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Abstract Proper privacy protection in RFID systems is
important. However, many of the schemes known are
impractical. Some use hash functions instead of the
more hardware efficient symmetric encryption schemes
as a cryptographic primitive. Others incur a rather large
time penalty at the reader side, because the reader has
to perform a key search over large tag key space. More-
over, they do not allow for dynamic, fine-grained access
control to the tag that cater for more complex usage
scenarios.

In this paper we investigate such scenarios, and pro-
pose a model and corresponding privacy friendly pro-
tocols for efficient and fine-grained management of ac-
cess permissions to tags. In particular we propose an
efficient mutual authentication protocol between a tag
and a reader that achieves a reasonable level of pri-
vacy, using only symmetric key cryptography on the
tag, while not requiring a costly key-search algorithm
at the reader side. Moreover, our protocol is able to re-
cover from stolen readers.

1 Introduction

Radio Frequency Identification (RFID) is a technology
that allows to wirelessly identify and collect data about
a particular physical object from a relatively short dis-
tance (depending on the technology used ranging from
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a few centimeters up to several meters). The data is sto-
red on so-called tags attached to the object, and is col-
lected using so-called readers. RFID tags can be very
small, can be attached invisibly to almost anything, and
can transmit potentially unique identifying information.
Therefore, proper privacy protection within RFID based
systems is of paramount importance [17,23].

Yet RFID is also an enabler for the vision of an Inter-
net-of-Things where the physical and the virtual be-
come interconnected in one single network. This will
spark all kinds of applications beyond our current imag-
ination. Some of these applications may be useful and
beneficial for individuals and society, others may be
potentially very damaging (to our personal liberties, or
otherwise). It would be a waste, however, to abort such
future innovations by mandating the use of a kill-switch
on all RFID tags' that will silence such a tag forever once
itleaves the shop. Such a kill-switch is a very coarse, all-
or-nothing approach to protecting privacy. It would be
far better to develop an approach that allows the user
to have fine grained and dynamic control over who can
access his tags, and when. The research reported on in
this paper takes a step into that direction.

1.1 State of the art

Because of the privacy risk associated with the large
scale use of RFID tags, many proposals exist to provide
a certain level of privacy protection for a particular ap-
plication of RFID. We give a brief overview of the state of
the art, focusing on authentication and access control.

1 As recommended in EC Recommendation (SEC(2009)
585/586) of 12.5.2009 on the implementation of privacy and
data protection principles in applications supported by radio-
frequency identification.



Early proposals use relabelling of tag identifiers [36],
orre-encryption techniques [24, 2, 18] that randomly en-
crypt the identifier from time to time, so that it can
only be recovered by authorised readers, while being
untraceable for others.

Another approach is to implement some form of au-
thentication between tag and reader, and to allow only
authorised tags to retrieve the tag identifier. In a pub-
lic key setting this would be easy, but RFID tags are
generally considered to be too resource poor to accom-
modate for that. Therefore, several identification and
authentication protocols using hash functions or sym-
metric key cryptography have been proposed [41,12].In
particular, Ohkubo, Suzuki, and Kinoshita [32] present
a technique for achieving forward privacy in tags. This
property means that if an attacker compromises a tag,
i.e., learns its current state and its key, she is nonethe-
less unable to identify the previous outputs of the same
tag. In their protocol, a tag has a unique identifier id;,
that is changed every time the tag is queried by a reader.
In fact, when queried for the i-th time, the tag responds
with g(id;) to the reader, and sets id;1 = h(id;) im-
mediately after that. Dimitirou [10] presents a similar
protocol, but that authenticates the tag as well. In both
cases, if all readers are on line, connected with one cen-
tral database, the readers can be synchronised and the
response of a tag can be looked up immediately in the
database. (Note that the database can keep a shadow
copy of id; and hence can precompute the next expec-
ted value g(h(id;)).) If not, or if synchronisation errors
occur, a search over all possible (initial) identifiers (ex-
panding hash chains) is necessary.

In a symmetric key setting the reader cannot know
the identifier of the tag a priori, or obtain the identifier
of the tag at the start of the protocol because of privacy
concerns. One can give all readers and tags the same
symmetric key, but this has the obvious drawback that
once the key of one tag is stolen, the whole system is
corrupted. To increase security, tags can be given sepa-
rate keys, but then the reader must search the right key
to use for a particular tag. This issue is not properly ad-
dressed in Engberg’s paper [12]. It is unclear whether in
that paper tags share a single a key with a group of other
tags, or that each tag has a unique and private access
key it only shares with the reader. The core challenge is
therefore to provide, possibly efficient, trade offs and
solutions for key search and key management. Molnar
and Wagner [30] (see also [11]) propose to arrange keys
in a tree structure, where individual tags are associated
with leaves in the tree, and where each tag contains the
keys on the path from its leaf to the root. In subsequent
work Molnar, Soppera, and Wagner [29] explore ways in
which the sub-trees in their scheme may be associated

with individual tags. They also introduce the concept
of delegation that allows a tag owner to enable another
party to access a tag over some period of time, like for
instance a fixed number of read operations. In another
approach, Avoine, Dysli, and Oechslin [3,5] show how,
similar to the the study of Hellman to breaking sym-
metric keys, a time-memory trade off can be exploited
to make the search for the key to use more efficient. We
note that none of these systems are practical for RFID
systems where millions of tags possess unique secret
keys.

Spiekermann et al. [37] observe that although there
are many protocols and proposals for limiting access
to RFID tags (either by killing them completely or by
requiring the reader to authenticate), few systems have
been proposed that allow effective and fine grained con-
trol and management over access permissions. The RFID
Guardian [35] is a notable exception. The main idea is
to jam all reader to tag communication, except for rea-
der requests that satisfy a pre-defined privacy rule. This
approach has its own shortcomings. For one, it is ex-
tremely hard to ensure that all reader to tag communi-
cation is effectively blocked in all cases. Moreover, tags
themselves are not protected at all, leaving them vul-
nerable when the Guardian is out of range or malfunc-
tioning.

We refer to Juels [23] (and the excellent bibliogra-
phy? maintained by Gildas Avoine) for a much more
extensive survey of proposed solutions, and [26] for a
more formal analysis of the privacy properties actually
achieved by some of the proposed authentication pro-
tocols.

1.2 On the hardware cost of cryptography

We base our work on (relatively) new insights regarding
the amount of hardware required to implement sym-
metric key cryptosystems as compared to hash func-
tions. Traditionally, such hash functions are perceived
to be the most basic (and therefore most efficiently im-
plementable) building blocks, and hence have been used
extensively in protocol designs for RFID. This is wrong.
In fact, the ECRYPT report on light weight cryptogra-
phy [33] states

Current standards and state-of-the-art low power
implementation techniques favor the use of block
ciphers like the AES instead of hash functions

as the cryptographic building blocks for secure

RFID protocols.

2 www.avoine.net/rfid/
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Currently there is an AES-128 design with only 3k4 ga-
tes, which uses 3 uA at 100 kHz and 1.5 Vin 0.35u tech-
nology [28,34,15]. Maximum throughput is 9.9 Mbps
(encryption) or 8.8 Mbps (decryption). A SHA-256 de-
sign [14,15] that also has been targeted specifically for
the low end results in 10k9 gates that has a maximum
throughput of 22.5 Mpbs. Current consumptionis 15.87
UA at 100 kHz and 3.3 V in 0.35u technology. Other
light weight symmetric cipher designs exist as well [8].
The quoted AES design is 3 times as small (and thus
also 3 times cheaper), and consumes less than 10% of
the power needed by the SHA-256 design, and is only
about 2.5 times slower in terms of throughput. We use
these observations to design efficient protocols that in-
corporate tag and reader authentication with session
key establishment and fine grained control and man-
agement over access permissions. Advances in reduc-
ing the hardware cost of implementing public crypto-
graphy have also been made. Current implementations
of (hyper)elliptic curve cryptography require 15,4k ga-
tes, executing one scalar multiplication in 243 ms when
clocked at 323 kHz [13,27]. Still the gate count and the
processing time are much higher than for symmetric
cryptography, making symmetric cryptography the pre-
ferred choice for lower cost tags.

