
Preprint
Id: sensorpets.tex 52 2010-02-25 14:02:07Z jhh

Practical Schemes For

Privacy & Security Enhanced RFID

Jaap-Henk Hoepman · Rieks Joosten

February 25, 2010

Abstract Proper privacy protection in RFID systems is

important. However, many of the schemes known are

impractical. Some use hash functions instead of the

more hardware efficient symmetric encryption schemes

as a cryptographic primitive. Others incur a rather large

time penalty at the reader side, because the reader has

to perform a key search over large tag key space. More-

over, they do not allow for dynamic, fine-grained access

control to the tag that cater for more complex usage

scenarios.

In this paper we investigate such scenarios, and pro-

pose a model and corresponding privacy friendly pro-

tocols for efficient and fine-grained management of ac-

cess permissions to tags. In particular we propose an

efficient mutual authentication protocol between a tag

and a reader that achieves a reasonable level of pri-

vacy, using only symmetric key cryptography on the

tag, while not requiring a costly key-search algorithm

at the reader side. Moreover, our protocol is able to re-

cover from stolen readers.

1 Introduction

Radio Frequency Identification (RFID) is a technology

that allows to wirelessly identify and collect data about

a particular physical object from a relatively short dis-

tance (depending on the technology used ranging from

Jaap-Henk Hoepman

TNO Information and Communication Technology, E-mail:

jaap-henk.hoepman@tno.nl, and Institute for Computing and

Information Sciences, Radboud University Nijmegen, E-mail:

jhh@cs.ru.nl

Rieks Joosten

TNO Information and Communication Technology E-mail:

rieks.joosten@tno.nl

a few centimeters up to several meters). The data is sto-

red on so-called tags attached to the object, and is col-

lected using so-called readers. RFID tags can be very

small, can be attached invisibly to almost anything, and

can transmit potentially unique identifying information.

Therefore, proper privacy protection within RFID based

systems is of paramount importance [17,23].

Yet RFID is also an enabler for the vision of an Inter-

net-of-Things where the physical and the virtual be-

come interconnected in one single network. This will

spark all kinds of applications beyond our current imag-

ination. Some of these applications may be useful and

beneficial for individuals and society, others may be

potentially very damaging (to our personal liberties, or

otherwise). It would be a waste, however, to abort such

future innovations by mandating the use of a kill-switch

on all RFID tags1 that will silence such a tag forever once

it leaves the shop. Such a kill-switch is a very coarse, all-

or-nothing approach to protecting privacy. It would be

far better to develop an approach that allows the user

to have fine grained and dynamic control over who can

access his tags, and when. The research reported on in

this paper takes a step into that direction.

1.1 State of the art

Because of the privacy risk associated with the large

scale use of RFID tags, many proposals exist to provide

a certain level of privacy protection for a particular ap-

plication of RFID. We give a brief overview of the state of

the art, focusing on authentication and access control.

1 As recommended in EC Recommendation (SEC(2009)

585/586) of 12.5.2009 on the implementation of privacy and

data protection principles in applications supported by radio-

frequency identification.



2

Early proposals use relabelling of tag identifiers [36],

or re-encryption techniques [24,2,18] that randomly en-

crypt the identifier from time to time, so that it can

only be recovered by authorised readers, while being

untraceable for others.

Another approach is to implement some form of au-

thentication between tag and reader, and to allow only

authorised tags to retrieve the tag identifier. In a pub-

lic key setting this would be easy, but RFID tags are

generally considered to be too resource poor to accom-

modate for that. Therefore, several identification and

authentication protocols using hash functions or sym-

metric key cryptography have been proposed [41,12]. In

particular, Ohkubo, Suzuki, and Kinoshita [32] present

a technique for achieving forward privacy in tags. This

property means that if an attacker compromises a tag,

i.e., learns its current state and its key, she is nonethe-

less unable to identify the previous outputs of the same

tag. In their protocol, a tag has a unique identifier idi,

that is changed every time the tag is queried by a reader.

In fact, when queried for the i-th time, the tag responds

with g(idi) to the reader, and sets idi+1 = h(idi) im-

mediately after that. Dimitirou [10] presents a similar

protocol, but that authenticates the tag as well. In both

cases, if all readers are on line, connected with one cen-

tral database, the readers can be synchronised and the

response of a tag can be looked up immediately in the

database. (Note that the database can keep a shadow

copy of idi and hence can precompute the next expec-

ted value g(h(idi)).) If not, or if synchronisation errors

occur, a search over all possible (initial) identifiers (ex-

panding hash chains) is necessary.

In a symmetric key setting the reader cannot know

the identifier of the tag a priori, or obtain the identifier

of the tag at the start of the protocol because of privacy

concerns. One can give all readers and tags the same

symmetric key, but this has the obvious drawback that

once the key of one tag is stolen, the whole system is

corrupted. To increase security, tags can be given sepa-

rate keys, but then the reader must search the right key

to use for a particular tag. This issue is not properly ad-

dressed in Engberg’s paper [12]. It is unclear whether in

that paper tags share a single a key with a group of other

tags, or that each tag has a unique and private access

key it only shares with the reader. The core challenge is

therefore to provide, possibly efficient, trade offs and

solutions for key search and key management. Molnar

and Wagner [30] (see also [11]) propose to arrange keys

in a tree structure, where individual tags are associated

with leaves in the tree, and where each tag contains the

keys on the path from its leaf to the root. In subsequent

work Molnar, Soppera, and Wagner [29] explore ways in

which the sub-trees in their scheme may be associated

with individual tags. They also introduce the concept

of delegation that allows a tag owner to enable another

party to access a tag over some period of time, like for

instance a fixed number of read operations. In another

approach, Avoine, Dysli, and Oechslin [3,5] show how,

similar to the the study of Hellman to breaking sym-

metric keys, a time-memory trade off can be exploited

to make the search for the key to use more efficient. We

note that none of these systems are practical for RFID

systems where millions of tags possess unique secret

keys.

Spiekermann et al. [37] observe that although there

are many protocols and proposals for limiting access

to RFID tags (either by killing them completely or by

requiring the reader to authenticate), few systems have

been proposed that allow effective and fine grained con-

trol and management over access permissions. The RFID

Guardian [35] is a notable exception. The main idea is

to jam all reader to tag communication, except for rea-

der requests that satisfy a pre-defined privacy rule. This

approach has its own shortcomings. For one, it is ex-

tremely hard to ensure that all reader to tag communi-

cation is effectively blocked in all cases. Moreover, tags

themselves are not protected at all, leaving them vul-

nerable when the Guardian is out of range or malfunc-

tioning.

We refer to Juels [23] (and the excellent bibliogra-

phy2 maintained by Gildas Avoine) for a much more

extensive survey of proposed solutions, and [26] for a

more formal analysis of the privacy properties actually

achieved by some of the proposed authentication pro-

tocols.

1.2 On the hardware cost of cryptography

We base our work on (relatively) new insights regarding

the amount of hardware required to implement sym-

metric key cryptosystems as compared to hash func-

tions. Traditionally, such hash functions are perceived

to be the most basic (and therefore most efficiently im-

plementable) building blocks, and hence have been used

extensively in protocol designs for RFID. This is wrong.

In fact, the ECRYPT report on light weight cryptogra-

phy [33] states

Current standards and state-of-the-art low power

implementation techniques favor the use of block

ciphers like the AES instead of hash functions

as the cryptographic building blocks for secure

RFID protocols.

2 www.avoine.net/rfid/

www.avoine.net/rfid/


3

Currently there is an AES-128 design with only 3k4 ga-

tes, which uses 3 µA at 100 kHz and 1.5 V in 0.35µ tech-

nology [28,34,15]. Maximum throughput is 9.9 Mbps

(encryption) or 8.8 Mbps (decryption). A SHA-256 de-

sign [14,15] that also has been targeted specifically for

the low end results in 10k9 gates that has a maximum

throughput of 22.5 Mpbs. Current consumption is 15.87

µA at 100 kHz and 3.3 V in 0.35µ technology. Other

light weight symmetric cipher designs exist as well [8].

The quoted AES design is 3 times as small (and thus

also 3 times cheaper), and consumes less than 10% of

the power needed by the SHA-256 design, and is only

about 2.5 times slower in terms of throughput. We use

these observations to design efficient protocols that in-

corporate tag and reader authentication with session

key establishment and fine grained control and man-

agement over access permissions. Advances in reduc-

ing the hardware cost of implementing public crypto-

graphy have also been made. Current implementations

of (hyper)elliptic curve cryptography require 15,4k ga-

tes, executing one scalar multiplication in 243 ms when

clocked at 323 kHz [13,27]. Still the gate count and the

processing time are much higher than for symmetric

cryptography, making symmetric cryptography the pre-

ferred choice for lower cost tags.

1.3 Our contribution

Our contribution is to propose a model and correspond-

ing protocols that allow fine grained, effective and ef-

ficient control over access permissions for RFID tags,

that respect the privacy of the users. The model is en-

forced by the tags themselves. The protocols use au-

thentication as a basic component, and we propose a

novel combination of (universal) re-encryption [24,18]

with symmetric cryptography based authentication [22]

to obtain a reasonable level of privacy protection with-

out using public-key cryptography on the tag, and with-

out the need for the reader to start a time consuming

key-search algorithm to find the key to use for authenti-

cation. Although such key-search algorithms are highly

popular in the research community because of their su-

perior privacy properties, we believe they are unreason-

able for large scale applications that may involve mil-

lions of tags (and hence keys). Finally, our protocols

are resistant to stolen reader attacks, using techniques

from [4]. A detailed description of the properties of our

authentication protocol is presented in Sect. 6.

