university of faculty of matl}ematics
groningen and natural sciences

Providing unlinkability of
transactions with a single
token in U-Prove

Erik Weitenberg

Master’s Thesis in Mathematics

July 2012

iii

Providing unlinkability of
transactions with a single
token in U-Prove

Summary

Using the U-Prove system originally conceived by Stefan Brands [2000], one
can obtain credentials from a central authority, and partially or completely
disclose them to relying parties. The user’s privacy is guaranteed as long as
he does not show any credential more than once. However, this requirement
forces a privacy-conscious user to request and store many copies of essentially
the same credentials.

We present a modified set of protocols intended to make linking the different
times a credential was shown infeasible, while retaining unlinkability between
the issuing and showing phases.

Master’s Thesis in Mathematics

Author: Erik Weitenberg

Supervisors: Jaap-Henk Hoepman, Jaap Top
Date: July 2012

Johann Bernoulli Institute
P.O. Box 407

9700 AK Groningen

The Netherlands

Cover illustration by Andrew Weldon. Used with permission.

Preface

This thesis is the final part of my education to obtain a Master’s degree in
mathematics at the University of Groningen. It is also the result of a nine
month internship at TNO in Groningen in the Security group.

This project would not have been possible without the support of many
people. I would like to express my gratitude towards Jaap-Henk Hoepman
and Jaap Top, my supervisors, for introducing me to the field of cryptology
and for their patient and enthusiastic help during my research project.

Furthermore, I would like to thank my colleagues at TNO for the wonderful
time I have had during my internship there, and especially Wouter Lueks
and Gergely Alpar for their guidance and help in writing this thesis, and for
the interesting discussions we had about their research.

Finally, I wish to thank my friends and family for their continuing support,
strength and encouragement throughout the duration of my studies.

Contents

Introduction

1.1 Credentials
1.2 U-Prove oo
1.3 Problem statement L.
1.4 TNO . ..o
1.5 Readingguide Lo oL

Basic cryptography

2.1 Secrets and eavesdropperso
2.2 Public-key cryptography
2.3 Signatureso
2.4 Cryptography using elliptic curves
2.5 Proof techniques

Proofs of knowledge

3.1 An example: where’s Wally?

Anonymous credentials based on U-Prove

4.1 Credentials o
4.2 Setupphase
4.3 The issuing protocol Lo
4.4 The showing protocol

4.5 Combining the protocols

vii

12

15
15
16

5 Extension to the U-Prove protocols

5.1 Design considerations
5.2 Stakeholders. Lo
5.3 Systemsetup
5.4 Issuing protocolo
5.5 Showing protocol Lo

6 Discussion
6.1 Futurework

Bibliography

31
31
35
35
35
39

45
45

47

Introduction

In recent years, many advances have been made in technology intented for use
by law enforcement, such as full-body scanners and automated aggregation
of all kinds of data about citizens. This leaves many people concerned about
their privacy. Perhaps rightfully so: according to research by Bits of Freedom,
citizens’ privacy takes a back seat as far as the Dutch police is concerned.

On the other hand, many claim that the privacy concern is indeed second
to the need to promote efficiency and public safety, and that the measures
constitute only a minor violation of privacy. Unfortunately, this argument
sometimes underestimates the amount of information you can gain by collec-
ting very little data: for example, in the United States, 87% of citizens could
in 2002 be identified by just the combination of their date of birth, gender
and zip-code. [Sweeney, 2002]

Instead of trying to decide which of these two needs has to give way to
the other, it would be nice if we could accomodate both of them. Current
systems are often more powerful than they need to be, and rely on their
operators to follow the rules (for example, to delete certain data that doesn’t
need to be kept). A more desirable system might collect no identifying data
about anyone, except for the data it needs to function correctly. This effort
is sometimes reffered to as privacy by design, and this thesis is part of that
effort.

'Research findings and sources (in Dutch): www.bof.n1/2012/07/04/persbericht
-politie-overtreedt-op-grote-schaal-wet-bij-gegevensbescherming

www.bof.nl/2012/07/04/persbericht
-politie-overtreedt-op-grote-schaal-wet-bij-gegevensbescherming

2 Chapter 1. Introduction

1.1 Credentials

Suppose you were to go to the store to buy delicious rum. In most parts
of the world, the store owner is obliged to ask you to prove that you are
older than 18 years old, or maybe even 21. You can do this by showing him
your drivers’ licence or perhaps your passport; if you do so, the salesman will
indeed believe that you are old enough.

You could, of course, also try to just say “I am 19 years old” very convincingly,
but this doesn’t often work. This is natural to most of us: the important
thing is not just the message ‘more than 18 years old’, but also the one
attesting it (in this case, the government). This is why you normally use
a drivers’ licence: it’s hard to falsify, and genuine ones are printed by the
government and contain the holder’s date of birth.

We often refer to this combination of a statement and a way to verify its
authenticity as a credential. Credentials are everywhere. Your passport and
drivers’ licence are common examples, and so is your high school diploma, a
combination of a username and password to your e-mail inbox, or even the
key to your house.

In this work, we will mainly concern ourselves with credentials that are
verified automatically, since a computer is in a much better position than
a human to remember all credentials it sees. A popular example is found
on the smartcard, a small card that looks like a credit card, but contains a
tiny computer, capable of storing some information and performing some
computations. These can store credentials and reproduce them when held to
a card reader. They are currently used to pay for public transit, for example
in the Netherlands (the OV-chipkaart) and the city of London (the Oyster
card). Many modern passports contain chips as well.

While much of our discussion is also applicable to mobile phones or personal
computers, smartcards present an additional challenge. Their limited pro-
cessing power and memory require that handling credentials is quick and
doesn’t require much memory.

1.2 U-Prove

This thesis is concerned with methods of showing credentials to others —
for example, to a shopkeeper, in order to buy restricted goods. Doing that
normally does not impact your privacy very much, since the shopkeeper
probably won’t remember you. Using smart cards for this complicates things
a little: you can’t just say “here’s my passport data,” since anyone can then
copy that data and pretend to be you. To solve this problem, methods exist

Chapter 1. Introduction 3

to prove to someone that you have a passport with certain information on it,
and also that you are actually the person the passport was issued to.

One such method, and the main subject of this thesis, is U-Prove. Designed
by Brands [2000], it provides sophisticated ways to reveal credentials, even
partially, and to prove statements about certain types of information without
completely revealing it (for example, “my date of birth is more than 18 years
ago”). Also, the shopkeeper can’t find out if you are the same person who
bought rum just yesterday or not, even if he is secretly a government agent
and has copies of all credentials ever made.

Unfortunately, privacy has its price. Currently, the guarantee that nobody
knows what you do with your credential only holds if you request many
credentials, and discard each one after showing it to someone. With smart
cards, credentials are just files, and handling multiple credentials is not very
difficult; still, it’s cumbersome, because today’s smart cards do not have
a very large amount of storage, and nobody wants to go out and get new
credentials every week.

The cause of this problem is that, in U-Prove, the credential you get from
the government is issued using a blind signature — that is, the government
agent doesn’t see the final credential, but instead signs an intermediate form,
which the recipient can then transform into the final credential on her own.
When showing it, she hands over the entire credential and proves it is indeed
hers. Of course, the shopkeeper can just save the credential with the receipt
of your purchase, which is why you shouldn’t use it twice if you're concerned
about your privacy.

1.3 Problem statement

Currently, using U-Prove in a privacy-conscious way implies discarding a
credential after using it just once, as discussed above. We would like to
modify the U-Prove system such that it no longer has this requirement,
but does retain the current advantages of selective disclosure of credentials
and the ability to prove compound statements about them. Of course, this
modified system should also guarantee that it is still not possible to connect
different transactions made using the same credential, as is currently the
case.

1.4 TNO

This thesis is the result of an internship at TNO, which is short for Nederlandse
Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek. TNO is a

4 Chapter 1. Introduction

research organisation which aims to develop practical knowledge and expertise
with which to assist and advise companies and governments.

During my internship at TNO, I was part of the security group, which studies
the security and privacy aspects of digital systems. This work is very varied;
some of my collegues do practical research on smartcard software, while
others perform risk assessments, and audits for other companies, or help
create new security policies.