1.3 Our contribution

Our contributionis to propose a model and correspond-
ing protocols that allow fine grained, effective and ef-
ficient control over access permissions for RFID tags,
that respect the privacy of the users. The model is en-
forced by the tags themselves. The protocols use au-
thentication as a basic component, and we propose a
novel combination of (universal) re-encryption [24, 18]
with symmetric cryptography based authentication [22]
to obtain a reasonable level of privacy protection with-
out using public-key cryptography on the tag, and with-
out the need for the reader to start a time consuming
key-search algorithm to find the key to use for authenti-
cation. Although such key-search algorithms are highly
popular in the research community because of their su-
perior privacy properties, we believe they are unreason-
able for large scale applications that may involve mil-
lions of tags (and hence keys). Finally, our protocols
are resistant to stolen reader attacks, using techniques
from [4]. A detailed description of the properties of our
authentication protocol is presented in Sect. 6.

The model is quite loosely based on the "Resurrect-
ing Duckling" paradigm of Anderson and Stajano [39,
38]. Our model is general enough to capture several
RFID use case scenarios, like supply chain management,
ticketing and ambient home intelligence.

The essence of the model is that a potentially dy-
namic system of access permissions is defined. We gen-
eralise the concept of an RFID tag, and view such a tag
as a container of several data objects on which a rea-
der wishes to execute certain functions. Such an object
implements a particular application or service on a tag,
like a customer loyalty program, or a supply chain man-
agement program (where the on-chip object stores the
identity of the physical object to which the tag is at-
tached). This extends the notion of an RFID tag con-
taining just a unique identifier to slightly smarter data
container, resembling the technology used for the new
biometric passports [20]. We believe that in the end,
the idea of only storing a unique identifier on the tag
and storing all relevant data on the physical object at-
tached to the tag in a corresponding data record in a
centralised database is going to prove too limitative in
the future. For example, for privacy reasons it is better
to require physical proximity to read the data on the
tag instead of having that data available in a database
all the time. We refer to Sect. 2 for more examples sup-
porting our model.

Whether the reader is allowed to execute the func-
tion depends on two constraining factors:

1. whether the owner of the on-chip object has given
the reader a permission to execute the particular
function on the particular object, and

2. whether the owner of the tag allows the reader to
access the tag at all.

The protocols (and the observation that the real chal-
lenge in RFID privacy lies in allowing controlled use of
the RFID tag even after the point-of-sale) are inspired
on the work by Engberg [12]. The first constraint is
enforced using specially crafted permissions. The sec-
ond constraint is enforced by the mutual reader-tag
authentication protocol. This research is part of the
PEARL? (Privacy Enhanced Architecture for RFID Labels)
project.

The paper is structured as follows. We first describe
a few distinctive use cases of RFID and their associated
requirements in terms of functionality and privacy. In
Sect. 3 we present our system model. We then show
how our model captures the essence of the use cases,
in Sect. 4. We then continue to implement this model
using data structures (Sect. 5), an authentication and
session key establishment protocol (Sect. 6) and subse-
quent protocols (Sect. 7). We analyse their security in
Sect. 8 and present some conclusions and further re-
search in Sect. 9.

3 www.pearl-project.org
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2 Use cases

This section describes three use-cases or scenarios, each
of which focusing on one or more issues that need to
be addressed by our model. In the next section we lay
down our model, and then analyse how well the model
captures the real life situations sketched in these use
cases.

2.1 Scenario 1 - Supply Chain Management

As our first scenario, we take the supply chain scenario
from [12]. In this scenario, we show the need for a pro-
per definition of tag ownership and the controlled trans-
fer thereof.

In retail, RFID tags are attached to individual prod-
ucts after they have been manufactured for the purpose
of enhancing the supply chain efficiency. Such tags con-
tain an Electronic Product Code (EPC) that not only iden-
tifies the type of product as the more classical bar codes
do, but also includes a number that is unique to the
individual product. This allows retailers to better keep
track of their inventory and counter theft attempts, and
provide better customer service as well.

Often, for privacy reasons, these RFID tags are zap-
ped, killed or removed from products at the point of
sale. This is unfortunate. Many interesting after-sale
services are possible if the tag allows for a more dy-
namic and fine grained control of access to it by its
current owner. For example, it would open the way for
manufacturers and retailers to store post-sale service
data onto the tag such as the production run, date of
sale, warranty data, repair history etc., thus providing
the them with a possibility for providing more efficient
en effective service to the customer.

When a product, such as a TV set, computer, refrig-
erator etc. needs to be repaired at some point in time,
its warranty may be voided if it is not repaired by quali-
fied service organisations. Using the tags as introduced
above, the manufacturer of equipment installs a service
object into the tag associated with each of its products.
In this object, the manufacturer writes all sorts of ser-
vice data that it does not want to disclose to parties
other than qualified service organisations. Then, it pro-
vides read permissions for such service objects only to
accredited service organisations.

Many objects change owner during the course of
their life, consider for example second-hand cars, elec-
tronic equipment, etc. When the objects change owner,
so must the attached tags. But any objects on the tag
(like the service object above) must remain on the tag
and must keep their data (like the repairs performed on
the object).

We can accommodate for this scenario if the follow-
ing requirements are met.

- A party is allowed to communicate with a specific
RFID tag if and only if (a) it is the owner of the tag
or (b)itis explicitly granted permission by the owner
of the tag.

- A party is allowed to access a specific data (object)
on the tag if (a) it owns the data (object) or (b) the
data (object) owner has explicitly enabled that party
to access the data (object) using a specific method.
In other words, access is assigned for individual me-
thod calls on the object.

- A party that owns a tag must be capable of transfer-
ring this ownership to another party, without delet-
ing or changing objects.

Note that a consequence of transferring ownership of a
tag is that the set of parties that were allowed to com-
municate with the tag changes drastically, as only the
owner or a party that has a permission issued by this
owner, may communicate with the tag.

2.2 Scenario 2 - Smart Tickets

Event Services Company (ESC) is large company issuing
an advanced, RFID based, smart event ticketing solu-
tion. With the ESC RFID tag embedded in a wristband,
users can buy tickets for music events on line, flash
them in their wristband, and prove purchase of the tick-
ets at the entry gates of the event. Security is important:
ticket fraud, and especially black market sales are ram-
pant in the ticketing business. Moreover, ESC does not
want free riders to use its ticketing system: only event
organisers with a contract can use it.

Tom owns such a wristband. In fact, the fashion
watch he got for his birthday last year contained such
an ESC tag for free. He regularly buys tickets for soccer
matches and music festivals on line and appreciates the
fast and paper ticket less service. Recently, the gay gym
he visits changed to the ESC service, allowing members
to book specific slots in the gym in advance. Tom sees
this as a huge advantage (the gym can be crowded at un-
predictable times), but is concerned about his privacy:
he would rather not get his visits to the gym and to the
soccer matches get connected. Luckily, ESC was well
aware of these concerns when designing the system,
and instead of storing the tickets on a central server
they are all stored on the ESC tag of the user.

Apart from the requirements from the first scenario,
this adds the following requirements.

- Data related to the physical object is stored on the
tag, and not (necessarily) on a central server.



- Permission to install an object may be restricted de-
pending on the application (in this case: the tag is-
suer).

2.3 Scenario 3 - At the Hospital

In our third scenario, we consider the situation where
a doctor implants a sensor tag into one of its hospital-
ized patients, e.g. by having him swallow a pill contain-
ing this sensor tag. In this scenario, we show the need
for a proper definition of transferal of object owner-
ship. This scenario is inspired by the hospital scenario
from [39].

