been relaxed [Zhu and
Oommen 1997]. Besides the multiple agent aspect, the setting of MS is more
adversarial, as we measure worst-case cost.
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