The model is quite loosely based on the "Resurrect-

ing Duckling" paradigm of Anderson and Stajano [39,

38]. Our model is general enough to capture several

RFID use case scenarios, like supply chain management,

ticketing and ambient home intelligence.

The essence of the model is that a potentially dy-

namic system of access permissions is defined. We gen-

eralise the concept of an RFID tag, and view such a tag

as a container of several data objects on which a rea-

der wishes to execute certain functions. Such an object

implements a particular application or service on a tag,

like a customer loyalty program, or a supply chain man-

agement program (where the on-chip object stores the

identity of the physical object to which the tag is at-

tached). This extends the notion of an RFID tag con-

taining just a unique identifier to slightly smarter data

container, resembling the technology used for the new

biometric passports [20]. We believe that in the end,

the idea of only storing a unique identifier on the tag

and storing all relevant data on the physical object at-

tached to the tag in a corresponding data record in a

centralised database is going to prove too limitative in

the future. For example, for privacy reasons it is better

to require physical proximity to read the data on the

tag instead of having that data available in a database

all the time. We refer to Sect. 2 for more examples sup-

porting our model.

Whether the reader is allowed to execute the func-

tion depends on two constraining factors:

1. whether the owner of the on-chip object has given

the reader a permission to execute the particular

function on the particular object, and

2. whether the owner of the tag allows the reader to

access the tag at all.

The protocols (and the observation that the real chal-

lenge in RFID privacy lies in allowing controlled use of

the RFID tag even after the point-of-sale) are inspired

on the work by Engberg [12]. The first constraint is

enforced using specially crafted permissions. The sec-

ond constraint is enforced by the mutual reader-tag

authentication protocol. This research is part of the

PEARL3 (Privacy Enhanced Architecture for RFID Labels)

project.

The paper is structured as follows. We first describe

a few distinctive use cases of RFID and their associated

requirements in terms of functionality and privacy. In

Sect. 3 we present our system model. We then show

how our model captures the essence of the use cases,

in Sect. 4. We then continue to implement this model

using data structures (Sect. 5), an authentication and

session key establishment protocol (Sect. 6) and subse-

quent protocols (Sect. 7). We analyse their security in

Sect. 8 and present some conclusions and further re-

search in Sect. 9.

3 www.pearl-project.org

www.pearl-project.org


4

2 Use cases

This section describes three use-cases or scenarios, each

of which focusing on one or more issues that need to

be addressed by our model. In the next section we lay

down our model, and then analyse how well the model

captures the real life situations sketched in these use

cases.

2.1 Scenario 1 - Supply Chain Management

As our first scenario, we take the supply chain scenario

from [12]. In this scenario, we show the need for a pro-

per definition of tag ownership and the controlled trans-

fer thereof.

In retail, RFID tags are attached to individual prod-

ucts after they have been manufactured for the purpose

of enhancing the supply chain efficiency. Such tags con-

tain an Electronic Product Code (EPC) that not only iden-

tifies the type of product as the more classical bar codes

do, but also includes a number that is unique to the

individual product. This allows retailers to better keep

track of their inventory and counter theft attempts, and

provide better customer service as well.

Often, for privacy reasons, these RFID tags are zap-

ped, killed or removed from products at the point of

sale. This is unfortunate. Many interesting after-sale

services are possible if the tag allows for a more dy-

namic and fine grained control of access to it by its

current owner. For example, it would open the way for

manufacturers and retailers to store post-sale service

data onto the tag such as the production run, date of

sale, warranty data, repair history etc., thus providing

the them with a possibility for providing more efficient

en effective service to the customer.

When a product, such as a TV set, computer, refrig-

erator etc. needs to be repaired at some point in time,

its warranty may be voided if it is not repaired by quali-

fied service organisations. Using the tags as introduced

above, the manufacturer of equipment installs a service

object into the tag associated with each of its products.

In this object, the manufacturer writes all sorts of ser-

vice data that it does not want to disclose to parties

other than qualified service organisations. Then, it pro-

vides read permissions for such service objects only to

accredited service organisations.

Many objects change owner during the course of

their life, consider for example second-hand cars, elec-

tronic equipment, etc. When the objects change owner,

so must the attached tags. But any objects on the tag

(like the service object above) must remain on the tag

and must keep their data (like the repairs performed on

the object).

We can accommodate for this scenario if the follow-

ing requirements are met.

– A party is allowed to communicate with a specific

RFID tag if and only if (a) it is the owner of the tag

or (b) it is explicitly granted permission by the owner

of the tag.

– A party is allowed to access a specific data (object)

on the tag if (a) it owns the data (object) or (b) the

data (object) owner has explicitly enabled that party

to access the data (object) using a specific method.

In other words, access is assigned for individual me-

thod calls on the object.

– A party that owns a tag must be capable of transfer-

ring this ownership to another party, without delet-

ing or changing objects.

Note that a consequence of transferring ownership of a

tag is that the set of parties that were allowed to com-

municate with the tag changes drastically, as only the

owner or a party that has a permission issued by this

owner, may communicate with the tag.

2.2 Scenario 2 - Smart Tickets

Event Services Company (ESC) is large company issuing

an advanced, RFID based, smart event ticketing solu-

tion. With the ESC RFID tag embedded in a wristband,

users can buy tickets for music events on line, flash

them in their wristband, and prove purchase of the tick-

ets at the entry gates of the event. Security is important:

ticket fraud, and especially black market sales are ram-

pant in the ticketing business. Moreover, ESC does not

want free riders to use its ticketing system: only event

organisers with a contract can use it.

Tom owns such a wristband. In fact, the fashion

watch he got for his birthday last year contained such

an ESC tag for free. He regularly buys tickets for soccer

matches and music festivals on line and appreciates the

fast and paper ticket less service. Recently, the gay gym

he visits changed to the ESC service, allowing members

to book specific slots in the gym in advance. Tom sees

this as a huge advantage (the gym can be crowded at un-

predictable times), but is concerned about his privacy:

he would rather not get his visits to the gym and to the

soccer matches get connected. Luckily, ESC was well

aware of these concerns when designing the system,

and instead of storing the tickets on a central server

they are all stored on the ESC tag of the user.

Apart from the requirements from the first scenario,

this adds the following requirements.

– Data related to the physical object is stored on the

tag, and not (necessarily) on a central server.



5

– Permission to install an object may be restricted de-

pending on the application (in this case: the tag is-

suer).

2.3 Scenario 3 - At the Hospital

In our third scenario, we consider the situation where

a doctor implants a sensor tag into one of its hospital-

ized patients, e.g. by having him swallow a pill contain-

ing this sensor tag. In this scenario, we show the need

for a proper definition of transferal of object owner-

ship. This scenario is inspired by the hospital scenario

from [39].

Consider a patient whose heart condition, respira-

tion and the like need to be monitored, and a high-tech

monitoring device exists that acts like a tag as in the

previous scenario’s. Because of price and the fact that

they are not needed all that often, hospitals own such

devices, and only a modest amount of them.

Whenever a patient’s condition is to be monitored,

its doctor can decide to implant such a device into the

patient, e.g. by having him swallow a pill containing the

device. Within the body, the sensor starts monitoring

the patient’s condition, filling an object that is specific

for the sensor. Doing so, a sensitive amount of personal

data is gathered within the object, and it is part of the

doctor’s job to ensure that privacy is preserved.

Since the doctor uses the sensor, he must have pretty

much full control. However, he must also be able to as-

sign read permission to e.g. nurses. This requires him

to actually own the object. Note that he should not own

the device itself, as this would allow him to (dis)allow

other parties access to other parts of the device as well,

which, if that results in a catastrophe, will put the blame

with the hospital.

We can accommodate for this by adding another re-

quirement

– A party that owns an object must be capable of trans-

ferring this ownership to another party.

3 System model

The system model describes the different entities in the

system, their mutual relationships, and the operations

that they can perform on each other.

3.1 Notation

We use k to denote a symmetric key, possibly subscript-

ed to denote its owner, and use s to denote a symmet-

ric session key. We use PK for a public key and sk for

the corresponding private key. Hash functions are de-

noted byh(·). We write⊕ for the exclusive-or operation,

and ; for concatenation of bit strings. {m}k denotes the

encryption of message m with symmetric key k using

some symmetric cipher, typically AES. [m]k denotes a

message authentication code (MAC) for message m de-

rived from a symmetric cipher (for instance CMAC [31,

7]) using key k. Finally, [{m}]k denotes the authenti-

cated encryption of m with key k, for instance by ap-

pending the MAC of the ciphertext [6].

3.2 Tags and readers

A tag t is a piece of hardware that contains data. At

the very minimum, tags store a bit string that can be

read and sometimes written. Usually, tags store several

values that can be grouped together as tuples because

of their logical use. More complex, smart card like tags,

contain ISO 7816 [21] like file structures. We assume

that for the anti-collision protocol random identifiers

are used (or else all bets to achieve some level of privacy

are off).

We assume readers are at least on-line some of the

time to obtain fresh data and keys from the central back

office.