Consider a patient whose heart condition, respira-
tion and the like need to be monitored, and a high-tech
monitoring device exists that acts like a tag as in the
previous scenario’s. Because of price and the fact that
they are not needed all that often, hospitals own such
devices, and only a modest amount of them.

Whenever a patient’s condition is to be monitored,
its doctor can decide to implant such a device into the
patient, e.g. by having him swallow a pill containing the
device. Within the body, the sensor starts monitoring
the patient’s condition, filling an object that is specific
for the sensor. Doing so, a sensitive amount of personal
data is gathered within the object, and it is part of the
doctor’s job to ensure that privacy is preserved.

Since the doctor uses the sensor, he must have pretty
much full control. However, he must also be able to as-
sign read permission to e.g. nurses. This requires him
to actually own the object. Note that he should not own
the device itself, as this would allow him to (dis)allow
other parties access to other parts of the device as well,
which, if that results in a catastrophe, will put the blame
with the hospital.

We can accommodate for this by adding another re-
quirement

- Aparty that owns an object must be capable of trans-
ferring this ownership to another party.

3 System model

The system model describes the different entities in the
system, their mutual relationships, and the operations
that they can perform on each other.

3.1 Notation

We use k to denote a symmetric key, possibly subscript-

ed to denote its owner, and use s to denote a symmet-
ric session key. We use PK for a public key and sk for

the corresponding private key. Hash functions are de-
noted by h(-). We write & for the exclusive-or operation,
and ; for concatenation of bit strings. {m}y denotes the
encryption of message m with symmetric key k using
some symmetric cipher, typically AES. [m ], denotes a
message authentication code (MAC) for message m de-
rived from a symmetric cipher (for instance CMAC [31,
7]) using key k. Finally, [{m}]x denotes the authenti-
cated encryption of m with key k, for instance by ap-
pending the MAC of the ciphertext [6].

3.2 Tags and readers

A tag t is a piece of hardware that contains data. At
the very minimum, tags store a bit string that can be
read and sometimes written. Usually, tags store several
values that can be grouped together as tuples because
of their logical use. More complex, smart card like tags,
contain ISO 7816 [21] like file structures. We assume
that for the anti-collision protocol random identifiers
are used (or else all bets to achieve some level of privacy
are off).

We assume readers are at least on-line some of the
time to obtain fresh data and keys from the central back
office.

3.2.1 Classes and objects on tags

The system model follows the object oriented (OO) meta-
phor, so that tags are said to contain objects, each of
which is a group of bit strings whose structure is de-
fined by the class that it instantiates. We use o € ¢ to
denote that object o is an instantiation of class c. For
every class, each tag contains at most one instantiat-
ing object. Every class defines a set of methods, each of
which specifies a kind of operation that may take place
on objects that instantiate that class. Simple methods
specify how to read or perhaps write values in a tuple of
a certain type stored on a particular tag. More complex
cases methods might invalidate a ticket on a tag, or in-
crease an electronic purse balance. We write f € ¢ for
a method f that is defined for class c. Every method
is defined in precisely one class. Access to a specific
method is controlled in one of three ways:

- the method can be called iff the tag is not owned,;

- the method can be called if the user has an appro-
priate permission;

- the method can be called by the domain owning the
class.

The OO metaphor can be applied both to the resource
constrained case where a tag contains only an identifier
or a tuple of values, and to the case where complex data
structures are stored on a tag.



3.2.2 The tag management class

Every tag always contains one instance Q of the tag
management class, initially with default settings. The
tag management class implements functions to manage
tag access and ownership. This allows us to implement
tag and class management operations in a similar way
as methods on ordinary objects, thus simplifying the
implementation. Details are provided in Sect. 7.

3.3 Domains and Principals

We use the term domain to refer to a (legal) entity that
is capable of bearing responsibilities. Thus, companies,
organisations and governments are considered to be
domains, as well as individual (adult) persons. We use
the term principal, or actor, to refer to a resource (e.g.
a person, or a running application within a computer)
that is capable of acting on behalf of, c.q. under the re-
sponsibility of, a domain. While a principal d may act on
behalf of different domains over time, and the change
frequency thereof may be very high, we assume that at
any particular point in time d acts on behalf of precisely
one domain D. Note that in case of natural persons, who
can both act as bear responsibility, the common prac-
tice where a single name is used to refer to the person
both as an actor and as a domain, may cause consid-
erable confusion. Thus, if a principal d acts on behalf
of a domain D at a given point in time, then D is re-
sponsible for everything that d does at that time. Since
the domains bear the responsibilities, we have no com-
pelling need to distinguish between the various princi-
pals that may act on behalf of a given domain, and thus
we assume every domain to be inhabited by exactly one
principal. We use D to denote the set of all domains.

3.4 Ownership

We use the term owner(ship) to refer to the responsibil-
ities associated with controlling tags, objects, etc. Since
responsibilities are born by domains, ownership can
only be assigned to domains. Ownership can be trans-
ferred by the owning domain to another (accepting) do-
main.

Thus, the tag owner for a tag t is a domain that
bears the responsibility for controlling access to t, i.e.
for issuing and revoking the associated permissions.
Also, it controls the permissions associated with other
tag related functionality, such as the creation of objects
or the transferal of tag ownership. We use T to denote
a tag owner and 7 to denote the set of tag owners, so

T €T and 7 < D. We write t € T to indicate that tag
t is owned by T.

The class owner is responsible for controlling access
to objects that instantiate this class, i.e. for issuing and
revoking permissions for executing methods defined by
that class. We write ¢ € C to mean that class c is owned
by domain C (i.e. its class owner).

Note that if a class owner C owns a class ¢, then
(initially) it also owns every object o € c. Thus, ob-
ject ownership is (initially) implied by class ownership.
However, ownership of individual objects may be trans-
ferred to other domains later on. If that happens, the
class owner is not necessarily the owner of all objects
of that class.

3.5 Permissions

Every permission, i.e. the right to access a tag or the
right to execute a method on an object, is issued by the
domain that owns the tag or the object. Also, permis-
sions are issued to domains rather than to principals,
because domains can bear responsibilities associated
with using such permissions, which principals cannot.
In our model, a permission that has been issued to a do-
main can be used by any principal that acts under the
responsibility of that domain. Consequently, if misuse
of a permission can be traced back to the domain the
permission was issued to, this domain can be held ac-
countable. It is outside the scope of this paper whether
or not a domain limits the use of permissions that it
has been assigned to a subset of the actors acting on
its behalf, or sanctions misuse thereof.

One of our main contributions is the distinction we
make between accessing (i.e. communicating with) tags
and accessing (i.e. executing methods on) objects on a
tag. A consequence of this distinction is that it requires
two rather than one permission to access an object on
a tag: one permission is needed for accessing the tag
on which the object is stored (which is granted by the
tag owner), and the other permission is required to ex-
ecute the appropriate method on that object (which is
granted by the object owner). Moreover, these permis-
sions are implemented quite differently (as described in
more detail in Sect. 5.3 and 6). The first permission is
checked using a mutual tag-reader authentication pro-
tocol, which verifies that the reader domain occurs in a
list of permitted domains. The second permission is im-
plemented using a permission token that encodes the
permission to access a particular method on an object.
Thus, manipulation of an object on a tag is controlled
both by the tag owner and object owner.



3.6 Operations on a Tag

Operations are performed by actors (readers) acting on
behalf of a domain. Operations can only be performed
when the actor acts on behalf of a domain that has per-
mission to do so. While other operations are certainly
conceivable, we consider only the limited set of basic
operations as specified in Sect. 7.

The most basic operation the model must support
is calling a method on an object of a certain class sto-
red on a particular tag. For this, two permissions are
required: first, the domain must be allowed to access
the tag, and secondly the domain must be allowed to
execute the method on (the class of) the object. Note
that access to a method is initially granted at the class
level. So access rights for a particular method initially
apply to all objects of that class.