Much of TNO’s work is done in response to customer orders, but to maintain
a useful knowledge base, it also needs to do research that is not the direct
result of an external request. This thesis is part of that effort.

1.5 Reading guide

This thesis is intended to be readable by anyone with a background in
mathematics. To this end, chapter 2 provides a brief introduction to crypto-
graphy, with references to more in-depth material. For those with a general
background in cryptography, chapter 3 elaborates on interactive proofs of
knowledge and chapter 4 details the precise workings of two U-Prove proto-
cols for issuing and showing credentials. Chapter 5 contains our proposed
modifications of the U-Prove system, and a discussion of their security. Fi-
nally, chapter 6 concludes this thesis with a summary and suggestions for
further research.

Basic cryptography

Cryptography, in general, deals with the problem of sending a message to
someone, in such a way that no-one but the intended recipient can read
it. The problem itself has existed for quite a while, and many solutions
have been invented, used and broken over the years. As an introduction, we
will briefly look at a few historical methods of secret keeping. We’ll then
introduce a category of methods called public-key cryptography, which is
quite popular today. Finally, we present a brief introduction to cryptography
using elliptic curves.

Readers who are interested in exploring these subjects in (much) more detail
are advised to read [Smart, 2003].

2.1 Secrets and eavesdroppers

Imagine two people, called Alice and Bob for mostly historical reasons. Alice
would like to send a secret message to Bob. However, they live far apart and
can only send their message using the postal service. A person called Eve
works at the post office, and she will open the message secretly and try very
hard to read it.

To prevent Eve from succeeding, Alice can try to use a code language to
change her message into something Eve will never understand. One way of
doing this is by replacing every letter with another letter, for example, A
becomes C, B becomes D and so on. However, given a long message, it’s very
conceivable that Eve will pick up on the trick. Alice can make it a bit harder

6 Chapter 2. Basic cryptography

by using a more random table of replacements, like the following:

ABCDEFGHIJKLMNOPQRSTUVWIXYZ
DNRSOCGYMVTUPQBHXLEFAJIZWK

Still, if the message is long enough, Eve can find out what it says. In English,
the letter E is used most often, followed by T, A and so on. By counting how
often each letter appears in the secret message, she can probably recover
enough columns in the table to understand the message completely.

Now, Alice can improve this system still: she could use five (or five hundred)
tables of substitutions, encoding each subsequent letter using a different table.
However, people have computers these days, and if Eve waits long enough
she might be able to collect enough text to find out how many tables Alice
has used, and what substitutions they contain.

The above is an example of a symmetric encryption: you need the same
secret information (the key) to encrypt the message as you need to decrypt
it. The symmetric encryption schemes used in the ‘real’ world are more
advanced, but they share a common problem: for both parties to share the
same secret key, they must have communicated securely in the past. Also,
Alice cannot re-use the key she shares with Bob to exchange secret messages
with Charlie, since Bob will be able to read those messages as well; hence,
many more keys are needed as the number of people inceases.

This branch of cryptography is called symmetric cryptography. We will be
avoiding it in favour of public-key cryptography, but if you’re interested,
Nigel Smart’s Cryptography: an Introduction is a good place to start.

2.2 Public-key cryptography

In the previous example, both Alice and Bob had to know a secret key. This
is not always feasible, and fortunately an alternative exists in the form of
asymmetric encryption schemes. We will discuss two examples.

2.2.1 The ElGamal cryptosystem and CDH

All operations in the ElGamal system take place in a multiplicative group
G, generated by an element g of prime order p. These parameters should be
known to everyone in the system.

Alice first generates a private key, which is a number x chosen uniformly at
random from Z/pZ. (We will henceforth denote such random choices by €r.)
She calculates her public key h = ¢g*, and makes sure everyone knows it.

Chapter 2. Basic cryptography 7

Figure 2.1: The kernel of the mod n map is the same as the kernel of the
exponentiation map, i.e. (1 + nZ)/(n’Z).

Bob can now send Alice an encrypted message. He starts with a message m,
which is an element of G, and Alice’s public key h. First, he picks a random
number y € Z/pZ and calculates the first part of the ciphertext, ¢; = g¥.
The second part of the ciphertext is co = m - h¥. He sends (c1, ¢2) to Alice.

Alice assumes that the ciphertext she just received is made in the above
way, and she knows z, but not y. Still, she can calculate hY = ¢*¥ as cf.
She calculates the inverse of this element in G, and recovers the message by
calculating m = cg - (cF)7L.

Though it is very difficult to decrypt ElGamal-encrypted values without
knowing the secret key — which we will prove in section 2.5 — it does have
one particular weakness called malleability. Suppose Bob has sent Alice a
message (g¥, m - hY), but Eve intercepts it and multiplies the second part of
the ciphertext by 2 before sending it on to Alice. Now when Alice decrypts
the message, she will get 2m instead of m.

2.2.2 The Paillier cryptosystem

In the next chapters, we will use a slightly more complicated system for
excryption: the Paillier system [Paillier and Pointcheval, 1999]. It uses a
group G = Z/n*Z, where n is the product of two large primes p; and ps.
We also choose an element g € (Z/n?Z)* such that n divides ord(g). To
enable Bob to send her an encrypted message, Alice keeps the p; secret, and
broadcasts g and n.

To encrypt a message m € [0,n) for Alice, Bob calculates [m] := ¢"p"
mod n?, where p €r Z/nZ*. To do this, he lifts p to its lowest representative
in (Z/n%7)*, see figure 2.1.

Again, Alice has a way to decrypt the ciphertext using her secret information:
she calculates A = lem(p; — 1,p2 — 1). Then

L(c* mod n?)
m="TA

mod n,
L(g

mod n?2)

8 Chapter 2. Basic cryptography

where L(z) := (z — 1)/n. To understand that this works, observe that
g* € ker(mod n), so it can be written as 1 4 an for some number a, which
is unique up to multiples of n. In this group, (1 + an)k = 1 + akn, hence
¢ =1+ amn mod n?.

Since we also know ¢* = 1 + an, it is now possible to calculate m. It is a

solution of the equation anm = ¢™ — 1 mod n?, and therefore of

g)\m -1
am = >——— mod n.
n
This equation has a unique solution m € [0,n) provided that a is a unit

modulo n, which it is because n divides the order of g.

The advantage of Paillier encryption over ElGamal is that it is possible for
Bob to perform calculations on the encrypted data without getting access to
the plaintext. Two operations are possible:

e Addition: [m;] - [ma] decrypts to mi + mg mod n;

e Multiplication by a scalar: [m]* decrypts to k-m mod n.

This way, Alice can send some encrypted values to Bob, who performs some
operation involving his secret data, and then sends the result back to Alice.
Alice can decrypt and use the result, while Bob never sees Alice’s secret data.

2.3 Signatures

Although it is nice to be able to prevent others from reading the messages you
send, it is not the only thing you can do with cryptography. A second popular
application is the digital signature, which allows you to ‘sign’ a message.
The recipient of your message can check the signature, and if anyone has
tampered with your message after you signed it, the signature will be invalid.

2.3.1 Hash functions

We will illustrate the concept using the ElGamal signature. This signature
scheme needs a special kind of function called a hash function. An ideal hash
function transforms its input into an entirely random number in a certain
range or group, but when given the same input twice, it will produce the
same output twice as well.

In reality, hash functions H can not behave entirely randomly; they use a
deterministic algorithm to arrive at their answer. Their ‘strength’ depends
on how difficult it is

Chapter 2. Basic cryptography 9

1. to find two inputs m; and mgy such that H(mi) = H(mz) (collision-
freedom), or

2. to find an input m, given a desired output h, with H(m) = h (pre-image
resistance), or

3. to find an input mgy given my and h such that H(my) = H(mz) = h
(second pre-image resistance).

In general, the output of a hash function is of a fixed size, while it accepts
input of any size. The fact that the output of a hash function changes
dramatically if the input is changed even slightly is often used to verify, for
example, that a file has not been damaged while being sent over a network.

2.3.2 The ElGamal signature scheme

Suppose Alice sends a message m to Bob, and wants to sign it. Again, she
randomly chooses a secret key x and calculates her public key h = g*.