3.2.1 Classes and objects on tags

The system model follows the object oriented (OO) meta-

phor, so that tags are said to contain objects, each of

which is a group of bit strings whose structure is de-

fined by the class that it instantiates. We use o ∈ c to

denote that object o is an instantiation of class c. For

every class, each tag contains at most one instantiat-

ing object. Every class defines a set of methods, each of

which specifies a kind of operation that may take place

on objects that instantiate that class. Simple methods

specify how to read or perhaps write values in a tuple of

a certain type stored on a particular tag. More complex

cases methods might invalidate a ticket on a tag, or in-

crease an electronic purse balance. We write f ∈ c for

a method f that is defined for class c. Every method

is defined in precisely one class. Access to a specific

method is controlled in one of three ways:

– the method can be called iff the tag is not owned;

– the method can be called if the user has an appro-

priate permission;

– the method can be called by the domain owning the

class.

The OO metaphor can be applied both to the resource

constrained case where a tag contains only an identifier

or a tuple of values, and to the case where complex data

structures are stored on a tag.



6

3.2.2 The tag management class

Every tag always contains one instance Ω of the tag

management class, initially with default settings. The

tag management class implements functions to manage

tag access and ownership. This allows us to implement

tag and class management operations in a similar way

as methods on ordinary objects, thus simplifying the

implementation. Details are provided in Sect. 7.

3.3 Domains and Principals

We use the term domain to refer to a (legal) entity that

is capable of bearing responsibilities. Thus, companies,

organisations and governments are considered to be

domains, as well as individual (adult) persons. We use

the term principal, or actor, to refer to a resource (e.g.

a person, or a running application within a computer)

that is capable of acting on behalf of, c.q. under the re-

sponsibility of, a domain. While a principaldmay act on

behalf of different domains over time, and the change

frequency thereof may be very high, we assume that at

any particular point in time d acts on behalf of precisely

one domainD. Note that in case of natural persons, who

can both act as bear responsibility, the common prac-

tice where a single name is used to refer to the person

both as an actor and as a domain, may cause consid-

erable confusion. Thus, if a principal d acts on behalf

of a domain D at a given point in time, then D is re-

sponsible for everything that d does at that time. Since

the domains bear the responsibilities, we have no com-

pelling need to distinguish between the various princi-

pals that may act on behalf of a given domain, and thus

we assume every domain to be inhabited by exactly one

principal. We use D to denote the set of all domains.

3.4 Ownership

We use the term owner(ship) to refer to the responsibil-

ities associated with controlling tags, objects, etc. Since

responsibilities are born by domains, ownership can

only be assigned to domains. Ownership can be trans-

ferred by the owning domain to another (accepting) do-

main.

Thus, the tag owner for a tag t is a domain that

bears the responsibility for controlling access to t, i.e.

for issuing and revoking the associated permissions.

Also, it controls the permissions associated with other

tag related functionality, such as the creation of objects

or the transferal of tag ownership. We use T to denote

a tag owner and T to denote the set of tag owners, so

T ∈ T and T ⊆ D. We write t ∈ T to indicate that tag

t is owned by T .

The class owner is responsible for controlling access

to objects that instantiate this class, i.e. for issuing and

revoking permissions for executing methods defined by

that class. We write c ∈ C to mean that class c is owned

by domain C (i.e. its class owner).

Note that if a class owner C owns a class c, then

(initially) it also owns every object o ∈ c. Thus, ob-

ject ownership is (initially) implied by class ownership.

However, ownership of individual objects may be trans-

ferred to other domains later on. If that happens, the

class owner is not necessarily the owner of all objects

of that class.

3.5 Permissions

Every permission, i.e. the right to access a tag or the

right to execute a method on an object, is issued by the

domain that owns the tag or the object. Also, permis-

sions are issued to domains rather than to principals,

because domains can bear responsibilities associated

with using such permissions, which principals cannot.

In our model, a permission that has been issued to a do-

main can be used by any principal that acts under the

responsibility of that domain. Consequently, if misuse

of a permission can be traced back to the domain the

permission was issued to, this domain can be held ac-

countable. It is outside the scope of this paper whether

or not a domain limits the use of permissions that it

has been assigned to a subset of the actors acting on

its behalf, or sanctions misuse thereof.

One of our main contributions is the distinction we

make between accessing (i.e. communicating with) tags

and accessing (i.e. executing methods on) objects on a

tag. A consequence of this distinction is that it requires

two rather than one permission to access an object on

a tag: one permission is needed for accessing the tag

on which the object is stored (which is granted by the

tag owner), and the other permission is required to ex-

ecute the appropriate method on that object (which is

granted by the object owner). Moreover, these permis-

sions are implemented quite differently (as described in

more detail in Sect. 5.3 and 6). The first permission is

checked using a mutual tag-reader authentication pro-

tocol, which verifies that the reader domain occurs in a

list of permitted domains. The second permission is im-

plemented using a permission token that encodes the

permission to access a particular method on an object.

Thus, manipulation of an object on a tag is controlled

both by the tag owner and object owner.



7

3.6 Operations on a Tag

Operations are performed by actors (readers) acting on

behalf of a domain. Operations can only be performed

when the actor acts on behalf of a domain that has per-

mission to do so. While other operations are certainly

conceivable, we consider only the limited set of basic

operations as specified in Sect. 7.

The most basic operation the model must support

is calling a method on an object of a certain class sto-

red on a particular tag. For this, two permissions are

required: first, the domain must be allowed to access

the tag, and secondly the domain must be allowed to

execute the method on (the class of) the object. Note

that access to a method is initially granted at the class

level. So access rights for a particular method initially

apply to all objects of that class.

The creation of permissions is done off-tag, as is

the distribution thereof4. Tag ownership is controlled

through the following functions:

– TakeTagOwnership: Set a specific domain as the

tag’s owner. Can be executed by any domain as long

as the tag is not owned.

– TransferTagOwnership: Transfer ownership of

a tag from its tag owner to another domain. Can only

be executed by the owner of the tag.

– RelinquishTagOwnership: Relinquish ownership

of a tag so that the tag is no longer owned. Can only

be executed by the owner of the tag.

Tag access is controlled through the following func-

tions:

– GrantTagAccess: Allow a specific domain to ac-

cess a tag.

– RevokeTagAccess: Disallow a specific domain to

access a tag.

These functions are only executable by the tag owner.

Object management is controlled through the fol-

lowing functions:

– InstallObject: Create an object and set the class

key. Can only be executed by the tag owner, or any

domain with a permission issued by the tag owner.

– UpdateObject: Overwrite the contents and the code

of an object. Can only be executed by the class owner,

or any domain with a permission issued by the class

owner.

– UpdateClassKey: Change the class key associated

with an object. Can only be executed by the class

owner. This function can (also) be used to transfer

ownership of objects.

4 The word ’capability’ might be more appropriate than the

word ’permission’.

– DeleteObject: Destroy an object and its associ-

ated class key. Can only be executed by the class

owner, the tag owner, or any domain with an appro-

priate permission issued by the class owner.

As said before, this paper only describes a basic set of

operations that will allow us to implement the scenar-

ios from Sect. 2. Other operations are certainly possible

and can easily be added to the model and implemented

in a similar fashion as the basic operations.

4 Analysis

The system model from Sect. 3 should allow us to im-

plement a large set of common privacy friendly uses of

RFID technology. To capture these use cases, we sketch-

ed three different scenarios in Sect. 2. We now briefly

verify that our model indeed allows us to implement

these three scenarios. The security and privacy proper-

ties are analysed after we have presented the protocols

that implement the operations – they do not depend on

the model, but on the actual implementation.

4.1 Mapping of Scenario 1

Product tags that comply with our model would be at-

tached to the product when manufactured. For every

product type that a manufacturer M produces, M de-

fines an object class Service that contains data and ac-

cess methods that is relevant to the manufacturer, in-

cluding a.o. production data, production plant, serial

numbers and so on. First, M takes an unowned tag and

takes ownership thereof (executing the tag’s function

TakeTagOwnership). Tag owners can then execute

InstallObject, which is what M uses to create the

Service object on the tag. For each of the methods on

this object, M creates permissions (see Sect. 5.3) that

M assigns to itself so that it can access all methods it-

self. Note that M only needs to create such permissions

once, as they will be usable on every Service object M

creates.

To accommodate the service-organisation scenario,

all that M needs to do is create a read-permission for

Service objects for every organisation that it has accred-

ited for servicing M’s TV sets, and send this permis-

sion to the appropriate organisation in a secure man-

ner. This way, only accredited organisations (and M)

may read Service objects. Note that service organisa-

tions cannot yet read the Service objects since they do

not have permission to access the tag itself. This is done

later when the consumer becomes the tag owner.

Whenever a retailer R sends M an order for a number

of TV sets, M prepares the delivery. For every tag in this



8

delivery, M first writes appropriate data into the Service

object so that it says to which retailer it will be deliv-

ered, as well as other information M might later need.

Then, M transfers ownership of the tag to R (Transfer-

TagOwnership, which means that M no longer is ca-

pable of accessing the Service object because it can no

longer access the tag (see Sect. 7.2 for details). Still, M’s

service object remains on the tag and all permissions

that it has issued to itself and the accredited service or-

ganisations remain valid. Then, M sends some data to R

in a sufficiently secure manner, thus enabling R to gain

ownership of the tags (See Sect. 7.2). While the shipment

is in transit, only M and R can take control of it as they

have the data to regain ownership. For anyone else, the

tag is useless as they cannot communicate with it.