The creation of permissions is done off-tag, as is
the distribution thereof*. Tag ownership is controlled
through the following functions:

- TAKETAGOWNERSHIP: Set a specific domain as the
tag’s owner. Can be executed by any domain as long
as the tag is not owned.

- TRANSFERTAGOWNERSHIP: Transfer ownership of
a tag from its tag owner to another domain. Can only
be executed by the owner of the tag.

- RELINQUISHTAGOWNERSHIP: Relinquish ownership
of a tag so that the tag is no longer owned. Can only
be executed by the owner of the tag.

Tag access is controlled through the following func-
tions:

- GRANTTAGACCESS: Allow a specific domain to ac-
cess a tag.

- REVOKETAGACCESS: Disallow a specific domain to
access a tag.

These functions are only executable by the tag owner.
Object management is controlled through the fol-
lowing functions:

- INSTALLOBJECT: Create an object and set the class
key. Can only be executed by the tag owner, or any
domain with a permission issued by the tag owner.

- UPDATEOBJECT: Overwrite the contents and the code
of an object. Can only be executed by the class owner,
or any domain with a permission issued by the class
owner.

- UPDATECLASSKEY: Change the class key associated
with an object. Can only be executed by the class
owner. This function can (also) be used to transfer
ownership of objects.

4 The word ’capability’ might be more appropriate than the
word 'permission’.

- DELETEOBJECT: Destroy an object and its associ-
ated class key. Can only be executed by the class
owner, the tag owner, or any domain with an appro-
priate permission issued by the class owner.

As said before, this paper only describes a basic set of
operations that will allow us to implement the scenar-
ios from Sect. 2. Other operations are certainly possible
and can easily be added to the model and implemented
in a similar fashion as the basic operations.

4 Analysis

The system model from Sect. 3 should allow us to im-
plement a large set of common privacy friendly uses of
RFID technology. To capture these use cases, we sketch-
ed three different scenarios in Sect. 2. We now briefly
verify that our model indeed allows us to implement
these three scenarios. The security and privacy proper-
ties are analysed after we have presented the protocols
that implement the operations - they do not depend on
the model, but on the actual implementation.

4.1 Mapping of Scenario 1

Product tags that comply with our model would be at-
tached to the product when manufactured. For every
product type that a manufacturer M produces, M de-
fines an object class Service that contains data and ac-
cess methods that is relevant to the manufacturer, in-
cluding a.o. production data, production plant, serial
numbers and so on. First, M takes an unowned tag and
takes ownership thereof (executing the tag’s function
TAKETAGOWNERSHIP). Tag owners can then execute
INSTALLOBJECT, which is what M uses to create the
Service object on the tag. For each of the methods on
this object, M creates permissions (see Sect. 5.3) that
M assigns to itself so that it can access all methods it-
self. Note that M only needs to create such permissions
once, as they will be usable on every Service object M
creates.

To accommodate the service-organisation scenario,
all that M needs to do is create a read-permission for
Service objects for every organisation that it has accred-
ited for servicing M’s TV sets, and send this permis-
sion to the appropriate organisation in a secure man-
ner. This way, only accredited organisations (and M)
may read Service objects. Note that service organisa-
tions cannot yet read the Service objects since they do
not have permission to access the tag itself. This is done
later when the consumer becomes the tag owner.

Whenever a retailer R sends M an order for a number
of TV sets, M prepares the delivery. For every tag in this



delivery, M first writes appropriate data into the Service
object so that it says to which retailer it will be deliv-
ered, as well as other information M might later need.
Then, M transfers ownership of the tag to R (TRANSFER-
TAGOWNERSHIP, which means that M no longer is ca-
pable of accessing the Service object because it can no
longer access the tag (see Sect. 7.2 for details). Still, M’s
service object remains on the tag and all permissions
that it has issued to itself and the accredited service or-
ganisations remain valid. Then, M sends some data to R
in a sufficiently secure manner, thus enabling R to gain
ownership of the tags (See Sect. 7.2). While the shipment
is in transit, only M and R can take control of it as they
have the data to regain ownership. For anyone else, the
tag is useless as they cannot communicate with it.

For use in its retail processes, R has already defined
an object class Retail, and like M, R has created and
distributed permissions for Retail objects to itself, and
other domains as necessary. Thus, when R receives the
data that M has sent as well as the shipment, R can
take control of each tag, and create a Retail object on
each of them, filling it with data relevant to R’s retail
process. Note that the tags still contain Service objects,
but R can only access such objects if it has been is-
sued appropriate access permissions, i.e. if R is a ser-
vice organisation that M has accredited. Also note that
R controls whether or not M can access its own ser-
vice object, as M needs tag-access permissions which
R can grant (GRANTTAGACCESS) or deny (e.g. revoke
using REVOKETAGACCESS).

When a customer C buys a TV set, R updates its ser-
vice object and subsequently transfers ownership of the
tag to C. C may subsequently grant R and M access to
the tag, that would allow them to work (only!) with their
own service objects (and objects for which they have
been issued a permission by the corresponding class
owner). Also, C can install a data object of its own on
the tag provided an appropriate class has been defined
and permissions created. Also, C can resell the TV set
to C’ and simply transferownership of the tag to C’.

If Cis notinterested in managing the tag, then R may
safely keep tag ownership as no other domain than R
(and perhaps M) would be able to use the tag, and still
then only using their own data. A more difficult situa-
tion is if C had taken up tag ownership, but sells it to a
party C’ that is not interested in taking tag ownership.
While we think there may be several solutions here, we
leave this case outside the scope of this paper. Thus,
throughout the lifetime of a tag, each owner M, R, or
C has full control over who can use the tag and who
cannot. Also, M, R, or C can install their own data the
confidentiality of which is under their own control.

4.2 Mapping of scenario 2

In this scenario, ESC (Event Services Company) is the
first to take ownership of the tag using TAKETAGOWN-
ERSHIP. Using the default (known) class key of the tag
management object €, it creates a permission to call
UPDATECLASSKEY to set the class key of Q to its own
secret value. This key is used to create permissions for
every event organisation that has a contract with ESC,
to install objects through Q using INSTALLOBJECT.

ESC transfers ownerships to consumers buying ESC
tags using TRANSFERTAGOWNERSHIP. Now users buy-
ing tickets from certain organisations first grant access
to the tag for these organisations through GRANTTA-
GACCESS. These organisations then install their own
ticket object calling INSTALLOBJECT with the relevant
ticket data on the tag. They need permission from ESC
(as described in the previous paragraph) to do so.

4.3 Mapping of Scenario 3

With our model, we can show how in scenario 3 owner-
ship of objects can be transferred between parties.

We start out with a doctor D that works at a hospital
H which has a patient P and a nurse N. H owns a high-
tech monitoring tag (device) T, which contains at least
one object being of the class Tmon which has methods
implementing all sorts of monitoring functions.

When D decides to implant T into P, D becomes re-
sponsible for the use of functions of the Tmon object.
While it is undesirable to transfer ownership of T to D,
it is desirable to transfer ownership of the Tmon object
from H to D because this allows D to control who may
use which function of the Tmon object. Thus, when D
borrows T from H, H transfers ownership of the Tmon
object to D (issuing a permission to D to call UPDATE-
CLASSKEY on Tmon). This immediately makes all ex-
isting permissions obsolete that H has assigned to any
domain for this particular Tmon object. However, such
permissions remain valid for all Tmon objects that H
still owns.

Now, D can issue permissions to the Tmon object,
e.g. to nurse N that nurses the patient.

When P is dismissed from the hospital, T is removed
from P, and ownership of the Tmon objectis returned to
the hospital. This immediately invalidates the permis-
sion that N has for the Tmon object. However, as long as
the validity period of this permission has not expired,
N can still use it to access Tmon objects on other tags
(provided N has access to the tag (which is controlled
by the hospital) and the Tmon object is owned by D.