To sign the message, she generates a random number y € (0,p — 1) with
ged(y,p — 1) = 1. With it, she computes s; = ¢¥ (mod p) and sy =
(H(m) — zs1)y~! (mod p — 1). In the event that sy = 0, Alice starts over.
She sends the signature (sy, s2) to Bob along with the message.

Bob then verifies the signature by checking if g*(") L hts7? (mod p). If the
signature is correct, the right hand side is equal to

ho1si? = hgygy(7'l(m)—9081)zf1

= gacgyg?-[(m)—:cgy
= gHm),

The ElGamal signature is believed to be secure as long as the hash function is
secure, though no reduction to a complexity assumption is known [ElGamal,
1985].

2.4 Cryptography using elliptic curves

Until now, we have confined our discussion to groups of integers modulo n.
While this makes for a simple discussion, there are other choices. A common
one is the group of points on an elliptic curve. In this section, we give a short
overview of this group and its advantages over Z/pZ. For a more thorough
introduction, see Silverman and Tate [1992].

10 Chapter 2. Basic cryptography

2.4.1 Generic elliptic curves

The elliptic curves we will study are the solution sets to equations that look
like this:

y? =23+ az +b. (2.1)

We take a,b,z and y to be elements of a field K of characteristic' not equal
to 2 or 3, such that the resulting curve is smooth. We will first consider the
case where K = Q, as this makes for nice pictures like the ones in figure 2.2;
in the later chapters, K will usually be a prime field Z/pZ.

The group of points on an elliptic curve, E(K), can then be defined as those
points (x,y) € K? that satisfy the equation, together with a point at infinity
O which will act as the group’s zero element.

The group operation, point addition, is based on the rule that if three points
on an elliptic curve are collinear, their ‘sum’ is defined to be zero. The
point at infinity is defined to lie on all vertical lines. With this in mind, we
conclude that the additive inverse of a point P = (x,y) must be the point
—P = (z,—y).

To ‘add’ two nonzero points P,Q € E(K), we

1. draw a line connecting the points P and @,

LA field’s characteristic is the smallest number of times you must add 1 to itself to
obtain 0 in the field. If this is not possible, the characteristic is defined to be 0.

(a) An example of point addition. (b) An example of point doubling.

Figure 2.2: Point addition and doubling on the elliptic curve defined by
y? =23 — 7z + 10.

Chapter 2. Basic cryptography 11

2. find the third point of intersection R (counting multiplicity) of the line
and F, and

3. keeping in mind that P+ Q + R = O, define P+ @ := —R.

A remark about this procedure are in order: adding a point P to itself is not
possible using this method. Instead of step 1, one should

1’. draw a line through P, tangent to the curve.

The group we have just created is in many cases infinite, and isomorphic to
the direct sum of one or two finite cyclic groups (Z/nZ for various n) and a
number of copies of Z: w

EQ) ~Z/mZBZ/nZ L&D L.

2.4.2 Explicit formulas for the group law
Having to construct points geometrically gets tedious, but fortunately it is
possible to construct explicit formulas for point addition.

First, let’s see what happens when we add two different points P = (zp,yp)
and Q = (zQ,yqg) on the curve, assuming P # —(@Q. The line that connects
them is given by

, W=yp— Arp.
TQ —xp

Yy = Az + 122
By substituting this for y into the elliptic curve equation 2.1, we get an
equation in x:

23— X222 4 (a — 2)z + (b — p?) = 0.

The roots of this equation are precisely the coordinates xp,zq and xg, so
we find

22— N22% + (a — 22\)z + b — p? = (x — 2p)(x — 2g)(z — xR),
hence
SCR:)\szL‘p*SCQ and yp = Az + u.

Of course, since P+ Q = —R, yp1Q = —Yr-
If P=Q (i.e. we are calculating 2P), only the slope of the line changes, as
it is now a tangent line to the curve:
\— 329, + a
2yp

12 Chapter 2. Basic cryptography

2.4.3 Elliptic curves over finite fields

For our purposes, it is more convenient to use finite fields instead of Q. The
resulting elliptic curve group then becomes finite as well; in fact, the elliptic
curve groups F(Z/pZ) are all isomorphic to a cyclic group or the direct sum
of two cyclic groups.

Ezxample. The elliptic curve we considered earlier also exists over the finite
field Z/77Z, where it is defined by the equation y? = 23 +3. By trying all values
for z and y between 0 and 6, we find that twelve points in Z/7Z? satisfy this
equation: (1,2),(1,5),(2,2),(2,5),(3,3),(3,4),(4,2),(4,5),(5,3), (5,4), (6,3)
and (6,4). The elliptic curve group contains these points and the point at
infinity, O.

Of course, we can also use the group structure to find other points if we find
one point more or less by chance. Suppose we know that P = (1,2) is on the
curve. Then we can use the formulas above to calculate

P=(1,2) 6P = (5,3) 10P = (2,5)
2P = (6,3) 7P = (5,4) 11P = (6,4)
3P =(2,2) 8P = (3,4) 12P = (1,5)
4P = (4,5) 9P = (4,2) 13P =0
5P = (3,3)

Therefore, the points on this curve form a group isomorphic to Z/13Z. See
figure 2.3 for an illustration of the group’s structure.

2.5 Proof techniques

The above example also illustrates what makes elliptic curves suitable for
cryptography: the coordinates of these points are, at a glance, random.
Given the point (4,2) on the curve, it is not immediately obvious how many
times you have to add P to itself to obtain (4,2), and indeed, the difficulty
of solving this problem for curves over even medium-sized fields is one of the
things that makes elliptic curve cryptography possible.

In general, to prove security of cryptographic schemes, we will often use a
special kind of axioms called complexity assumptions. These consist of a
difficult problem like the one mentioned above, and the assertion that solving
such a problem takes a very long time; to be precise, the time it takes grows
exponentially as a function of the number of bits needed to express the size
of the group we are using. The above problem is summarised in the following
complexity assumption:

Chapter 2. Basic cryptography 13

Figure 2.3: Illustration of the curve group of y? = 23 + 3 over (Z/7Z)?. The
arrows represent addition of P.

Complexity Assumption (Discrete Logarithm (DL)). Given an elliptic
curve group E C E, ,(Z/pZ) with generator P and a random point A € E,
it is difficult to calculate a such that aP = A.

In this case, the reason it takes so long to solve this problem is that you have
to calculate aP for every possible value of a to see if it happens to be equal
to A. Slightly faster algorithms exist, but they do not bring the required
time down to a level we call ‘fast’, that is, polynomial time.

To prove that a certain cryptographic scheme is secure, we will often argue
by reduction to absurdity: if someone can quickly break a given scheme, we
can also make him solve a problem considered difficult by disguising it as,
for example, an encrypted message. This type of proof is called a reduction,
and the ‘someone’ is called the adversary.

To illustrate this method of proving, we will first discuss an example. We
will also list some complexity assumptions to be used later on, and their
relation to each other.

2.5.1 ElGamal encryption revisited

As an example, we will prove that it is difficult to reverse the ElGamal
encryption scheme. The proof relies on the following complexity assumption
about a group G:

14 Chapter 2. Basic cryptography

Complexity Assumption (Computational Diffie-Hellman (CDH)). Given
a group G with generator g and two elements g%, ¢® € G, it is very difficult
to compute g?.

Lemma 1. Someone who can reverse the ElGamal encryption in polynomial
time can also solve the Computational Diffie-Hellman problem in polynomial
time.

Proof. Suppose Eve can reverse the ElGamal encryption: given a generator
g of a group G, a public key h and a ciphertext (¢, c2), she will produce a
plaintext m.

As we attempt to solve the CDH problem, we are given ¢ and g°. We tell
Eve that g2 is Alice’s public key, and give her (g°, g?) for some random z as
the ciphertext. Eve will proceed to give us a plaintext m; when she does we
calculate g*/m. This is the solution to the CDH problem, since

(c1,¢2) = (9", 97) = (¢°,mh") = (g", mg™).

Therefore, assuming Eve has correctly calculated m, her method can be used
to solve the CDH problem as well. Hence it is at least as hard to reverse
ElGamal encryption as it is to solve the CDH problem. O

2.5.2 The discrete-logarithm representation

In the following chapters, we will rely on one more assumption.