For use in its retail processes, R has already defined

an object class Retail, and like M, R has created and

distributed permissions for Retail objects to itself, and

other domains as necessary. Thus, when R receives the

data that M has sent as well as the shipment, R can

take control of each tag, and create a Retail object on

each of them, filling it with data relevant to R’s retail

process. Note that the tags still contain Service objects,

but R can only access such objects if it has been is-

sued appropriate access permissions, i.e. if R is a ser-

vice organisation that M has accredited. Also note that

R controls whether or not M can access its own ser-

vice object, as M needs tag-access permissions which

R can grant (GrantTagAccess) or deny (e.g. revoke

using RevokeTagAccess).

When a customer C buys a TV set, R updates its ser-

vice object and subsequently transfers ownership of the

tag to C. C may subsequently grant R and M access to

the tag, that would allow them to work (only!) with their

own service objects (and objects for which they have

been issued a permission by the corresponding class

owner). Also, C can install a data object of its own on

the tag provided an appropriate class has been defined

and permissions created. Also, C can resell the TV set

to C’ and simply transferownership of the tag to C’.

If C is not interested in managing the tag, then R may

safely keep tag ownership as no other domain than R

(and perhaps M) would be able to use the tag, and still

then only using their own data. A more difficult situa-

tion is if C had taken up tag ownership, but sells it to a

party C’ that is not interested in taking tag ownership.

While we think there may be several solutions here, we

leave this case outside the scope of this paper. Thus,

throughout the lifetime of a tag, each owner M, R, or

C has full control over who can use the tag and who

cannot. Also, M, R, or C can install their own data the

confidentiality of which is under their own control.

4.2 Mapping of scenario 2

In this scenario, ESC (Event Services Company) is the

first to take ownership of the tag using TakeTagOwn-

ership. Using the default (known) class key of the tag

management object Ω, it creates a permission to call

UpdateClassKey to set the class key of Ω to its own

secret value. This key is used to create permissions for

every event organisation that has a contract with ESC,

to install objects through Ω using InstallObject.

ESC transfers ownerships to consumers buying ESC

tags using TransferTagOwnership. Now users buy-

ing tickets from certain organisations first grant access

to the tag for these organisations through GrantTa-

gAccess. These organisations then install their own

ticket object calling InstallObject with the relevant

ticket data on the tag. They need permission from ESC

(as described in the previous paragraph) to do so.

4.3 Mapping of Scenario 3

With our model, we can show how in scenario 3 owner-

ship of objects can be transferred between parties.

We start out with a doctor D that works at a hospital

H which has a patient P and a nurse N. H owns a high-

tech monitoring tag (device) T, which contains at least

one object being of the class Tmon which has methods

implementing all sorts of monitoring functions.

When D decides to implant T into P, D becomes re-

sponsible for the use of functions of the Tmon object.

While it is undesirable to transfer ownership of T to D,

it is desirable to transfer ownership of the Tmon object

from H to D because this allows D to control who may

use which function of the Tmon object. Thus, when D

borrows T from H, H transfers ownership of the Tmon

object to D (issuing a permission to D to call Update-

ClassKey on Tmon). This immediately makes all ex-

isting permissions obsolete that H has assigned to any

domain for this particular Tmon object. However, such

permissions remain valid for all Tmon objects that H

still owns.

Now, D can issue permissions to the Tmon object,

e.g. to nurse N that nurses the patient.

When P is dismissed from the hospital, T is removed

from P, and ownership of the Tmon object is returned to

the hospital. This immediately invalidates the permis-

sion that N has for the Tmon object. However, as long as

the validity period of this permission has not expired,

N can still use it to access Tmon objects on other tags

(provided N has access to the tag (which is controlled

by the hospital) and the Tmon object is owned by D.



9

5 Data structures

In this section we describe the data structures stored

by the tags, and the keys and permissions used by the

domains to access the data on a tag. In the next section

we describe the implementations of the operations that

can be performed on a tag.

5.1 Keys

To implement permissions, the system uses the the fol-

lowing types of keys. Some keys (the domain key pairs

PKD , skD) are asymmetric keys, the other keys are sym-

metric keys.

Tag access keys ka. Access to tags is controlled using

tag access keys ka. These keys are unique to a tag,

and derived from the tag identifier t using a mas-

ter access key kA through key diversification [1] by

ka = {t}kA .

Master access keys kA. Each domain has a master access

key kA. Readers in a domain use this master access

key kA to derive tag access keys from tag identifiers.

Each tag thus stores, for each domain that is allowed

to access it, a different tag access key.

Domain key pairs PKD, skD . Each domain keeps a uni-

que ElGamal public/private domain key pair PKD,

skD. These keys are used in the authentication pro-

tocol to preserve privacy of the tag identifier t. To

thwart stolen reader attacks, readers get a new pair

of keys every once in a while. These keys are stored

in the array E[].

Class keys kc . For each class there exists a unique class

key kc . The class key is used to encode access per-

missions to the class methods. A tag stores, for each

object, the corresponding class key to verify such

permissions. Class owners know all the class keys of

the classes they own. Changing the class key of an

individual object can be utilised to transfer owner-

ship of that particular object. Conceptually, how-

ever, this makes the object member of another class

(albeit with the same structure and methods as the

class it originally was a member of).

5.2 Other data stored on the tag

A tag t also performs a bit of bookkeeping. Firstly, it

records a time stamp nowt that approximates the cur-

rent date and time (see below), initially −∞. Tags also

store several objects, each of a class c together with the

key5 kc . Also, a tag t keeps an access set At that stores,

for each domain D that is granted access to the tag, the

following three items.

– An encrypted tag identifier id , equal to the ElGamal

encryption (t · PKxD, g
x) of the tag identifier t.

– The epoch e in which the encrypted tag identifier

was created (for explanation see Sect. 6).

– The diversified tag access key ka, which equals {t}kA
for the master key kA used by domain D.

– A boolean flag indicating whether this domain is the

owner of the tag.

We interpret the access set as a dictionary indexed by

domains (as a domain can have at most one such tuple

in the access set), and write At[D] = (id, ka, b). There

is at most one domain that is the owner of the tag. We

write owner t for that domain (which equals ⊥ if the tag

is not owned by a domain). Initially, At = ∅.

Finally, the tag stores the current session key s, which

initially and in between sessions equals a default value

(denoted⊥, but which actually is a valid key), and which

is set to a certain value as the result of a successful

mutual authentication (in which case the authenticated

reader holds the same session key). It also stores the do-

main of the reader that was authenticated in Γ (which

equals ⊥ in between sessions).

We usually omit the subscript from now , owner and

A.

5.3 Permissions

To grant a domain D access to a method f on an object

of class c up to time ∆, the class owner C generates a

permission token

kc,f ,D,∆ = {f ,D,∆}kc

and sends this to the domain D. This permission token

expires as soon as the current time exceeds ∆. Tags use

now as their estimate of the current time to verify this.

This is updated after each successful call of a method

on the tag (which includes the current time as asserted

by the caller). It is also set to the current time when

the first domain takes ownership of the tag. A similar

method is also used by the European RFID passports [9,

20].

5 This is a weakness that seems to be unavoidable: the owner

of the tag can in principle recover the class key; the install pro-

cedure should ensure that the key cannot be captured in transit.



10

6 Mutual authentication and establishing a session

key

A basic step underlying the protocols that implement

the operations that access a tag, is to mutually authen-

ticate a tag and a reader, and to establish a session key

among them6.

Below we present a protocol that is efficient for both

the reader and the tag. In principle it combines ele-

ments of three different known authentication proto-

cols to strike a balance between tag and reader effi-

ciency, achieve a robustness against a reasonably large

class of adversaries, and achieve a certain level of pri-

vacy as well. In fact it combines a standard, ISO/IEC

9798-2 [22] based symmetric key authentication proto-

col, with (universal) re-encryption [24,18] to avoid the

costly key search, and a counter based approach to in-

validate keys from stolen readers [4]. To further en-

hance privacy, users may perform a separate re-encryp-

tion of all identifiers on a tag at any time.

To be precise, the protocol achieves the following

properties

mutual authentication The reader and the tag are mutu-

ally authenticated.

soft privacy Tags can only be traced in between two suc-

cessful re-encryptions (including the re-encryption

performed during an authentication). Except for the

reader performing the re-encryption, no other rea-

der or eavesdropper can link the presence of the tag

after the re-encryption with an observation of this

tag before the re-encryption.

owner-controlled privacy Tag owners can re-encrypt all

tag identifiers for all domains at any time on the

tags they own.

resilience to tag compromise Tags do not contain global

secrets. Hence a tag compromise does not affect any

other tags in the system.

resilience to reader compromise Stolen readers (or oth-

erwise compromised readers) will not be able to re-

cognise or access tags, once those tags have been

in contact with another valid reader after the com-

promise [4]. A similar property is achieved by the

European biometric passports [9,20].

reader efficiency The reader performs a constant num-

ber of operations.

6 Actually, from a privacy perspective, we are only interested

in authenticating the reader. Only after the reader is proven au-

thentic, and has permission to access the tag, the tag has to iden-

tify and authenticate itself. However, since we are unable to use

public key cryptography on the tag, and we do not wish to store

global shared secrets on the tag, we are left with using key diver-

sification based on the identity of the tag. Hence authenticating

the reader as well as the tag simultaneously seems to be the only

way forward.

tag efficiency The tag performs only a constant number

of symmetric key cryptography operations.