5 Data structures

In this section we describe the data structures stored
by the tags, and the keys and permissions used by the
domains to access the data on a tag. In the next section
we describe the implementations of the operations that
can be performed on a tag.

5.1 Keys

To implement permissions, the system uses the the fol-
lowing types of keys. Some keys (the domain key pairs
PKp, skp) are asymmetric keys, the other keys are sym-
metric keys.

Tag access keys k,. Access to tags is controlled using
tag access keys k;. These keys are unique to a tag,
and derived from the tag identifier t using a mas-
ter access key k4 through key diversification [1] by
ka = {t}kA-

Master access keys k4. Each domain has a master access
key k4. Readers in a domain use this master access
key k4 to derive tag access keys from tag identifiers.
Each tag thus stores, for each domain that is allowed
to access it, a different tag access key.

Domain key pairs PKp, skp. Each domain keeps a uni-
que ElGamal public/private domain key pair PKp,
skp. These keys are used in the authentication pro-
tocol to preserve privacy of the tag identifier t. To
thwart stolen reader attacks, readers get a new pair
of keys every once in a while. These keys are stored
in the array E[].

Class keys k.. For each class there exists a unique class
key k.. The class key is used to encode access per-
missions to the class methods. A tag stores, for each
object, the corresponding class key to verify such
permissions. Class owners know all the class keys of
the classes they own. Changing the class key of an
individual object can be utilised to transfer owner-
ship of that particular object. Conceptually, how-
ever, this makes the object member of another class
(albeit with the same structure and methods as the
class it originally was a member of).

5.2 Other data stored on the tag

A tag t also performs a bit of bookkeeping. Firstly, it
records a time stamp now; that approximates the cur-
rent date and time (see below), initially —o. Tags also
store several objects, each of a class ¢ together with the

key® k.. Also, a tag t keeps an access set A; that stores,
for each domain D that is granted access to the tag, the
following three items.

- An encrypted tag identifier id, equal to the ElGamal
encryption (t - PKp, g*) of the tag identifier t.

- The epoch e in which the encrypted tag identifier
was created (for explanation see Sect. 6).

- The diversified tag access key k,, which equals {}x,
for the master key k4 used by domain D.

- Aboolean flag indicating whether this domain is the
owner of the tag.

We interpret the access set as a dictionary indexed by
domains (as a domain can have at most one such tuple
in the access set), and write A;[D] = (id, kg, b). There
is at most one domain that is the owner of the tag. We
write owner; for that domain (which equals L if the tag
is not owned by a domain). Initially, A; = &.

Finally, the tag stores the current session key s, which
initially and in between sessions equals a default value
(denoted L, but which actually is a valid key), and which
is set to a certain value as the result of a successful
mutual authentication (in which case the authenticated
reader holds the same session key). It also stores the do-
main of the reader that was authenticated in I' (which
equals L in between sessions).

We usually omit the subscript from now, owner and
A.

5.3 Permissions

To grant a domain D access to a method f on an object
of class ¢ up to time A, the class owner C generates a
permission token

kC,f,D,A = {le!A}kC

and sends this to the domain D. This permission token
expires as soon as the current time exceeds A. Tags use
now as their estimate of the current time to verify this.
This is updated after each successful call of a method
on the tag (which includes the current time as asserted
by the caller). It is also set to the current time when
the first domain takes ownership of the tag. A similar
method is also used by the European RFID passports [9,
20].

> This is a weakness that seems to be unavoidable: the owner
of the tag can in principle recover the class key; the install pro-
cedure should ensure that the key cannot be captured in transit.
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6 Mutual authentication and establishing a session
key

A basic step underlying the protocols that implement
the operations that access a tag, is to mutually authen-
ticate a tag and a reader, and to establish a session key
among them®.

Below we present a protocol that is efficient for both
the reader and the tag. In principle it combines ele-
ments of three different known authentication proto-
cols to strike a balance between tag and reader effi-
ciency, achieve a robustness against a reasonably large
class of adversaries, and achieve a certain level of pri-
vacy as well. In fact it combines a standard, ISO/IEC
9798-2 [22] based symmetric key authentication proto-
col, with (universal) re-encryption [24,18] to avoid the
costly key search, and a counter based approach to in-
validate keys from stolen readers [4]. To further en-
hance privacy, users may perform a separate re-encryp-
tion of all identifiers on a tag at any time.

To be precise, the protocol achieves the following
properties

mutual authentication The reader and the tag are mutu-
ally authenticated.

soft privacy Tags can only be traced in between two suc-
cessful re-encryptions (including the re-encryption
performed during an authentication). Except for the
reader performing the re-encryption, no other rea-
der or eavesdropper can link the presence of the tag
after the re-encryption with an observation of this
tag before the re-encryption.

owner-controlled privacy Tag owners can re-encrypt all
tag identifiers for all domains at any time on the
tags they own.

resilience to tag compromise Tags do not contain global
secrets. Hence a tag compromise does not affect any
other tags in the system.

resilience to reader compromise Stolen readers (or oth-
erwise compromised readers) will not be able to re-
cognise or access tags, once those tags have been
in contact with another valid reader after the com-
promise [4]. A similar property is achieved by the
European biometric passports [9,20].

reader efficiency The reader performs a constant num-
ber of operations.

6 Actually, from a privacy perspective, we are only interested
in authenticating the reader. Only after the reader is proven au-
thentic, and has permission to access the tag, the tag has to iden-
tify and authenticate itself. However, since we are unable to use
public key cryptography on the tag, and we do not wish to store
global shared secrets on the tag, we are left with using key diver-
sification based on the identity of the tag. Hence authenticating
the reader as well as the tag simultaneously seems to be the only
way forward.

tag efficiency The tag performs only a constant number
of symmetric key cryptography operations.

The protocol we present below explicitly checks the
correctness of the responses, that may contain addi-
tional information for that purpose, to positively au-
thenticate the other party. Another option is to rely on
implicit authentication through the session key that is
established as well: if the authentication fails, both par-
ties will have different values for the session key, and
therefore subsequent protocol steps will fail.

Note that in the description of the protocols we do
not explicitly describe the behaviour of a principal if
it detects such an error. Instead we use the convention
that if an internal check fails, the principal continues to
send the expected messages at the appropriate times,
with the appropriate message format, but with random
message content. This is necessary to preserve privacy,
as observed by Juels et al. [25,26].

Our protocol (see Fig. 1) is an extension of the the
ISO/IEC 9798-2 [22] standard, using diversified keys [1]
to avoid sharing keys over many tags’. The tag stores
such a diversified tag access key k;, that corresponds to
{t}k,- To compute this diversified key from the master
access key k4 it stores, the reader needs to learn the tag
identifier t. This cannot be sent in the clear for privacy
reasons. The solution is to encrypt the tag identifier t
against the public key of the reader to obtain id, and let
the reader re-encrypt [24] that value with every authen-
tication run. This way the tag does not have to perform
any public key operations. Note that the re-encrypted
value is only used as the new tag identifier after a suc-
cessful authentication of the reader. This avoids denial-
of-service attacks. Finally, the re-encryption keys stored
by the readers are updated every time a reader is stolen.
Every time this happens, a new epoch is started. Stolen
readers no longer receive keys for future epochs. Tags
that authenticate successfully, receive a new encrypted
identity, encrypted against the most recent epoch key.
This makes it impossible for compromised readers to
track this tag.

Note that corrupt readers can update the tag identi-
fier to an arbitrary value. If that value is not recognised
as a tag identifier by a genuine reader in a next authen-
tication run, this reader will send random data to the
tag. The tag will detect this and set A[D] := L. The
tag will then stop responding to requests from this do-
main. Without this countermeasure, the arbitrary value
for the identifier would never change and the tag would
be traceable forever.