Complexity Assumption (Discrete-logarithm representation (DLREP)).
Given a group E containing points Pi,..., P, and A, it is hard to find a

discrete-log representation aq, ..., a, such that
n
i=1

Proof by reduction to DL. Again, we assume that an adversary exists that
can solve the above problem. She will help us solve the DL problem.

Suppose we are given an instance of the DL problem, that is, a group E
with generator P and a random point A. We pick some random z; and set
P,=x;Pfori=1,...,n. We have the adversary give us a;. Now,

n
logp A = Z a;T;,
i=1

which solves the DL problem. O

Proofs of knowledge

Knowing a secret (for example a password, a secret key, etc.) is in general
not very useful if you can’t convince anyone else you know it; and if you just
tell them the secret they will believe you, but the secret won’t be very secret
anymore. This is why many cryptographic protocols, including U-Prove,
employ proofs of knowledge.

3.1 An example: where’s Wally?!

Starting in 1987, the British illustrator Martin Handford published several
books in a series called Where’s Wally? (known in the United States as
Where’s Waldo?). They contain large illustrations of crowds, and if you
look long enough you can find Wally, a man in a red-and-white striped shirt,
somewhere in each illustration.

Now, suppose you’ve found Wally on a print and want to convince your friend
you know where he is, without just pointing him out (since that would ruin
the game). A possible way to do this is to find a large sheet of cardboard and
cut a Wally-sized hole in the middle. Then, you can hold the print behind
the cardboard sheet, so Wally is visible through the hole. Now, your friend
sees Wally, but doesn’t know where on the page he is.

Proofs of knowledge come in two varieties: interactive (like the Wally-proof)
and non-interactive. The former requires that the prover and the verifier of
the proof exchange messages in turn, the latter allows the prover to ‘write

!This example is taken from, and discussed in much more detail in Naor et al. [1999].

16 Chapter 3. Proofs of knowledge

Figure 3.1: The Department Store illustration from one of Wally’s books

down’ the entire proof so it can be verified later. We will mainly concern
ourselves with interactive proofs of knowledge.

Ideally, a proof of knowledge convinces the verifier that the prover knows a
secret, but does not ‘leak’ any information. Also, like the Wally-proof, the
verifier should not be able to use the proof to convince anyone else. We call
a proof with these properties a zero-knowledge proof of knowledge.

3.2 The Schnorr proof of knowledge

As a first mathematical proof of knowledge, we will discuss the Schnorr proof
of knowledge (POK). It allows us to prove, given a group E generated by a
point P of order ¢, and a point X € E, that we know a number x € Z/qZ
such that P = X. Recall that it is difficult for the verifier to calculate
x himself, since doing that requires him to solve the Discrete Logarithm
problem in E.

The proof of knowledge consists of a four-step protocol between the Prover
and the Verifier. It works as follows:

Commitment First, the Prover generates a random number w in Z/qZ.
She sends W = wP to the Verifier. This random point on the curve is
called the commitment.

Challenge The Verifier generates a random number v in Z/qZ. He sends it
to the Prover.

Chapter 3. Proofs of knowledge 17

Response The Prover now calculates » = vz + w and sends this value to
the Verifier.

Verification The Verifier now checks that W = rP — vX. If so, he believes
the Prover indeed knows x.

This protocol is summarised below. We will often lay protocols out in tables
like these; each line contains one move made by one of the participants. These
should be read like a computer program; the moves are made strictly in the
order described, and no move begins before the previous one has completed.

Protocol 3.1: Schnorr’s proof of knowledge

Common information: group E generated by point P with
order ¢, and a multiple X of P.

Private information for the Prover: the number x € Z/qZ*
such that P = X.

Prover Verifier Comments

select w e Z/qZ

send wP — into W Commitment
select v €r Z/qZ

into -y <— send vy Challenge

send yx 4+ w — intor Response

verify W Zrp— vX Verification

Note that it is quite possible to use this protocol as a means of identifying
someone: if X is Alice’s public key, she can use a Schnorr proof of knowledge
to prove she knows the corresponding private key.

3.2.1 Proofs of security

The Schnorr proof of knowledge, while simple, is quite safe, so we can use it
to introduce the different aspects of security. The Schnorr proof of knowledge
does assume the Verifier is honest; that is to say, he follows the protocol
correctly.

Completeness A Prover who follows the protocol correctly and knows z
will be able to convince an honest Verifier of this fact.

Soundness Only with negligible probability can a cheating Prover convince
an honest Verifier that she knows z, even though she really doesn’t.

18 Chapter 3. Proofs of knowledge

Honest-verifier zero knowledge The only thing an honest Verifier learns
from an execution of the protocol is that the prover knows x. In
particular, he gains no evidence with which to convince anyone else.

Proposition 1. The Schnorr proof of knowledge is complete.

Proof. The Verifier checks if W = rP —yX. But W = wP, X = P and
r = ~yx 4+ w, so this comes down to verifying that

wP = (yx + w)P — yx P,
which is obviously true. O

Proposition 2. The Schnorr proof of knowledge is sound.
To prove soundness, we require a new proof technique:

Extraction We assume, as is often the case, that all participants in the
protocol are computers running algorithms that tell them how to engage
in the protocol. This means we can stop, restart or rewind them as
well. This allows us to extract certain valuable information from an
adversary which has the ability to cheat at our proof of knowledge.

Proof. Suppose we are given a Prover-algorithm that has a good chance of
completing a successful Schnorr proof without knowing x for more than one
possible challenge sent by the Verifier. Since we are assuming the Prover can
be stopped and resumed at will, we stop it after it has sent its commitment.
By restarting it twice from this state, but giving it different challenges, we
have a non-negligible probability to end up with two tuples (W,~,r) and
(W', 1").

Assuming the Verifier accepts both proofs, we can now calculate z:

r—r'
x = .
Y=

This violates the DL assumption: using the Prover, we now have a way to
compute the discrete logarithm of X with non-negligible probability. O

Of course, this assumes the Verifier chooses his challenges randomly; if the
Prover can predict «, she can easily fool the Verifier by choosing any r and
setting W :=rP —~vX.

Proposition 3. The Schnorr proof of knowledge is honest-verifier zero-
knowledge.

Chapter 3. Proofs of knowledge 19

Proof. To show this, we argue that the Verifier can create a valid transcript
without knowledge of z or the Prover’s help, and no one will be able to
distinguish a fake transcript from a real one.

To simulate a Schnorr proof, the Verifier generates random values v, €g
Z/qZ, and sets W := rP —~yX. This results in a transcript (W,~y,r) which is
valid by construction, and any transcript that resulted from a real interactive
Schnorr proof can also be created using this method. Therefore, a transcript
itself is not a proof that the Prover knows x — only the interactive protocol
is. O

3.2.2 Notation

We will often use proofs of knowledge like Schnorr’s. For briefness, we use
notation that shows just the statement being proven. Using this notation,
we denote the Schnorr proof of knowledge as

PK[(z): X = xP]

The notation implies that variables before the colon are only known to the
prover, while all other variables mentioned are public information. Tradi-
tionally, the secret variables are named using the Greek alphabet. We will
still do this if the secret is a compound expression; however, in cases like the
above when the secret is just a variable, we prefer to use its existing name in
the interest of clarity.

3.2.3 The Schnorr signature

Using a small modification, we can turn the Schnorr proof of knowledge
into a signature. Instead of using it to say “I am the person who knows
the discrete logarithm of X7, we use it to say “The person who knows the
discrete logarithm of X approves of message m.”

This can be done using the following trick, which is called the Fiat-Schamir
heuristic. Instead of requiring a Verifier to be present, we use a hash function
to come up with the challenge, which takes as input not only the commitment
but also the message. In effect, the protocol is no longer interactive.

Commitment First, the Signer (formerly Prover) generates a random num-
ber w in Z/qZ and computes the nonce W = wP.
Challenge The Signer computes the challenge v = H(m, W).

Response The Signer now calculates r = yxr + w. The resulting signature
is the tuple (v, 7).

20 Chapter 3. Proofs of knowledge

Verification On receipt of the message m and the signature (v,r), the
Verifier checks that v = H(m,rP —vyX).