The protocol we present below explicitly checks the

correctness of the responses, that may contain addi-

tional information for that purpose, to positively au-

thenticate the other party. Another option is to rely on

implicit authentication through the session key that is

established as well: if the authentication fails, both par-

ties will have different values for the session key, and

therefore subsequent protocol steps will fail.

Note that in the description of the protocols we do

not explicitly describe the behaviour of a principal if

it detects such an error. Instead we use the convention

that if an internal check fails, the principal continues to

send the expected messages at the appropriate times,

with the appropriate message format, but with random

message content. This is necessary to preserve privacy,

as observed by Juels et al. [25,26].

Our protocol (see Fig. 1) is an extension of the the

ISO/IEC 9798-2 [22] standard, using diversified keys [1]

to avoid sharing keys over many tags7. The tag stores

such a diversified tag access key k′a that corresponds to

{t}kA . To compute this diversified key from the master

access key kA it stores, the reader needs to learn the tag

identifier t. This cannot be sent in the clear for privacy

reasons. The solution is to encrypt the tag identifier t

against the public key of the reader to obtain id , and let

the reader re-encrypt [24] that value with every authen-

tication run. This way the tag does not have to perform

any public key operations. Note that the re-encrypted

value is only used as the new tag identifier after a suc-

cessful authentication of the reader. This avoids denial-

of-service attacks. Finally, the re-encryption keys stored

by the readers are updated every time a reader is stolen.

Every time this happens, a new epoch is started. Stolen

readers no longer receive keys for future epochs. Tags

that authenticate successfully, receive a new encrypted

identity, encrypted against the most recent epoch key.

This makes it impossible for compromised readers to

track this tag.

Note that corrupt readers can update the tag identi-

fier to an arbitrary value. If that value is not recognised

as a tag identifier by a genuine reader in a next authen-

tication run, this reader will send random data to the

tag. The tag will detect this and set A[D] := ⊥. The

tag will then stop responding to requests from this do-

main. Without this countermeasure, the arbitrary value

for the identifier would never change and the tag would

be traceable forever.

7 The first encrypted message is also protected by a MAC, be-

cause the contents of the message should not malleable while

keeping the response to the challenge intact. This is not guaran-

teed if one only encrypts the message, e.g., in ECB mode.



11

Reader d ∈ D Tag t

input: epoch keys E[], state: access set A[],

access key kA current datetime estimate now

current epoch ǫ

state: δ is current datetime
D

−−−−→ D′

(id, e, k′a, b) := A[D′]

((u,v), (y, z)), e′, r ′
id ;e;r

←−−−−−−− generate random r

verify e′ ≤ ǫ

(skD , PKD) := E[e′] ; verify y/zskD = 1

t′ := u/vskD

(skD , PKD) = E[ǫ]

generate random x,x′

u′ := t′ · PKxD mod p

v′ := gx mod p

y ′ := PKx
′

D mod p

z′ := gx
′

mod p

id′ := ((u′, v′), (y ′, z′))

ka := {t′}kA

generate session key s and random q
[{id′ ;ǫ;r ′ ;q;δ;s}]ka

−−−−−−−−−−−−−−−→ decrypt using

k′a into id′′, e′′, r ′′, q′, δ′, s′

A[D′] := ⊥

verify r = r ′′ and now < δ′

now := δ′ ; A[D′] := (id′′, e′′, k′a, b)

decrypt using ka into q′′, s̄′
{q′ ;s̄}k′a

←−−−−−−−−− generate session key s̄

verify q = q′′

return (s ⊕ s̄′, t′) return (s′ ⊕ s̄, D′)

Fig. 1 Authentication and session key agreement.

The protocol can be extended using ideas from Hoep-

man et al. [19] by storing so called authentication credit

on the readers, that cannot be used to generate valid au-

thentication responses. This way, readers do not need

to store master keys, and therefore need to be less trust-

ed, or can be operated in less trusted environments.

At the reader side the protocol returns the tag iden-

tifier and the session key to be used. For a call to such

an authentication protocol run in the protocols below

we write AuthenticateR(skD, PKD, kA). At the tag side,

the protocol returns the session key, as well as the au-

thenticated domain. We write AuthenticateT () for this

call.

6.1 Re-encryption

The protocol uses re-encryption, or rather universal re-

encryption [18], as follows. We use the ElGamal encryp-

tion scheme [16] over a cyclic group G of order q. To

be concrete, and to achieve semantic security [40], we

choose two primes p and q such that q‖(p − 1) (i.e., q

is a divisor of (p − 1)) and choose as G the cyclic sub-

group of Zp with order q, and pick a generator g for G.

These are global, system wide, constants.

Each domain has, for each epoch, its own public/pri-

vate key pair (PKD, skD) where skD is a random integer

between 1 and q−1, and PKD = g
skD . The tag identifier

t is encrypted, using ElGamal, as

(u,v) = (t · PKxD, g
x) ,

where x is a random value in [0, q − 1]. To allow re-

encryption by readers that do not know the correspond-

ing private key, each tag stores with each encrypted tag

identifier a corresponding re-encryption factor

(y, z) = (PKx
′

D , g
x′) ,

where x′ is a new random value in [0, q− 1]. Note that

this is basically an encryption of the value 1 against

the same key. Because ElGamal enjoys the homomor-

phic property that the multiplication of the encryption

of two ciphertexts equals the encryption of the multi-

plication of the corresponding plaintexts, we see that

(uy,vz) in fact equals the encryption of tag identifier

t. The encrypted identifier now becomes

id = ((u,v), (y, z)) .

Readers store the key pairs for the epochs in an ar-

ray E[], storing the keys for epoch e at E[e]. This array

is filled with epoch keys up to and including the current

epoch ǫ, and grows in size over time.



12

To re-encrypt, a reader that knows the correspond-

ing, most recent public epoch key PKD does the follow-

ing. It generates new random valuesa anda′ in [0, q−1]

and computes

(u′, v′) = (t · PKaD, g
a)

and

(y ′, z′) = (PKa
′

D , g
a′)

and sends

id′ = ((u′, v′), (y ′, z′))

to the tag. Readers that do not know the current epoch

key can use the re-encryption factor to compute a new

encrypted identifier as follows. Again two random fac-

tors a and a′ in [0, q − 1] are generated, and then the

reader computes

(u′, v′) = (u ·ya, v · za)

and

(y ′, z′) = (ya
′

, za
′

)

and again sends

id′ = ((u′, v′), (y ′, z′))

to the tag.

Requests to re-encrypt other encrypted tag identi-

fiers can be issued by authorised readers to the tag man-

agement object, see Sect. 7.4. Typically, readers that are

owned and operated by a tag owner will have the per-

mission to perform such re-encryptions. This way, own-

ers of tags have control over how easily their tags can

be traced. Without universal re-encryption, only readers

knowing the public key of the domain can re-encrypt.

If a tag is hardly ever accessed by such a reader (con-

sider for example a supply chain tag attached to a piece

of clothing that is never accessed again after the point

of sale), such a tag is principle unlimitedly traceable.

By frequently re-encrypting their tags, users can make

such tags much less traceable.

To decrypt, one simply verifies that y/zskD = 1 and

computes u/vskD , using the appropriate epoch key sto-

red in E[]. To avoid the need to search for the right key,

the tag sends, together with is encrypted identifier, the

epoch in which it was last updated8.

8 This impacts privacy, in particular it allows one to trace tags

that are infrequently used and hence broadcast old epoch num-

bers. However, in the current protocol that is not a separate con-

cern, as the same tag will broadcast the same encrypted tag iden-

tifier until it is successfully updated (in which instance its epoch

will be set to the most recent epoch, which contains a large num-

ber of tags).

6.2 Alternative approaches

In the course of developing the above algorithm, we

have considered various alternatives. The main draw-

back of the above protocol is that tags are traceable

in between re-encryptions. Every malicious reader that

claims to be from domain D will receive the current

encryption of the identifier. This can be solved in two

ways, both incurring another, more severe, drawback.

The first option is to let the tag (instead of the rea-

der) do the re-encryption each time it is queried by a

reader. Then the tag is no longer dependent on a rea-

der to provide it with a proper re-encryption, and mali-

cious readers no longer pose a threat. But this requires

that the tag is capable of performing modular exponen-

tiation at reasonable speed. This is out of scope for

low cost tags. Moreover, if the tag can do that, then

one might as well use an authentication protocol us-

ing asymmetric cryptography. Such a protocol would

be much simpler than our current proposal.

The second option is to stop responding to requests

from domain D after a fixed number of times, unless

one such request was a full run of the authentication

protocol that updated the current encryption of the

identifier. This limits the time a tag can be traced, but

makes the system vulnerable to denial of service at-

tacks.

Finally, we considered another approach where the

tag would randomly encrypt its tag identifier to a sym-

metric domain key kD , sending

{r , t}kD

to the reader at the start of the authentication proto-

col9. By including the random r , the whole message is

randomised, and tags become untraceable. However, kD
is stored on all tags accessible by domain D. Because

tags are not tamper proof, this key is not protected and

will become known after some time. From that time on,

these tags become traceable and privacy is lost.