7 The first encrypted message is also protected by a MAC, be-
cause the contents of the message should not malleable while
keeping the response to the challenge intact. This is not guaran-
teed if one only encrypts the message, e.g., in ECB mode.
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Reader d € D

input: epoch keys E[],
access key kx
current epoch €

Tag t

state: access set A[],
current datetime estimate now

state: ¢ is current datetime b D’
(id, e, ki, b) := A[D']
(u,v), (y,2)),e,r’ idieir generate random r
verify e’ < €
(skp,PKp) := E[e'] ; verify y/zsk» = 1
t' = u/vsko
(skp,PKp) = El€]
generate random X, x’
u' =1t - PKjy mod p
v’ :=g¥ modp
y' = PK} mod p
z':=g¥ mod p
id = (w,v),(,z))
ka = {t"}k,
. [{id' ;e 30635} ka .
generate session key s and random g —  decrypt using
k., into id",e",v",q',8',s’
A[D']:= L
verify ¥ = "’ and now < ¢’
now := 68" ; A[D'] := (id",e" k., b)
a3y,

decrypt using k, into g, §’
verify g = q”’
return (s @ §',t")

Fig. 1 Authentication and session key agreement.

The protocol can be extended using ideas from Hoep-
man et al. [19] by storing so called authentication credit
on the readers, that cannot be used to generate valid au-
thentication responses. This way, readers do not need
to store master keys, and therefore need to be less trust-
ed, or can be operated in less trusted environments.

At the reader side the protocol returns the tag iden-
tifier and the session key to be used. For a call to such
an authentication protocol run in the protocols below
we write AuthenticateR(skp, PKp,ka4). At the tag side,
the protocol returns the session key, as well as the au-
thenticated domain. We write AuthenticateT () for this
call.

6.1 Re-encryption

The protocol uses re-encryption, or rather universal re-
encryption [ 18], as follows. We use the ElGamal encryp-
tion scheme [16] over a cyclic group G of order g. To
be concrete, and to achieve semantic security [40], we
choose two primes p and g such that g||(p — 1) (i.e,, g
is a divisor of (p — 1)) and choose as G the cyclic sub-
group of Z, with order g, and pick a generator g for G.
These are global, system wide, constants.

Each domain has, for each epoch, its own public/pri-
vate key pair (PKp, skp) where skp is a random integer

generate session key §

return (s’ & §,D")

between 1 and g — 1, and PKp = gSkD. The tag identifier
t is encrypted, using ElGamal, as

(u,v) = (t - PKp,9%) ,

where x is a random value in [0,q — 1]. To allow re-
encryption by readers that do not know the correspond-
ing private key, each tag stores with each encrypted tag
identifier a corresponding re-encryption factor

(v,z) = (PK¥ , g,

where x’ is a new random value in [0, g — 1]. Note that
this is basically an encryption of the value 1 against
the same key. Because ElGamal enjoys the homomor-
phic property that the multiplication of the encryption
of two ciphertexts equals the encryption of the multi-
plication of the corresponding plaintexts, we see that
(uy,vz) in fact equals the encryption of tag identifier
t. The encrypted identifier now becomes

id = ((u,v),(y,2)) .

Readers store the key pairs for the epochs in an ar-
ray E[], storing the keys for epoch e at E[e]. This array
is filled with epoch keys up to and including the current
epoch €, and grows in size over time.
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To re-encrypt, a reader that knows the correspond-
ing, most recent public epoch key PKp does the follow-
ing. It generates new random values a and a’ in [0, g—1]
and computes

(u',v") = (t - PK{, g%
and

(v',2') = (PK ,g*)
and sends

id = ((w',v),(,2))

to the tag. Readers that do not know the current epoch
key can use the re-encryption factor to compute a new
encrypted identifier as follows. Again two random fac-
tors a and a’ in [0,q — 1] are generated, and then the
reader computes

(u',v')=u-yHv-z%
and

', 2) = (", 2%)

and again sends

id = (', v),(,2))

to the tag.

Requests to re-encrypt other encrypted tag identi-
fiers can be issued by authorised readers to the tag man-
agement object, see Sect. 7.4. Typically, readers that are
owned and operated by a tag owner will have the per-
mission to perform such re-encryptions. This way, own-
ers of tags have control over how easily their tags can
be traced. Without universal re-encryption, only readers
knowing the public key of the domain can re-encrypt.
If a tag is hardly ever accessed by such a reader (con-
sider for example a supply chain tag attached to a piece
of clothing that is never accessed again after the point
of sale), such a tag is principle unlimitedly traceable.
By frequently re-encrypting their tags, users can make
such tags much less traceable.

To decrypt, one simply verifies that y/z5*> = 1 and
computes u /v using the appropriate epoch key sto-
red in E[]. To avoid the need to search for the right key,
the tag sends, together with is encrypted identifier, the
epoch in which it was last updated?.

8 This impacts privacy, in particular it allows one to trace tags
that are infrequently used and hence broadcast old epoch num-
bers. However, in the current protocol that is not a separate con-
cern, as the same tag will broadcast the same encrypted tag iden-
tifier until it is successfully updated (in which instance its epoch
will be set to the most recent epoch, which contains a large num-
ber of tags).

6.2 Alternative approaches

In the course of developing the above algorithm, we
have considered various alternatives. The main draw-
back of the above protocol is that tags are traceable
in between re-encryptions. Every malicious reader that
claims to be from domain D will receive the current
encryption of the identifier. This can be solved in two
ways, both incurring another, more severe, drawback.

The first option is to let the tag (instead of the rea-
der) do the re-encryption each time it is queried by a
reader. Then the tag is no longer dependent on a rea-
der to provide it with a proper re-encryption, and mali-
cious readers no longer pose a threat. But this requires
that the tag is capable of performing modular exponen-
tiation at reasonable speed. This is out of scope for
low cost tags. Moreover, if the tag can do that, then
one might as well use an authentication protocol us-
ing asymmetric cryptography. Such a protocol would
be much simpler than our current proposal.

The second option is to stop responding to requests
from domain D after a fixed number of times, unless
one such request was a full run of the authentication
protocol that updated the current encryption of the
identifier. This limits the time a tag can be traced, but
makes the system vulnerable to denial of service at-
tacks.

Finally, we considered another approach where the
tag would randomly encrypt its tag identifier to a sym-
metric domain key kp, sending

r, they

to the reader at the start of the authentication proto-
col’. By including the random ¥, the whole message is
randomised, and tags become untraceable. However, kp
is stored on all tags accessible by domain D. Because
tags are not tamper proof, this key is not protected and
will become known after some time. From that time on,
these tags become traceable and privacy is lost.

7 Protocols

Below we will describe protocols that implement the
operations from Sect. 3.6. We take a rather generic ap-
proach. Instead of implementing special protocols for
each of these operations, we in fact model all these

9 This message should not be encrypted in ECB mode, but in
CBC mode (if the nonce and the tag identifier together do not
fit inside a single block). The point is that the random value »
preceding the tag identifier should randomise the encryption of
the whole message, in particular the encryption of t, to preserve
the privacy of the tag.
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operations either as calls on normal objects (DELETE-
OBJECT and UPDATEOBJECT), or as special methods
of the tag management object Q (all other operations).
That is, we present pseudocode for the body of each
of these operations as if they were methods of a cer-
tain object, operating on the state of the object and or
operating on the state of the tag.

This way, the only ’protocol’ that we need to de-
scribe now is how to securely call a method on an object
stored on a tag. In fact, this protocol is split in three
sub-protocols. The first sets up a session and a shared
session key, the second securely calls the method using
the session key to secure the channel and using permis-
sion tokens to verify the legitimacy of the request, and
the third closes the session.

Note (cf. Sect. 6) again that we do not explicitly de-
scribe the behaviour of a principal if it detects an error.

7.1 Calling a method

To call amethod f on an class ¢, the reader d belonging
to domain D and the tag t first set up a session using the
protocol in Fig. 2. This is nothing more than starting the
authentication protocol from Fig. 1. If this is successful,
the reader and the tag share the same session key. Both
initialise their message sequence counter (m and n) to
0.