Note that the formula the Verifier uses in the hash function is the same as
the one we used in the last step of Schnorr’s proof of knowledge. Therefore,
if the Signer made no mistakes, the hash value should be equal to ~.

3.2.4 Schnorr’s blind signature

The Schnorr signature we saw has the property that everyone can see the
message and the resulting signature. Sometimes, for example in an electronic
voting scheme, this is not desired. In these cases we can use a blind signature
scheme. This kind of schemes allows a Signer to provide a signature over a
message to a Recipient, without seeing the final signature or the message.
The Recipient can then show the message and its signature to a Verifier.
This allows a voter to have her vote signed by an authority, who will sign
only one vote for each voter. When counting the votes, the Verifier can not
link a vote to its voter, even when colluding with the Signer.

With a few modifications, we can turn Schnorr’s signature scheme into a
blind signature scheme [Pointcheval and Stern, 1996]. The blind signature
protocol is different from the regular Schnorr signature, because we do not
want the Signer to learn either «y or r. Therefore the Recipient adds a random
number to both of them, an operation we refer to as blinding. To make sure
the signature still works, we also add these random numbers to the Signer’s
commitment. See table 3.2 for the step-by-step protocol.

Commitment First, the Signer generates a random number w in Z/qZ.
She sends the nonce W = wP to the Recipient.

Challenge The Recipient adds two nonce points, X + P to the Signer’s
commitment, which will later also be used to blind the challenge and
the response. The blinded commitment is denoted W. He then uses
it with the hash function to create the challenge v = H(m, W). He
blinds the challenge by adding « and sends the result, 7, to the Signer.

Response The Signer now calculates r = Yz +w and sends this value to the
Recipient, who checks that it is correct and then blinds it by adding 5.
The result is denoted 7.

The final signature is (v, 7)

Chapter 3. Proofs of knowledge

21

Protocol 3.2: Schnorr’s blind signature

Common information: group E generated by point P with order
q, and a multiple X of P.
Private information for the Signer: the number z € Z/qZ* such

Private information for the Recipient: the message m.

that zP = X.
Signer
select w €g Z/qZ
send wP —
into 7 —

send yr +w —»

The resulting signature is (v, 7)

Recipient Comments
into W Commitment
select a, f €r Z/qZ
setW:W—i-aX—i-BP

set y = H(m, W)

send v+ a mod ¢ Challenge
into r Response

verify W z rP—~X
set r=r+ 6 mod g

To verify the signature, any Verifier can calculate H(m,7P — vX).

second input to the hash function is equal to

rP—~yX =rP—~7zP + P+ aX
=wP + 8P +aX
=W+ B8P+aX =W,

so the hash is indeed equal to ~.

The

22

Chapter 3. Proofs of knowledge

Anonymous credentials
based on U-Prove

The Schnorr proof of knowledge allows you to prove you know the discrete
logarithm of X. Sometimes, it would be nice to be able to prove more refined
statements.

For example, if you want to buy a beer, you need to prove that your age
is at least 16. Ome possible way to use a Schnorr proof for this is to give
everyone who turns 16 a secret key x1g for their birthday. However, this key
contains no personal information, so they would probably give x1¢ to their
underage friends as well, which makes the system useless. On the other hand,
you could just bring your passport and let the retailer look you up in some
database, but you wouldn’t want him to know who you are if you buy beer
every day and happen to be the mayor of the next town over.

This brings us to the U-Prove proof of knowledge, invented by Stefan Brands
in 2000. We will discuss a simplified version.

4.1 Credentials

Suppose you have a document containing information about you, signed by
some authority, not unlike a passport. It is usually possible to convert the
information, and thus the document, into a number (or more generally, an
element of some group). We then call each piece of information, like ‘age’,
an attribute, and the collection of all attributes that belong to a user an

24 Chapter 4. Anonymous credentials based on U-Prove

EEEEERER] 011K LK DER NEDERLANDEN
P NLD Nederlandse KYNB4P9F1 P NLD Nederlandse KYNB4PSF1
Jansen Jansen
‘ l Anna Maria Johanna Anna Maria Johanna
07 NOV/NOV/ 1967 158267262 07 NOV/NOV 1967 158267262
Groningen VIF 1,69 m Groningen V/F 1,69 m
N 01 JUN/JUN 2007 01 JUN/JUN 2012 /01 JUN/JUN 2007 01 JUN/JUN 2012
‘_@ i Burg. van Leudal
L o Jrcn o RN |
P<NLDJANSEN< <ANJA<MARIA<JOHANNAK<<<<<<<
KYNB4P9F1NLD8311492F2536325227559255<<<<<<34
(a) All attributes of a Dutch pass- (b) The entire credential. The way
port. Easily tampered with in its it is printed acts as the government’s
bare form. ‘signature’.

Figure 4.1: Hlustration of the different parts of a credential

attribute commitment. An attribute commitment combined with a signature
from a central authority is a credential.

In its simplest form, a credential is given to you by some authority, and
you can show it to anyone who’s interested. With a passport, this works
fine, since the people you show it to can’t easily copy it. On the other hand,
if your credential is not a piece of paper but a digital string, anyone can
remember it and use it too. This would make identity theft too easy, of
course.

One way to make this more secure is to design the attribute commitment
using a trapdoor function like point multiplication on an elliptic curve: given
some points X1, Xo and some attribute values k1 and ko, the commitment is
C = k1 X1 + k2 Xs. This makes sure you can’t infer the attribute values from
the attribute commitment itself, but given the attribute values it is easy
to build the commitment. Then, when you are showing it to someone, you
also give a proof of knowledge to show that you actually know the attribute
values that were used to build the commitment.

The U-Prove system combines this idea with the blind Schnorr signature.
The advantage of using the latter is that the issuer never sees the recipient’s
credential, and therefore can’t find out whom he shows it to, even if all
alcohol salesmen collaborate with her.

We will next discuss the two protocols that together form the U-Prove system:
one protocol that lets an authority issue a credential to a recipient, and one
that lets the recipient show a credential to someone else.

Chapter 4. Anonymous credentials based on U-Prove 25

4.2 Setup phase

Before anyone can use the U-Prove system, a couple of system parameters
must be known to everyone. These should remain constant; if they didn’t,
nobody could check credentials (imagine if no two passports looked even
slightly alike!). These parameters are generally chosen by an authority, whom
we will call the Identity provider in the U-Prove context.

The Identity Provider chooses an elliptic curve group on E, ,(Z/pZ) generated
by a point P with order g. She decides how many attributes each credential
should contain, this amount is called m. Finally, she picks m + 1 secret
nonzero random elements y, {x;}", from Z/qZ. Her public key is then
Y = yP. She also calculates X; = x; P for each 1.

The collection (E,,(Z/pZ),q, P,Y,{X;}i",) is the Identity Provider’s public
setting. She broadcasts it to everyone.

4.3 The issuing protocol

The protocol for issuing a credential takes place between a recipient, who in
U-Prove is called the User, and the Identity Provider. These parties agree
on the values of the m attributes {k;}!"; used to construct the attribute
commitment.

The issuing protocol itself is a blind signature scheme which looks like
Schnorr’s blind signature. The message being signed is the User’s attribute
commitment, C', as discussed in §4.1.

Random commitment First, the Identity Provider generates a random
number w in Z/qZ. She sends the nonce W = wP to the User.

Challenge The User adds m+2 nonce points, (Y +>"1"; k; X;)+ P to the
Identity Provider’s commitment, denoting the result by W. He then
uses it with the hash function to create the challenge v = H(C, w).
He blinds the challenge by adding « and sends the result, 7, to the
Identity Provider.

Response The Identity Provider now calculates r =7 (y + >t kizi) + w
and sends this value to the User, who checks that it is correct and then
blinds it by adding .

26 Chapter 4. Anonymous credentials based on U-Prove

Protocol 4.1: Issuing of a U-Prove credential

Common information: Identity Provider’s public setting, attribute
values ki, i =1,...,mand Cy = >, k; X;.

Private information for the Identity Provider: the number y € Z/qZ*
such that yP =Y and the set {z;}" such that z; P = X; for each 7.