7 Protocols

Below we will describe protocols that implement the

operations from Sect. 3.6. We take a rather generic ap-

proach. Instead of implementing special protocols for

each of these operations, we in fact model all these

9 This message should not be encrypted in ECB mode, but in

CBC mode (if the nonce and the tag identifier together do not

fit inside a single block). The point is that the random value r

preceding the tag identifier should randomise the encryption of

the whole message, in particular the encryption of t, to preserve

the privacy of the tag.



13

operations either as calls on normal objects (Delete-

Object and UpdateObject), or as special methods

of the tag management object Ω (all other operations).

That is, we present pseudocode for the body of each

of these operations as if they were methods of a cer-

tain object, operating on the state of the object and or

operating on the state of the tag.

This way, the only ’protocol’ that we need to de-

scribe now is how to securely call a method on an object

stored on a tag. In fact, this protocol is split in three

sub-protocols. The first sets up a session and a shared

session key, the second securely calls the method using

the session key to secure the channel and using permis-

sion tokens to verify the legitimacy of the request, and

the third closes the session.

Note (cf. Sect. 6) again that we do not explicitly de-

scribe the behaviour of a principal if it detects an error.

7.1 Calling a method

To call a method f on an class c, the reader d belonging

to domainD and the tag t first set up a session using the

protocol in Fig. 2. This is nothing more than starting the

authentication protocol from Fig. 1. If this is successful,

the reader and the tag share the same session key. Both

initialise their message sequence counter (m and n) to

0.

The actual method call follows the protocol in Fig. 4.

This protocol can be executed several times in a row, to

execute several methods within a single session. Each

message includes the current value of the message coun-

ter, and each message is encrypted and MAC-ed with

the session key. The message counters are incremented

with every subsequent message within a session. The

receiver verifies the included message counter to pre-

vent replay attacks.

For each method call, the reader sends the corre-

sponding permission token, which is verified by the tag

using the class key k′c of the class whose method is

called. It also verifies whether the permission token is

still valid, using its own estimate of the current time

now , and whether the permission token is bound to the

domain that was authenticated in the first phase. Then

the reader sends the method call parameters, and the

tag responds with the method result. If the method is

supposed to return no result, a random value is sent

instead. Note that the method is called with the name

of the calling domain as the first parameter.

To call a method on an object for which no permis-

sion tokens are necessary (which is the case for some of

the methods of the tag management object, see below),

basically the same protocol is used. In this case how-

Reader d ∈ D Tag t

input: keys kA, E[]

epoch ǫ

(s′, t′) := (s, Γ) :=

AuthenticateR(E[], kA, ǫ) ↔ AuthenticateT ()

n := 0 m := 0

Fig. 2 Setting up a session.

Reader d ∈ D Tag t

session key s′ session key s
[{stop}]s′

−−−−−−−−−−→ decrypt and verify using s

s := ⊥

Γ := ⊥

Fig. 3 Closing a session.

ever, the caller does not have to send a permission to-

ken, and the tag only verifies that the requested method

on that object is indeed callable without permission.

Finally, to close a session, the protocol in Fig. 3 is

executed.

7.2 Tag ownership functions

The following methods on the tag management objectΩ

implement transfer of ownership. To relinquish owner-

ship of a tag, the tag owner can execute the following

method.

RelinquishTagOwnership(caller ) :

verify owner = caller ;

A := ∅ (hence owner = ⊥)10 ;

s := ⊥.

The functionality of RelinquishTagOwnership may

be extended to include the deletion of all objects (other

than the tag management object), and the resetting of

information in the tag management object.

To become the owner of an unowned tag, a domain

calls the following method

TakeTagOwnership(caller ,D, id, ka) :

verify owner = ⊥ ;

A[D] := (id, ka, true) ;

where the caller of TakeTagOwnership from domain

D has received the tag identifier t out-of-band. He then

generates a random x, computes id = (u,v) = (t ·

PKxD, g
x) and computes ka = {t}kA using its own mas-

ter access key kA, before calling the method. Note that

10 If so desired, resetting of A can be skipped. However, in that

case the owner flag for Γ must be reset.



14

Reader d ∈ D Tag t

session key s′ session key s

permission token kc,f ,D,∆ calling domain Γ

counter n counter m

p := kc,f ,D,∆
[{n;c;f ;∆;p}]s′

−−−−−−−−−−−−−→ decrypt and verify using s

into n′, c′, f ′,∆′, p′

verify now < ∆′

verify n′ =m

look up object of class c′

and keep k′c
verify p′ = {f ′, Γ ,∆′}k′c

[{n+1;parameters}]s′
−−−−−−−−−−−−−−−−−→ decrypt and verify using s into n′, x

verify n′ =m+ 1

decrypt and verify using s′
[{m+2;result}]s

←−−−−−−−−−−−−−− execute f(Γ , x)

into m′, r

verify m′ = n+ 2

n := n+ 3 m :=m+ 3

Fig. 4 Calling method f on class c using permission token kc,f ,D,∆ valid until ∆.

this protocol is susceptible to hijacking and eavesdrop-

ping on the new owner’s access key, if the default ses-

sion key ⊥ is used (which is the case when the tag has

no owner).

To transfer ownership of tag t from tag owner T

to domain T ′, a new entry for the new tag owner must

be set in A with a new encrypted tag identifier and a

new diversified access key (and in fact all other entries

in the access set need to be deleted). The tag identifier

does not change. This process is in fact a three party

protocol that is implemented by two method calls. The

first runs as follows.

TransferTagOwnership(caller ) :

verify owner = caller ;

A := ∅ (hence owner = ⊥) ;

Note that this function can only be executed in sessions

of the authentic(ated) tag owner. After execution of this

function, the session is not terminated (i.e. the session

key is not reset). While in this state, the tag is shipped to

the new owner T ′ and the values of the tag identifier id,

the session key s and the message counter n are sent

to T ′ out of band. Then, T ′ calls TakeTagOwnership

(without prior authenticating and hence starting a new

session!), thus becoming the new tag owner (preferably

when the old owner is out of reach so it cannot eaves-

drop on the new values sent to the tag).

We note that the above described method might pose

problems for domains that need to take ownership for

many tags, as e.g. electronics manufacturers or retail-

ers may do (see Scenario 1). They would face a practi-

cal problem of how to determine which tag would be

associated to which tag identifier and which session

key to use, which could easily become an adminstra-

tive nightmare. Also, it would be more in line with An-

derson’s Duckling protocol [39,38] if anyone can just

take ownership of an unowned tag without any other

knowledge. For unowned (and unowned only) tags one

could enable a method that returns the unencrypted tag

identifier. To transfer the ownership of many tags us-

ing a single session key, one could extend the method

transferTagOwnership with an additional parame-

ter s to set the session key on the tag to a fixed value.

7.3 Granting access to a domain

To grant a domain D access to a tag t, its access set

entry At[D] needs to be set with a new encrypted tag

identifier and a new diversified access key. This process

is again a three party protocol that is implemented by

two method calls. None of these methods require addi-

tional permission tokens to be executed. The first me-

thod called (by the tag owner) is

GrantTagAccess(caller ,D) :

verify owner = caller ;

A[D] := ⊥ ;

The tag identifier, the value of the session key as well

as the value of the message counter n are sent to the

domain D out of band. He subsequently calls (not au-

thenticating and starting a new session!)

AcceptTagAccess(caller ,D, id, ka) :

verify A[D] = ⊥ ;

A[D] := (id, ka, false) ;

computing id = (u,v) = (t · PKxD, g
x) and ka = {t}kA

as in the case of TakeTagOwnership. Note that the

remarks made for TakeTagOwnership with respect

to the need to communicate the tag identifier, apply

here equally well. Also, an improvement to these func-

tions can be made if it would not be necessary to have



15

a pending session in between the calling of GrantTa-

gAccess and AcceptTagAccess as a refusal to exe-

cute AcceptTagAccess would constitute a denial of

service.

RevokeTagAccess(caller ,D) :

verify owner = D ;

A[D] := ⊥ ;

7.4 Re-encrypt identifiers

The following two functions allow a reader to re-encrypt

all encrypted tag identifiers stored in A. First the rea-

der retrieves the current encrypted tag identifiers in an

array through the following method.

ReEncryptGetIds(caller) :

verify owner = caller ;

return a list of all encrypted tag identifiers in A ;

The reader then computes the re-encryption of each of

the entries in A as described in Sect. 6.1, creating a new

array R. Finally, to upload the new entries to the tag, it

calls the following method.

ReEncryptPutIds(caller , R) :

verify owner = caller ;

store each entry in R in the corresponding location

in A ;

Both methods can only be called by the tag owner. Al-

ternatively, one could require that the caller owns a per-

mission token to call the method.

7.5 Managing objects

Managing an object involves the creation, deletion or

update of the object on a particular tag t. These are

handled by the following methods.

To install an object, one needs to call the following

method on the object manager object Ω. Depending on

requirements, one may decide that further permission

tokens are necessary, or instead require a specific per-

mission token from the tag management object .

InstallObject(caller , i, o, k) :

verify owner = caller ;

verify that object with name i does not exist on the

tag yet ;

create a new object o with name i with class key k ;

To update or delete an object, one needs to call one of

the following methods on the object to be updated or

deleted. Additional permission tokens from that object

may be required. Only the owner of a tag can delete an

object.