The actual method call follows the protocol in Fig. 4.
This protocol can be executed several times in a row, to
execute several methods within a single session. Each
message includes the current value of the message coun-
ter, and each message is encrypted and MAC-ed with
the session key. The message counters are incremented
with every subsequent message within a session. The
receiver verifies the included message counter to pre-
vent replay attacks.

For each method call, the reader sends the corre-
sponding permission token, which is verified by the tag
using the class key k. of the class whose method is
called. It also verifies whether the permission token is
still valid, using its own estimate of the current time
now, and whether the permission token is bound to the
domain that was authenticated in the first phase. Then
the reader sends the method call parameters, and the
tag responds with the method result. If the method is
supposed to return no result, a random value is sent
instead. Note that the method is called with the name
of the calling domain as the first parameter.

To call a method on an object for which no permis-
sion tokens are necessary (which is the case for some of
the methods of the tag management object, see below),
basically the same protocol is used. In this case how-

Reader d € D Tag t
input: keys k4, E[]
epoch €
(s',t') := (s,I) :=
AuthenticateR(E[],ka,€) <  AuthenticateT ()
n:=0 m:=0
Fig. 2 Setting up a session.
Reader d € D Tagt

session key s’ session key s

_ listop}ly decrypt and verify using s

si=1
Ii=1

Fig. 3 Closing a session.

ever, the caller does not have to send a permission to-
ken, and the tag only verifies that the requested method
on that object is indeed callable without permission.

Finally, to close a session, the protocol in Fig. 3 is
executed.

7.2 Tag ownership functions

The following methods on the tag management object Q
implement transfer of ownership. To relinquish owner-
ship of a tag, the tag owner can execute the following
method.

RELINQUISHTAGOWNERSHIP(caller) :
verify owner = caller ;
A := @ (hence owner = 1)10;
si= 1.

The functionality of RELINQUISHTAGOWNERSHIP may
be extended to include the deletion of all objects (other
than the tag management object), and the resetting of
information in the tag management object.

To become the owner of an unowned tag, a domain
calls the following method

TAKETAGOWNERSHIP(caller, D, id, k,) :
verify owner = 1 ;
A[D] := (id, kg4, true) ;

where the caller of TAKETAGOWNERSHIP from domain
D has received the tag identifier t out-of-band. He then
generates a random Xx, computes id = (u,v) = (t -
PK35,g%) and computes k, = {t}k, using its own mas-
ter access key k4, before calling the method. Note that

10 If so desired, resetting of A can be skipped. However, in that
case the owner flag for I must be reset.
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Reader d € D

session key s’
permission token k¢ 7 pa
counter n

p = kc,f,D,A

[{n+1;parameters} ],

[{n;e; f30;p} s

Tag t

session key s
calling domain I'
counter m

decrypt and verify using s
inton’,c’, f',A,p’
verify now < A’

verify n’ = m

look up object of class ¢’
and keep k

verify p” = {f",T, A"},

decrypt and verify using s’

intom’,r
verify m’ =n + 2
n:=n+3

[{m+2;result}]

decrypt and verify using s into n’, x
verify n” =m + 1

execute f (T, x)

m:=m+3

Fig. 4 Calling method f on class ¢ using permission token k. r p a valid until A.

this protocol is susceptible to hijacking and eavesdrop-
ping on the new owner’s access key, if the default ses-
sion key 1 is used (which is the case when the tag has
no owner).

To transfer ownership of tag t from tag owner T
to domain T’, a new entry for the new tag owner must
be set in A with a new encrypted tag identifier and a
new diversified access key (and in fact all other entries
in the access set need to be deleted). The tag identifier
does not change. This process is in fact a three party
protocol that is implemented by two method calls. The
first runs as follows.

TRANSFERTAGOWNERSHIP(caller) :
verify owner = caller ;
A := & (hence owner = 1) ;

Note that this function can only be executed in sessions
of the authentic(ated) tag owner. After execution of this
function, the session is not terminated (i.e. the session
key is not reset). While in this state, the tag is shipped to
the new owner T’ and the values of the tag identifier id,
the session key s and the message counter n are sent
to T’ out of band. Then, T’ calls TAKETAGOWNERSHIP
(without prior authenticating and hence starting a new
session!), thus becoming the new tag owner (preferably
when the old owner is out of reach so it cannot eaves-
drop on the new values sent to the tag).

We note that the above described method might pose
problems for domains that need to take ownership for
many tags, as e.g. electronics manufacturers or retail-
ers may do (see Scenario 1). They would face a practi-
cal problem of how to determine which tag would be
associated to which tag identifier and which session
key to use, which could easily become an adminstra-
tive nightmare. Also, it would be more in line with An-
derson’s Duckling protocol [39,38] if anyone can just

take ownership of an unowned tag without any other
knowledge. For unowned (and unowned only) tags one
could enable a method that returns the unencrypted tag
identifier. To transfer the ownership of many tags us-
ing a single session key, one could extend the method
TRANSFERTAGOWNERSHIP with an additional parame-
ter s to set the session key on the tag to a fixed value.

7.3 Granting access to a domain

To grant a domain D access to a tag t, its access set
entry A;[D] needs to be set with a new encrypted tag
identifier and a new diversified access key. This process
is again a three party protocol that is implemented by
two method calls. None of these methods require addi-
tional permission tokens to be executed. The first me-
thod called (by the tag owner) is

GRANTTAGACCESS(caller,D) :
verify owner = caller ;
A[D]:= L;

The tag identifier, the value of the session key as well
as the value of the message counter n are sent to the
domain D out of band. He subsequently calls (not au-
thenticating and starting a new session!)

ACCEPTTAGACCESS(caller,D,id, k;) :
verify A[D] = L ;
A[D] := (id, kg, false) ;

computing id = (u,v) = (t - PK§5,g%) and kg = {t}k,
as in the case of TAKETAGOWNERSHIP. Note that the
remarks made for TAKETAGOWNERSHIP with respect
to the need to communicate the tag identifier, apply
here equally well. Also, an improvement to these func-
tions can be made if it would not be necessary to have
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a pending session in between the calling of GRANTTA-
GACCESS and ACCEPTTAGACCESS as a refusal to exe-
cute ACCEPTTAGACCESS would constitute a denial of
service.

REVOKETAGACCESS(caller,D)
verify owner = D ;
A[D]:= 1;

7.4 Re-encrypt identifiers

The following two functions allow a reader to re-encrypt
all encrypted tag identifiers stored in A. First the rea-
der retrieves the current encrypted tag identifiers in an
array through the following method.

REENCRYPTGETIDS(caller) :
verify owner = caller ;
return a list of all encrypted tag identifiers in A ;

The reader then computes the re-encryption of each of
the entries in A as described in Sect. 6.1, creating a new
array R. Finally, to upload the new entries to the tag, it
calls the following method.

REENCRYPTPUTIDS(caller,R) :
verify owner = caller ;
store each entry in R in the corresponding location
inA;
Both methods can only be called by the tag owner. Al-
ternatively, one could require that the caller owns a per-
mission token to call the method.

7.5 Managing objects

Managing an object involves the creation, deletion or
update of the object on a particular tag t. These are
handled by the following methods.

To install an object, one needs to call the following
method on the object manager object Q. Depending on
requirements, one may decide that further permission
tokens are necessary, or instead require a specific per-
mission token from the tag management object .

INSTALLOBJECT (caller,i,0,k) :
verify owner = caller ;
verify that object with name i does not exist on the
tag yet ;
create a new object o with name i with class key k ;

To update or delete an object, one needs to call one of
the following methods on the object to be updated or
deleted. Additional permission tokens from that object
may be required. Only the owner of a tag can delete an
object.