Identity Provider User Comments
select w €r Z/qZ
send wP — into W Commitment
select ko €r Z/qZ User’s SK
select , 5 €r Z/qZ Blinds
set C'=koP + Cy User’s AC
set W = a(Y + Cp)
+6P+W
set v = H(C, W)
into ¥ +— send v+ a mod ¢ Challenge
send w + Jy
+5>", kix; —> intor Response
verify W Zrp
—F(Y +Cp)

set ¥ =r+ [+ vky mod g

The resulting signature on the commitment C'is (v, 7)

4.4 The showing protocol

Once the user has acquired a credential, he can show it to someone. This is
where the elaborate design of the attribute commitment plays an important
role. Unlike the systems we discussed earlier, U-Prove makes it possible to
show only some attributes, while keeping the others hidden. This makes sure
the User does not have to give anyone more information than necessary.

Suppose the User has disclosed the values of the attributes with indices in the
index set D. He now wishes to prove that these values correspond with the
ones in the attribute commitment C signed by the Identity Provider, while
concealing all other attributes, which have indices in C = {1,...,m} \ D. He
can then engage in the following protocol with a Verifier.

Step 1 The User sends the credential to the Verifier, who checks that the
signature is correct.

Step 2 The User and Verifier engage in a protocol much like Schnorr’s
Proof of Knowledge. Again, this consists of a commitment to all of the
concealed attribute values, a challenge by the Verifier, and a response
generated from the challenge, the attribute values and the nonces.

Chapter 4. Anonymous credentials based on U-Prove 27

Protocol 4.2: Showing of a U-Prove credential

Common information: Identity Provider’s public setting. A set of attri-
bute values the User wants to disclose, {k;};cp, the corresponding
point in E, Cp = > ;cp k; X;, and the index sets C and D.

Private information for the User: Concealed attribute values {k;}icc,

the attribute commitment C' and the signature (y,7)

User Verifier Comments
--- Step 1 -vrormemmrmmsrrroce i
send C, (v,T) — into C, (¥,T)

verify % L H(C,7P
—5(C+Y)) Verify sig.

--- Step 2 -vrrroerrrneeer o
select w; €r Z/qZ

Vie {0}UC
send woP + > ;ccwi X; — into W Commitment
into +— send v € Z/qZ* Challenge
send kg + wo,

vk; +w; Vi € C — into o, {ri}iec Response

set Cc=C—Cp

verify W 4+ vC¢ <
roP + ZiEC ;X Verify POK

We will now discuss the various security properties of the proof of knowledge
in step 2, like we did with Schnorr’s signature.

Proposition 1. The U-Prove proof of knowledge is complete.

Proof. At the end of the protocol, C¢ = koP + > _;cc ki X;. Hence

W +~Ce = (wo + ko) P + > (w; + vk X;
1eC
= TOP + Z TiXi,
ieC

so the verifier accepts. O

Proposition 2. The U-Prove proof of knowledge is sound.

Proof. The soundness of step 1 depends on the DL complexity assumption,
and on whether the hash function is unpredictable enough to prevent the User
from coming up with a pair (v, 7) that successfully passes the verification.
This is true by definition of the hash.

28 Chapter 4. Anonymous credentials based on U-Prove

In step 2, if all attributes are disclosed, this proof is as sound as Schnorr’s
proof of knowledge. Otherwise, we can show soundness analogously to the
proof of Schnorr’s proof of knowledge, by rewinding the adversary after its
response and giving it a different challenge. O

In contrast to Schnorr’s proof, the U-Prove proof of knowledge is not un-
conditionally zero knowledge (see [Brands, 2000, §2.4.3] for a discussion).
Instead, it has the following, slightly weaker property:

Witness-indistinguishability After executing two proofs of knowledge, a
Verifier can not decide with confidence greater than 50% if the two
provers had the same secret (the witness) or two different ones.

Proposition 3. The U-Prove proof of knowledge is witness-indistinguishable.

Proof [Brands, 2000]. We will show that for each proof of knowledge, as seen
from the Verifier’s side, the User could have used any ko, {k;}icc C Z/qZ as
his witnesses with equal probability.

Consider a specific transcript W, , {r;} seen by the Verifier. Suppose we
suspect the User’s witnesses were ky, {l;:i}iec; recall that they are still a
DL-representation of a known and fixed part of his attribute commitment,
Cc. Since we know the User’s responses 7;, we conclude that he must have
chosen w; = r; — yk?i. Since the Verifier does accept the responses, we see
that

A

W =P +) i X;

eC
=roP + ZTiXi — ykoP — VZ ki X
ieC ieC
=W +~C¢ — ’)/(I{ZA()P + Z kA‘ZXZ)

1€C
=W 4+~vCe —~Ce =W.

In other words, any witnesses 150, {/%}iec can certainly result in the given
transcript. Since the nonces are chosen uniformly from 7Z/qZ, the possible
witnesses are distributed uniformly as well. O

4.5 Combining the protocols

An important consideration which guided the design of U-Prove was the
User’s privacy. Since the Issuing protocol uses a blind signature scheme, the
User’s final attribute commitment is hidden from the Identity Provider. This

Chapter 4. Anonymous credentials based on U-Prove 29

means that the Identity Provider and the Verifier can’t find out whether or
not an execution of the Issuing Protocol and one of the Showing Protocol
belong to the same User (actually, the same secret key), even if they collude.
We will define this formally:

Definition (Linkability). Suppose we have an execution transcript for each
of two protocols P; and Py. The two protocols are said to be linkable if an
adversary exists who can, with more than 50% probability of correctness,
tell if both transcripts were made by the same user.

A protocol can be linkable to itself, in which case the definition pertains to
two executions of the same protocol.

Proposition 4. The U-Prove Issuing and Showing protocols are unlinkable,
if no attributes are disclosed.

Remark. Without this assumption, the adversary could ‘recognize’ the witness
used by the agent by the disclosed attribute values. If you disclose information
that might identify you, you shouldn’t be surprised when you are indeed
identified; therefore, we consider only the security of concealed data.

Proof (sketch). The issuing protocol is a so-called blind issuing protocol. All
information the issuer sees is blinded by adding a uniformly random value to
it and is therefore, from the issuer’s point of view, uniformly random. This
makes it impossible to link an issuing transaction to anything, including
transactions from the showing protocol. O

The Showing protocol is definitely linkable to itself; the User sends his public
key and signature to the verifier, and he can’t blind them without invalidating
the signature. This means that a User who wants to be completely untraceable
needs to destroy any credential after use, which in turn means he needs to
request a fresh credential for every time he needs to present a valid credential.

Since storing many credentials (or getting a few credentials many times) can
be problematic on limited systems like smart cards, this is a drawback of the
vanilla U-Prove protocols. In the next chapter, we present a modification to
the U-Prove system that allows the User to blind his credential each time he
shows it, which makes all transactions unlinkable to one another.

30

Chapter 4. Anonymous credentials based on U-Prove

Extension to the U-Prove
protocols

Using U-Prove, a User can obtain credentials from a central authority, the
Identity Provider, and partially or completely disclose them to relying parties,
the Verifiers, as we saw in chapter 3. The User’s privacy is guaranteed as
long as he does not recycle credentials that have been used, since the Issuing
protocol is blinded, as in Schnorr’s blind signature protocol. However,
this requirement forces a privacy-conscious User to request and store many
credentials.

We present a modified set of protocols that add a blinding operation to
the Showing protocol. Using them, we gain unlinkability between different
instances of the showing protocol, i.e. a malicious Verifier can not detect
whether a given User has shown her his credential before. We retain untra-
ceability of an issued credential, i.e. the Issuer and Verifier can’t see whether
or not two given instances of the Issuing and Showing protocol belong to the
same user, even when colluding.

5.1 Design considerations

We would like a (secure) variation on U-Prove that allows us to modify a
credential, such that different uses of the same credential are unlinkable to
each other. This means that the User needs to be able to blind the entire
credential.

32 Chapter 5. Extension to the U-Prove protocols

Issuing phase Issuing phase
Commitment, Signature Commitment, Signature
l Blinding
Showing phase)/(; \
l Commitment, Signature
Discard credential l
W Showing phase
(a) Vanilla U-Prove (b) Modified U-Prove

Figure 5.1: Illustration of our modification to the U-Prove system.