UpdateObject(caller , i, o) :

update object with name i to o ;

UpdateClassKey(caller , i, k) :

update the class key of object with name i to k ;

DeleteObject(caller , i) :

verify owner = caller ;

verify i ≠ Ω ;

delete the object with name i ;

Note that by implementing object management this

way, objects can only be managed by domains that

– have access to the tag because they are a member

of its access set A, and

– have the correct permission token for the tag man-

agement object Ω, issued using its class key kΩ.

Note that the tag management object itself can also be

updated this way (and in particular its key), but cannot

be removed or created. When tags are created, a default

tag management object is present on the tag.

Also note that neither the tag owner nor the owner

of the tag management object is capable of removing

objects that they do not own, or do not have a delete

permission for. In order to prevent tags becoming un-

usable because of the multitude of objects installed on

it, one might consider to extend the functionality of

RelinquishTagOwnership to include the deletion of

every object (except, of course, the tag management ob-

ject) on the tag.

8 Security analysis

We first give a security analysis of the authentication

protocol from Sect. 6 against the most important se-

curity properties mentioned in that section. We then

analyse the security of the method invocation protocol

from Sect. 7.1.

The adversary we consider has full control over the

communication medium: he can block, intercept, dupli-

cate, modify and fabricate arbitrary messages. He can,

however, not create valid MACs for messages if he does

not know the key, and cannot encrypt or decrypt mes-

sages for which he does not know the symmetric key.

The adversary can corrupt arbitrary tags and hence can

know their full state including any keys they store. The

adversary can also corrupt arbitrary readers. However,

such readers are known to be corrupted and the system

is notified of any such corruption.

Let γ be the security parameter (implicitly defined

by the size of G (see 6.1) and the choice of the size of

the symmetric keys).

We first prove the security of the authentication pro-

tocol.



16

Lemma 1 Let a reader from domain D call the function

AuthenticateR(skD, PKD, kA) which returns (σ , t′). Let

tag t call AuthenticateT () which returns (σ ′,D′). Then

σ = σ ′ only if t = t′ and D = D′. No other entity not in

domain D knows σ .

Proof Consider the protocol in Fig. 1. Suppose σ = (s⊕

s̄′) = (s′ ⊕ s̄) = σ ′. Then the reader accepted the mes-

sage {q′; s̄}k′a . Hence ka = {t
′}kA as computed by the

reader equals k′a. As k′a is retrieved from A[D′] and kA
is only known to D this proves D = D′

Similarly the tag must have accepted the message

{id′; ǫ; r ′;q;δ; s}ka using its own key k′a. Again for ka =

{t′}kA we must have k′a = ka. Because only t holds ka =

{t}kA we must have t = t′.

To know σ one needs to know both s and s̄. This re-

quires one to know ka. Clearly t knows this. Otherwise,

it requires one to know kA (and t). This is only known

to members ofD. This proofs the final statement of the

lemma. ⊓⊔

Privacy after authentication or full re-encryption is

guaranteed by the following lemma.

Lemma 2 Let t be a tag, whose tag identifier t for do-

main D gets re-encrypted from id to id′ (either by au-

thentication or by a full re-encryption). Let id′′ be the

encrypted tag identifier for domain D of an arbitrary

tag t′ ≠ t. Then there exists no adversary (that has no

access to the private keys of domain D) with resources

polynomially bounded in γ that can decide whether id′

and id′′ or id′ and id are encrypted tag identifiers of the

same tag.

Proof In [18] it is shown that, given our use of ElGamal

over our choice of group G, there does not exist an ad-

versary with resources polynomially bounded in γ that

can properly match the re-encryptions of two cipher-

texts with the original input ciphertexts. The adversary

linking either id or id′′ with id′ would trivially solve this

problem too, and hence cannot exist either. ⊓⊔

Resilience to reader compromise is shown by the

following lemma.

Lemma 3 A reader from domain D reported stolen in

epoch e cannot decide whether two tags that have suc-

cessfully authenticated with an unstolen reader from do-

main D in epoch e′ > e corresponds with a tag observed

before that authentication.

Proof At the start of epoch e′, we have ǫ = e′, and all

readers in domainD that are not reported stolen receive

new epoch keys (skD
′, PK′D) that are stored in E[ǫ]. If a

tag authenticates with this reader, according to the pro-

tocol, it receives a new encrypted identifier encrypted

with the keys (skD
′, PK′D). Let two tags meet such a rea-

der, obtaining encrypted tag identifiers id′a and id′b in

exchange for their old identifiers ida and idb. If subse-

quently these tags meet a reader from domain D that

was reported stolen in epoch e < e′, this reader does

not own the key pair (skD
′, PK′D) and hence cannot de-

crypt id′a or id′b. Therefore, by Lemma 2, the reader can-

not link the previous encrypted identifiers ida and idb.

⊓⊔

Finally, we show security of the method invocation

protocol.

Lemma 4 A tag t only executes a method f of class c

with class key kc if a reader in domain D with

– At[D] ≠ ⊥ when it starts the session, and

– permission token kc,f ,D,∆ = {f ,D,∆}kc with∆ > nowt

(when the permission is verified)

issued the command to the execute this method in the

session it started. Moreover, the tag will do so at most

once.

Proof Checking the protocol, we see that a tag t exe-

cutes method f on class c with class key kc when

– it receives a message correctly encrypted and mac-

ed with its session key s, containing the parameters

and the expected message counterm+1, and before

that

– has received a message correctly encrypted and mac-

ed with its session key s, containing f , c, ∆ and a

permission token kc,f ,D,∆ = {f ,D,∆}kc with ∆ >

nowt , and the expected message counter m.

The authentication protocol guarantees (see Lemma 1)

that only if D is a member of At when starting a ses-

sion, the reader and the tag share the same session

key s. Therefore, in the current session the tag only ac-

cepts messages constructed by such a reader in domain

D. This proves that it must have issued the command

to the execute this method in the session it started,

and also that it held the appropriate permission to-

ken. Moreover, due to the use of message counters, the

current session only accepts a particular message en-

crypted for this session at most once. This proofs the

final statement of the lemma. ⊓⊔

9 Concluding remarks and further research

We have presented a model for a fine grained and dy-

namic management of access permissions to RFID tags,

and we have presented privacy friendly protocols effi-

ciently implementing this model. This efficiency is achieved

by avoiding a costly key search algorithm at the reader



17

side. The price to pay is a little less privacy: tags can

be traced in between successful authentications by le-

gitimate readers. However, this is mitigated quite effec-

tively by giving tag owners the possibility to re-encrypt

tag identifiers at any point in time.

Although the model accommodates a multitude of

use cases, in the course of this research we have iden-

tified several capabilities that our current implementa-

tion lacks.

– Access to tags and objects is bound to specific do-

mains. A domain with certain permissions cannot

delegate them to another domain. Instead new per-

missions have to be requested from the tag owner

and the class owner.

– Although access to a tag can be revoked instanta-

neously, permission tokens to access objects can-

not be revoked (although their validity can be con-

strained by using short validity periods).

– Another approach to limit validity of permissions is

to issue one-time only permission tokens that can

be used exactly once to call a particular method on

an object.

– Domains are granted access to specific tags one by

one by the respective tag owners. Permission to-

kens to call a method on an object are however not

tag specific (unless each object of the same class is

given a separate class (or rather object) key.

– The distinction between a permission to access a

tag and a permission to call a method on an object

is confusing and perhaps unfortunate. This distinc-

tion arises from two factors. First, access to a tag

is issued by the current owner, and is maintained

on the tag to allow immediate revocation of access.

Moreover, the privacy friendly authentication pro-

tocol needs to know which domains have access to

the tag – hence tag related access control decisions

are taken at a lower layer than object related access

control decisions.

– Finally, to re-encrypt an identifier, one needs to own

the corresponding access key. This severely limits

the options for owners to re-encrypt their tags. On

the other hand, not requiring such an access key

puts tags wide open to denial-of-service attacks that

feed them with bogus identifiers.

Further research is necessary to see whether these capa-

bilities are truly necessary in real-life applications, and,

if so, how these capabilities can be added efficiently. We

welcome discussion and feedback on these issues.

References

1. Anderson, R. J., and Bezuidenhoudt, S. J. On the relia-

bility of electronic payment systems. IEEE Trans. on Softw.

Eng. 22, 5 (May 1996), 294–301.

2. Avoine, G. Privacy ussues in RFID banknotes protection

schemes. In 6th CARDIS (Toulouse, France, Sept. 2004),

pp. 43–48.

3. Avoine, G., Dysli, E., and Oechslin, P. Reducing time com-

plexity in rfid systems. In Selected Areas in Cryptography

(2005), B. Preneel and S. E. Tavares, Eds., vol. 3897 of Lec-

ture Notes in Computer Science, Springer, pp. 291–306.

4. Avoine, G., Lauradoux, C., and Martin, T. When com-

promised readers meet RFID. In Workshop on RFID Security

(RFIDsec) (Leuven, Belgium, June 30–July 2 2009), pp. 32–48.

5. Avoine, G., and Oechslin, P. A scalable and provably se-

cure hash-based rfid protocol. In PerCom Workshops (2005),

IEEE Computer Society, pp. 110–114.

6. Bellare, M., and Namprempre, C. Authenticated encryp-

tion: Relations among notions and analysis of the generic

composition paradigm. In ASIACRYPT (2000), T. Okamoto,

Ed., LNCS 1976, Springer, pp. 531–545.