UPDATEOBJECT (caller,i,0) :

update object with name i to o ;
UPDATECLASSKEY(caller,i, k) :

update the class key of object with name i to k ;
DELETEOBJECT (caller, i) :

verify owner = caller ;

verify i += Q ;

delete the object with name i ;

Note that by implementing object management this
way, objects can only be managed by domains that

- have access to the tag because they are a member
of its access set A, and

- have the correct permission token for the tag man-
agement object ), issued using its class key kq.

Note that the tag management object itself can also be
updated this way (and in particular its key), but cannot
be removed or created. When tags are created, a default
tag management object is present on the tag.

Also note that neither the tag owner nor the owner
of the tag management object is capable of removing
objects that they do not own, or do not have a delete
permission for. In order to prevent tags becoming un-
usable because of the multitude of objects installed on
it, one might consider to extend the functionality of
RELINQUISHTAGOWNERSHIP to include the deletion of
every object (except, of course, the tag management ob-
ject) on the tag.

8 Security analysis

We first give a security analysis of the authentication
protocol from Sect. 6 against the most important se-
curity properties mentioned in that section. We then
analyse the security of the method invocation protocol
from Sect. 7.1.

The adversary we consider has full control over the
communication medium: he can block, intercept, dupli-
cate, modify and fabricate arbitrary messages. He can,
however, not create valid MACs for messages if he does
not know the key, and cannot encrypt or decrypt mes-
sages for which he does not know the symmetric key.
The adversary can corrupt arbitrary tags and hence can
know their full state including any keys they store. The
adversary can also corrupt arbitrary readers. However,
such readers are known to be corrupted and the system
is notified of any such corruption.

Let y be the security parameter (implicitly defined
by the size of G (see 6.1) and the choice of the size of
the symmetric keys).

We first prove the security of the authentication pro-
tocol.
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Lemma 1 Let a reader from domain D call the function
AuthenticateR(skp,PKp, ka) which returns (o,t’). Let
tag t call AuthenticateT () which returns (o’,D"). Then
o=0"onlyift =t and D = D'. No other entity not in
domain D knows o.

Proof Consider the protocol in Fig. 1. Suppose o = (s @
§') = (s" @ 5) = 0’. Then the reader accepted the mes-
sage {q’;5}y,. Hence k, = {t"}x, as computed by the
reader equals k. As k/, is retrieved from A[D’] and k4
is only known to D this proves D = D’

Similarly the tag must have accepted the message
{id'; €;7'; q; 6; s}k, using its own key k/,. Again for k, =
{t'}x, we must have k;, = k,. Because only ¢ holds k,; =
{t}x, we must have t = t".

To know o one needs to know both s and 5. This re-
quires one to know k. Clearly t knows this. Otherwise,
it requires one to know k4 (and t). This is only known
to members of D. This proofs the final statement of the
lemma. O

Privacy after authentication or full re-encryption is
guaranteed by the following lemma.

Lemma 2 Let t be a tag, whose tag identifier t for do-
main D gets re-encrypted from id to id’ (either by au-
thentication or by a full re-encryption). Let id”’ be the
encrypted tag identifier for domain D of an arbitrary
tag t’ + t. Then there exists no adversary (that has no
access to the private keys of domain D) with resources
polynomially bounded in y that can decide whether id’
and id” orid’ and id are encrypted tag identifiers of the
same tag.

Proof In [18] it is shown that, given our use of ElGamal
over our choice of group G, there does not exist an ad-
versary with resources polynomially bounded in y that
can properly match the re-encryptions of two cipher-
texts with the original input ciphertexts. The adversary
linking either id or id” with id" would trivially solve this
problem too, and hence cannot exist either. 0O

Resilience to reader compromise is shown by the
following lemma.

Lemma 3 A reader from domain D reported stolen in
epoch e cannot decide whether two tags that have suc-
cessfully authenticated with an unstolen reader from do-
main D in epoch e’ > e corresponds with a tag observed
before that authentication.

Proof At the start of epoch e’, we have € = ¢’, and all
readers in domain D that are not reported stolen receive
new epoch keys (skp’, PK})) that are stored in E[€]. If a
tag authenticates with this reader, according to the pro-
tocol, it receives a new encrypted identifier encrypted

with the keys (skp’, PK},). Let two tags meet such a rea-
der, obtaining encrypted tag identifiers id), and id), in
exchange for their old identifiers id,; and idy. If subse-
quently these tags meet a reader from domain D that
was reported stolen in epoch e < ¢e’, this reader does
not own the key pair (skp’, PK},) and hence cannot de-
crypt id), or id),. Therefore, by Lemma 2, the reader can-
not link the previous encrypted identifiers id,; and id).
O

Finally, we show security of the method invocation
protocol.

Lemma 4 A tag t only executes a method f of class c
with class key k. if a reader in domain D with

- A([D] # L when it starts the session, and
- permissiontokenke ypa = {f,D, Ak, withA > now,
(When the permission is verified)

issued the command to the execute this method in the
session it started. Moreover, the tag will do so at most
once.

Proof Checking the protocol, we see that a tag t exe-
cutes method f on class ¢ with class key k. when

- it receives a message correctly encrypted and mac-
ed with its session key s, containing the parameters
and the expected message counter m+ 1, and before
that

- hasreceived amessage correctly encrypted and mac-
ed with its session key s, containing f, ¢, A and a
permission token k. rpa = {f,D,A}r. with A >
now;, and the expected message counter m.

The authentication protocol guarantees (see Lemma 1)
that only if D is a member of A; when starting a ses-
sion, the reader and the tag share the same session
key s. Therefore, in the current session the tag only ac-
cepts messages constructed by such areader in domain
D. This proves that it must have issued the command
to the execute this method in the session it started,
and also that it held the appropriate permission to-
ken. Moreover, due to the use of message counters, the
current session only accepts a particular message en-
crypted for this session at most once. This proofs the
final statement of the lemma. 0O

9 Concluding remarks and further research
We have presented a model for a fine grained and dy-

namic management of access permissions to RFID tags,
and we have presented privacy friendly protocols effi-

ciently implementing this model. This efficiency is achieved

by avoiding a costly key search algorithm at the reader
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side. The price to pay is a little less privacy: tags can
be traced in between successful authentications by le-
gitimate readers. However, this is mitigated quite effec-
tively by giving tag owners the possibility to re-encrypt
tag identifiers at any point in time.

Although the model accommodates a multitude of
use cases, in the course of this research we have iden-
tified several capabilities that our current implementa-
tion lacks.

- Access to tags and objects is bound to specific do-
mains. A domain with certain permissions cannot
delegate them to another domain. Instead new per-
missions have to be requested from the tag owner
and the class owner.

- Although access to a tag can be revoked instanta-
neously, permission tokens to access objects can-
not be revoked (although their validity can be con-
strained by using short validity periods).

- Another approach to limit validity of permissions is
to issue one-time only permission tokens that can
be used exactly once to call a particular method on
an object.

- Domains are granted access to specific tags one by
one by the respective tag owners. Permission to-
kens to call a method on an object are however not
tag specific (unless each object of the same class is
given a separate class (or rather object) key.

- The distinction between a permission to access a
tag and a permission to call a method on an object
is confusing and perhaps unfortunate. This distinc-
tion arises from two factors. First, access to a tag
is issued by the current owner, and is maintained
on the tag to allow immediate revocation of access.
Moreover, the privacy friendly authentication pro-
tocol needs to know which domains have access to
the tag - hence tag related access control decisions
are taken at a lower layer than object related access
control decisions.

- Finally, to re-encrypt an identifier, one needs to own
the corresponding access key. This severely limits
the options for owners to re-encrypt their tags. On
the other hand, not requiring such an access key
puts tags wide open to denial-of-service attacks that
feed them with bogus identifiers.

Further research is necessary to see whether these capa-
bilities are truly necessary in real-life applications, and,
if so, how these capabilities can be added efficiently. We
welcome discussion and feedback on these issues.
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