5.1.1 Structure of the credential

As in U-Prove, the User’s credential consists of an attribute commitment

Commitment = Z User’s i'"" attribute - i*" base point

(2

and a signature, which we will discuss later.

The base points X; = x; P are public, but their discrete logarithms x; are
the Issuer’s secrets. The first attribute, kg, is the User’s secret key, the other
attributes k; are known to both the User and the Issuer. To emphasize this
distinction, we will denote the commitment by

C=koXo+ > kiX;.

=1

Occasionally, we’ll refer to the discrete logarithm of C' as ¢. By construction,
none of the participants knows c.

Note that the User’s attributes have to be encoded as elements of Z/qZ.
Several variations on this credential are possible, for example, the Issuer
could encrypt some of the attributes so they can only be decrypted by the
Verifyer. The User should be wary of this, since it is easy to store identifying
information like a social security number this way.

Chapter 5. Extension to the U-Prove protocols 33

5.1.2 Choice of the signature

A good way to achieve unlinkability is blinding, i.e. applying a transforma-
tion that changes the signature but retains its relationship to the attribute
commitment. The traditional U-Prove signature is computed using a hash
function. This makes blinding difficult. However, using a malleable signature
introduces many risks. For example, a signature computed as

Signature = Issuer’s secret key - User’s attribute commitment

can easily be verified using a pairing.! However, multiplying the commitment
and the signature by a scalar will again produce a valid credential. The
attribute values of the new credential are simply the old ones multiplied by
the scalar. Hence, we would like a signature that remains valid under valid
modifications (i.e., blinding) to the attribute commitment, but not under
invalid ones (i.e. changes to meaningful attribute values).

These considerations have led us to use a signature scheme by Boneh and
Boyen [2008]. Instead of the principle discussed above (S = yC), it is
computed as

1
Issuer’s SK + User’s AC

Signature = - Group generator.

This type of signature can still be verified using a pairing, but it is no longer
possible to easily forge signatures by multiplying the attribute commitment
and the signature by a scalar. We can therefore safely blind the signature by
multiplying it by a random scalar from 7Z/qZ.

Recall that we need to be able to blind the credential during the showing
protocol to achieve unlinkability. Currently, the signature is only valid for C;
using a small modification, we can make it valid to certain transformations of
C as well. To do this we use two keypairs for the issuer, denoted by y, z for
the secret keys and Y, Z for the public keys. For an attribute commitment
C = cP, the signature consists of two values (5, r), with

1

= m Q and r ER Z/QZ

One can check the correctness of this signature by verifying that
e(Y +C+1Z,5) = e(P,Q). (5.1)

Blinding the commitment is then done as follows. The User selects a random
v €r Z/qZ*, and computes C' = C +vZ and ¥ = r — v. Since

Y+C+7Z=Y+(C+v2)+(r—v)Z=Y+C+rZ,

'Like this: S = yC iff e(S, P) = e(C,Y), since both are equal to e(C, P)Y.

34 Chapter 5. Extension to the U-Prove protocols

we find that (S, 7) is a valid signature on C.

This method allows us to randomize the attribute commitment without
invalidating the signature. However, we are not done yet; at this moment,
the User can still be tracked by the constant value C+7Z or by the signature
S itself. Hence, the signature values (S,7) will have to be blinded separately.
We will do this using a simple multiplicative blind.

Note that blinding the commitment this way allows us to treat the blind v as
an additional attribute, i.e. C + 7Z is constructed like a U-Prove attribute
commitment. This allows us to use the existing U-Prove machinery during
the showing protocol.

5.1.3 Issuing the signature

Computing a Boneh-Boyen signature seems at first to require that the Issuer
knows c¢. This is not a nice solution, since the User needs to trust the Issuer
completely; moreover, giving the Issuer the unblinded discrete logarithm of
the signature will make it easy to link the Issuing and Showing protocols.
Hence, we need a way for the Issuer and the User to jointly compute the sum

m
y—i—c—i—rz:y—l—koxg—i-z:kimi—i—rz,
i=1
which allows the User to keep kg and r to himself, while the Issuer keeps y, z
and the z;-values to herself. As discussed, this sum still has the U-Prove
commitment structure.

To meet this demand, we have chosen to use a form of homomorphic encryp-
tion invented by Paillier and Pointcheval [1999]. Denoting the encryption of
a value = by [z], this system has the following two properties:

o [z] - [y] decrypts to = +y mod n,
o [z]¥ decrypts to -y mod n.

These allow the User to encrypt his secret values, with which the Issuer
can then perform a computation. The User can then decrypt the resulting
ciphertext to obtain the result of the computation, with neither party gaining
knowledge of the other’s secret values. Both parties also blind the calculated
values until the end of the computation. The protocol is discussed in detail
in §5.4.

5.1.4 Efficiency

The system, and especially the Showing protocol, should be efficient enough
for use with limited hardware, for example a smart card. The Verifier and

Chapter 5. Extension to the U-Prove protocols 35

Issuer can be relied on to have reasonable computational power. This means
that the User can not calculate pairings or perform computations with large
numbers.

5.2 Stakeholders

Like U-Prove, we describe interactions between three kinds of agents: a
User, who obtains and uses credentials, an Issuer or Identity Provider, who
is charged with creating credentials for (and in cooperation with) Users, and
a Verifier or Relying Party, who checks Users’ credentials and relies on the
correctness of the system (because, for example, he provides a service to
authenticated users).

5.3 System setup

Most computations take place on an elliptic curve group E; over Z/pZ,
generated by a point P of prime order ¢, with additive identity O. The size
p of the underlying field should be at least 2¢. A pairing e must exist on
the curve; the second domain Es of this pairing is an elliptic curve group
generated by a point @ (¢ Eq). This should be a type III pairing, that is,
there should be no efficiently computable group homomorphism E; — E;.

A (modified) U-Prove credential consists of an attribute commitment C € E;
and a signature (S,r) € Eg x Z/gZ. The commitment is a discrete log
representation of the user’s secret key kg € Z/qZ and her attribute values
(ki) € Z/qZ™ with respect to the base points (X;)", € E;™:

C=koXo+ > kiX;.
=1

The discrete logarithms x; € Z/qZ of the base points X; = x; P are known
only to the Issuer and can be considered secret keys. For the Boneh-Boyen-
like signature, the Issuer keeps two more keypairs, (y,Y) and (z, Z), where
Y =yP and Z = zP, both in E;.

The blind issuing of a Boneh-Boyen (BB) signature requires a Paillier-like
cryptosystem, as discussed in section 2.2.2. The global modulus for this
encryption scheme is denoted by n?; n = pips with ¢ = p1.

5.4 Issuing protocol

To issue a blind (with repsect to the user’s private key) BB-signature, we
use a slight variation on [Hoepman and Lueks, 2012]. The issuer does not

36 Chapter 5. Extension to the U-Prove protocols

need to know the entire commitment now, and therefore doesn’t get it. He
does get the attributes.

It should be noted that, due to the required size of n?, it is not feasible to
carry out the Issuing Protocol on a smart card. A trusted proxy should be
used instead; for example, a User could receive the credential on his home
computer or an issuing terminal, and then transfer it to a smart card.

5.4.1 Protocol description

Step 1 In order to blindly issue the signature, the user sets up a (possibly
pre-generated) Paillier cryptosystem, and sends the Issuer the values
of n and g, which he needs to encrypt values. The User keeps A secret,
for use during decryption.

Step 2 The Identity Provider and the User engage in a secure two-party
computation protocol due to Hoepman and Lueks [2012], and the
Identity Provider computes the signature ‘inside’ the Paillier encryption
using its homomorphic properties. Both the User and the Identity
Provider blind the values they send to protect the secrecy of their
private keys.

Step 3 The User decrypts the computed, but still blinded signature value
and the Identity Provider removes his blind.

The full protocol is shown in Protocol 5.1 on page 37.

5.4.2 Security

Proposition 1. The signature issued by the Issuing Protocol is unforgeable.

The issuing protocol relies on a Boneh-Boyen signature; strong existential
forgery of this scheme is equivalent to the ¢g-SDH-assumption. [Jao and
Yoshida, 2009]

Proposition 2. This Issuing Protocol is correct.