7. Black, J., and Rogaway, P. CBC MACs for arbitrary-length

messages: The three-key constructions. In CRYPTO (2000),

M. Bellare, Ed., LNCS 1880, Springer, pp. 197–215.

8. Bogdanov, A., Knudsen, L., Leander, G., Paar, C.,

Poschmann, A., Robshaw, M., Seurin, Y., and Vikkelsoe,

C. Present: An ultra-lightweight block cipher. (to appear).

9. BSI. Advanced security mechanisms for machine readable

travel documents – extended access control (eac). Tech. Rep.

TR-03110, BSI, Bonn, Germany, 2006.

10. Dimitriou, T. A lightweight RFID protocol to protect against

traceability and cloning attacks. In IEEE International Con-

ference on Security and Privacy for Emerging Areas in Com-

munication Networks (SECURECOMM 2005) (2005).

11. Dimitriou, T. A secure and efficient RFID protocol that

could make big brother (partially) obsolete. In PerCom

(2006), IEEE Computer Society, pp. 269–275.

12. Engberg, S. J., Harning, M. B., and Jensen, C. D. Zero-

knowledge device authentication: Privacy & security en-

hanced rfid preserving business value and consumer con-

venience. In 2nd Ann. Conf. on Privacy, Security and Trust

(Fredericton, New Brunswick, Canada, Oct. 13–15 2004),

pp. 89–101.

13. Fan, J., and Verbauwhede, I. Hyperelliptic curve proces-

sor for RFID tags. In Workshop on RFID Security (RFIDsec)

(Leuven, Belgium, June 30–July 2 2009), pp. 129–139.

14. Feldhofer, M., and Rechberger, C. A case against cur-

rently used hash functions in rfid protocols. In OTM Work-

shops (1) (2006), R. Meersman, Z. Tari, and P. Herrero, Eds.,

LNCS 4277, Springer, pp. 372–381.

15. Feldhofer, M., and Wolkerstorfer, J. Strong crypto for

rfid tags - a comparison of low-power hardware implemen-

tations. In Int. Symp. on Circuits and Systems (ISCAS 2007)

(New Orleans, LA, USA, May 20–27 2007), pp. 1839–1842.

16. Gamal, T. E. A public key cryptosystem and a signature

scheme based on discrete logarithms. IEEE Transactions on

Information Theory 31, 4 (1985), 469–472.

17. Garfinkel, S. L., Juels, A., and Pappu, R. RFID privacy: An

overview of problems and proposed solutions. IEEE Security

& Privacy (May June 2005), 34–43.

18. Golle, P., Jakobsson, M., Juels, A., and Syverson, P. F.

Universal re-encryption for mixnets. In RSA Conf. (San Fran-

sisco, CA, USA, Feb. 23–27 2004), LNCS 2964, pp. 163–178.

19. Hoepman, J.-H. Secret key authentication with software-only

verification. In 4th Int. Conf. Fin. Crypt. (Anguilla, British

West Indies, Feb. 20–24 2000), Y. Frankel, Ed., LNCS 1962,

Springer, pp. 313–326.

20. Hoepman, J.-H., Hubbers, E., Jacobs, B., Oostdijk, M., and

Wichers Schreur, R. Crossing borders: Security and pri-

vacy issues of the european e-passport. In 1st IWSEC (Ky-



18

oto, Japan, Oct. 23–24 2006), H. Yoshiura, K. Sakurai, K. Ran-

nenberg, Y. Murayama, and S. Kawamura, Eds., LNCS 4266,

Springer, pp. 152–167.

21. ISO 7816. ISO/IEC 7816 Identification cards – Integrated cir-

cuit(s) cards with contacts. Tech. rep., ISO JTC 1/SC 17.

22. ISO 9798-2. ISO/IEC 9798 Information technology – Security

techniques – Entity authentication – Part 2: Mechanisms us-

ing symmetric encipherment algorithms. Tech. rep., ISO JTC

1/SC 27.

23. Juels, A. RFID security and privacy: A research survey. IEEE

Journal on Selected Areas in Communications 24, 2 (2006),

381–394.

24. Juels, A., and Pappu, R. Squealing euros: Privacy protec-

tion in RFID-enabled banknotes. In 7th Int. Conf. Fin. Crypt.

(Guadeloupe, French West Indies, Jan. 27–30 2003), R. N.

Wright, Ed., LNCS 2742, Springer, pp. 103–121.

25. Juels, A., and Weis, S. Defining strong privacy for rfid. (tech-

nical report), Apr. 6 2006.

26. Juels, A., and Weis, S. Defining strong privacy for RFID. In

5th Ann. IEEE Int. Cont. on Pervasive Computing and Commu-

nications Workshops – Pervasive RFID/NFC Technology and

Applications (PerTec) (2007), pp. 342–347.

27. Lee, Y. K., Sakiyama, K., Batina, L., and Verbauwhede, I.

Elliptic-curve-based security processor for rfid. IEEE Trans.

Computers 57, 11 (2008), 1514–1527.

28. Martin Feldhofer, Johannes Wolkerstorfer, V. R. Aes

implementation on a grain of sand. EE Proceedings on Infor-

mation Security 152, 1 (Oct. 2005), 13–20.

29. Molnar, D., Soppera, A., and Wagner, D. A scalable, dele-

gatable pseudonym protocol enabling ownership transfer of

rfid tags. In Selected Areas in Cryptography (2005), B. Pre-

neel and S. E. Tavares, Eds., vol. 3897 of Lecture Notes in

Computer Science, Springer, pp. 276–290.

30. Molnar, D., and Wagner, D. Privacy and security in library

rfid: issues, practices, and architectures. In ACM Confer-

ence on Computer and Communications Security (Washing-

ton D.C., USA, Oct. 25–29 2004), V. Atluri, B. Pfitzmann, and

P. D. McDaniel, Eds., ACM, pp. 210–219.

31. NIST 800-38B. Recommendation for block cipher modes of

operation: The CMAC mode for authentication. Tech. Rep.

NIST Special Publication 800-38B, National Institute of Stan-

dards and Technology, U.S. Department of Commerce, May

2005.

32. Ohkubo, M., Suzuki, K., and Kinoshita, S. Efficient hash-

chain based rfid privacy protection scheme. In International

Conference on Ubiquitous Computing (Ubicomp), Workshop

Privacy: Current Status and Future Directions (2004).

33. Oswald, E. Suggested algorithms for light-weight crypto-

graphy. Tech. rep., ECRYPT, Sept. 2006.

34. Poschmann, A., Leander, G., Schramm, K., and Paar, C.

New light-weight crypto algorithms for rfid. In Int. Symp. on

Circuits and Systems (ISCAS 2007) (New Orleans, LA, USA,

May 20–27 2007), pp. 1843–1846.

35. Rieback, M. R., Gaydadjiev, G., Crispo, B., Hofman, R. F. H.,

and Tanenbaum, A. S. A platform for rfid security and pri-

vacy administration. In LISA (2006), USENIX, pp. 89–102.

36. Sarma, S. E., Weis, S. A., and Engels, D. W. Rfid systems,

security & privacy implications (white paper). Tech. Rep.

MIT-AUTOID-WH-014, Auto-ID Center, MIT, Cambridge, MA,

USA, 2002.

37. Spiekermann, S., and Evdokimov, S. Critical rfid privacy-

enhancing technologies. IEEE Security & Privacy 11, 2 (Mar.–

Apr. 2009), 56–62.

38. Stajano, F. The resurrecting duckling - what next? In 8th

Security Protocols Workshop (Cambridge, UK, Apr. 3–5 2000),

B. Christianson, B. Crispo, and M. Roe, Eds., LNCS 2133,

Springer, pp. 204–214.

39. Stajano, F., and Anderson, R. The resurrecting duckling:

Security issues for ad-hoc wireless networks. In Security Pro-

cotols, 7th Int. Workshop (1999), B. Christianson, B. Crispo,

and M. Roe, Eds., LNCS, pp. 172–194.

40. Tsiounis, Y., and Yung, M. On the security of elgamal based

encryption. In Public Key Cryptography (1998), H. Imai and

Y. Zheng, Eds., LNCS 1431, Springer, pp. 117–134.

41. Weis, S. A., Sarma, S. E., Rivest, R. L., and Engels, D. W. Se-

curity and privacy aspects of low-cost radio frequency iden-

tification systems. In 1st SPC (Boppard, Germany, Mar. 12–

14 2003), D. Hutter, G. Müller, W. Stephan, and M. Ullmann,

Eds., LNCS 2802, Springer, pp. 201–212.


	Introduction
	State of the art
	On the hardware cost of cryptography
	Our contribution

	Use cases
	Scenario 1 - Supply Chain Management
	Scenario 2 - Smart Tickets
	Scenario 3 - At the Hospital

	System model
	Notation
	Tags and readers
	Classes and objects on tags
	The tag management class

	Domains and Principals
	Ownership
	Permissions
	Operations on a Tag

	Analysis
	Mapping of Scenario 1
	Mapping of scenario 2
	Mapping of Scenario 3

	Data structures
	Keys
	Other data stored on the tag
	Permissions

	Mutual authentication and establishing a session key
	Re-encryption
	Alternative approaches

	Protocols
	Calling a method
	Tag ownership functions
	Granting access to a domain
	Re-encrypt identifiers
	Managing objects

	Security analysis
	Concluding remarks and further research