Proof. We will demonstrate correctness by calculating the final verification
step, assuming both parties have followed the protocol correctly. At the end

Chapter 5. Extension to the U-Prove protocols 37

Protocol 5.1: Issuing protocol

Common input
System parameters P € E;,Q € Ey and Identity Provider’s public
data Y, Z € E;
Attributes to be signed (k;)", € (Z/qZ)™
Private input to the User
Secret key ko € Z/qZ
Attribute commitment C' = koXo + >t ki X; € Eq
Private input to the Issuer
Commitment basis {x;}, secret keys vy, z € Z/qZ

User Issuer Comments
--- Step 1 -vrormemmrmmsrrroce i
set (n, A\, g) = SetupPaillier Paill. setup
send n,g — inton,g

--- Step 2 --oommem e
select 8,7 €x [0,n) Computing
send [A], [Br], [Bko] — into b, T, ko the signature

select v er Z/qZ*
set k =y + > ki,
into d «— send 7 - k'
3 [v] mod n?
Interactive PK to show that d was constructed as shown above

--- Step 3 -rrrrorrrroeeero
send Dec(d) modn — into3 Unblinding
set s=5— (v mod q) the signature
mod ¢
into S +— send (57! mod q)Q

set S5 = 65
Verify that (5, r) is a signature on C, as in (5.1)

38 Chapter 5. Extension to the U-Prove protocols

of step 2, the user receives
d=07%"[]
= [By + B _ kizil [Br]*[Bkol ™[]
i=1

= [B(y + koxo + Z kixi +7z) + 7]
i=1

The identity provider then removes v in step 3, and sends

~ 1
S p—
By + koxo + >ty kizi +rz) @

back to the user, who removes S by calculating S = 55 . Finally, the user
verifies it in the usual way:

eY +C+rZ,S)
1

m
=e(yP + koxoP +) kijx;P+rzP,
w o0l +) ki y + koxo + ity kixi +rz

=1

Q)
=e(P,Q)

O

We will now discuss witness-indistinguishability. This proof is broken up into
two lemmas.

Lemma 3. Step 2 of the protocol is witness-indistinguishable with respect to
the User’s secret key.

Proof. Paillier encryption is semantically secure, which is equivalent to in-
distinguishability under a chosen-plaintext attack. Suppose we have an
adversary who can, given two ciphertexts, decide whether or not they decrypt
to the same plaintext. This adversary can be used to break the semantic
security of the Paillier encryption.

In breaking it, we choose two random plaintexts m; and msg, and send them
to the encryption oracle, which replies with ¢ for i € {1,2}. We encrypt
m1 to c1, and ask our adversary whether ¢ and ¢; originate from the same
plaintext. If so, the oracle has encrypted m; for us; if not, ms.

Hence, since the Paillier cryptosystem is semantically secure, different en-
cryptions of the same secret key, i.e. the same witness, are indistinguishable
from encryptions of different keys. O

Chapter 5. Extension to the U-Prove protocols 39

Lemma 4. Step 3 of the protocol is witness-indistinguishable with respect to
the User’s secret key.

Proof. As calculated by the Identity Provider, s = 5(rz + kozg + k). Note
that the Identity Provider can’t cheat by using fabricated values for its secret
values, since it has to prove the correct construction of d before the User will
decrypt it.

If r and 8 are chosen uniformly at random, the resulting sum s is also
distributed uniformly at random, and therefore reveals no information about
ko. In particular, given two (possibly equal) secret keys, the resulting values
of s are still distributed uniformly at random, so deciding whether or not
the secret keys were equal will be a pure guess.]

Using these two lemmas and the fact that the interactive proof of knowledge
in step 2 is a zero-knowledge proof of knowledge, we have

Proposition 5. The Issuing Protocol is witness-indistinguishable with respect
to the User’s secret key.

5.5 Showing protocol

The Showing Protocol allows the User to show some of the attributes in his
credential to the Verifier, and prove that these attributes are legitimate using
the Identity Provider’s signature.

The showing protocol uses the original U-Prove selective disclosure protocol
described in chapter 4, but precedes it with blinding operations that randomise
the attribute commitment and the signature. If desired, the U-Prove showing
protocol can be replaced by one of a set of protocols that prove various
relations between attributes, see [Brands, 2000, Ch. 3].

To achieve unlinkability between executions of the showing protocol, we
should refrain from sending S and r to the verifier. We can blind the
signature by multiplying it with a random blind o € Z/qZ*. This is not
possible with 7, since this will break the verification equation 5.1. We
therefore slightly change the verification, and now check if

e(Y +C,S)e(Z,R) L e(P,Q), where R =rS.

Now, we have the User send blinded versions of S, R := rS and @ to the
Verifier, who then checks if the verification equation holds. To make sure the
User doesn’t cheat, he also uses Schnorr proofs of knowledge to show that he
constructed his blinded signature correctly.

40 Chapter 5. Extension to the U-Prove protocols

Our version of the showing protocol uses U-Prove’s selective disclosure
protocol nearly verbatim, adding only the extra attribute used to blind the
commitment. However, any other U-Prove protocol can be substituted, as
long as the additional blinding attribute is concealed.

5.5.1 Protocol description
Step 1 The User blinds the commitment and sends it to the Verifier.

Step 2 The User constructs and blinds the signature and sends it to the
Verifier. The Verifier checks the signature.

Step 3 The User and Verifier execute a Schnorr proof of knowledge for each
of the random values that blind the signature.

Step 4 The User proves knowledge of a DL-representation of the commit-
ment with respect to P and (X;)!”,. This proof of knowledge closely
resembles the U-Prove proof of knowledge by Brands, only adding the
blind v as a concealed attribute.

The protocol is listed in detail in Protocol 5.2 on page 41.

5.5.2 Correctness

The showing protocol is correct if an honest User can convince an honest
Verifier that he has the credential he says he has. This means he must pass
the verification in in step 2. Indeed, if the signature was calculated and
blinded correctly,

Q)7
eY+C+rZ,S)°

e(Y +C+72,5)°

e(P,Q) = e(P,
(
(
e(Y +C+72,5)
(
(

e(Y +C,8)e(7Z,)
e(Y +C, S)e(Z, R);

therefore, the showing protocol is correct.

Chapter 5. Extension to the U-Prove protocols 41

Protocol 5.2: Showing protocol

Common input
System parameters and Identity Provider’s public data
Index sets C, D

User’s input from Issuing protocol
A signature (S,r) on attribute commitment C'

User Verifier Comments

--- Step 1 --mmmmmmmmm e

select v g Z/qZ* Blinding nonce

set C=C+vZ

send C — into C Blinded commit

send {k; : i € D} — into {k; : i € D} Selective discl
set Cp ==Y iep kiXi

--- Step 2 -rrrmeserrnse s

select 0 €r Z/qZ* Showing (S, T)

set S = oS

setr=r—v

set R=795

set R =78

set @ =0oQ

send S, R, Q — into S,R,Q Blinded sign.
verify e(Y + C, S)e(Z, R)

z (P,Q)ANQ # O Verify sign.
--- Step 3 -rrroeerrnosernon
Interactive Schnorr PK[o : Q = 0Q] and PK[F : R = 7S]
--- Step 4 -ommmmmem
select ko', v €r Z/qZ Start U-Prove
select k;' €er Z/qZ Vi € C pf of knowledge
set N =1v'P+ k‘OIXQ

+ Yiec ki’ Xi B
send N — into N Commitment
select v er Z/qZ
into 7 +— send vy Challenge

set r, =75v + 1/
set 7, = Yko + ko'
set r; = Fk; + k'Viec
send 7k,, 7y, (Ti)icc — into Tx,, Ty, (75); Response
verify N LmP+ Tho X0 +
YiccTiXi —v(C — Cp) Verify POK

42 Chapter 5. Extension to the U-Prove protocols

5.5.3 Soundness

The Schnorr and U-Prove proofs are known to be sound. We still need to
check step 2. If a dishonest User passes this verification, it has successfully
forged a signature on his attribute commitment. We will use this forged
signature to foil the Co-CDH complexity assumption:

Complexity Assumption (Co-Computational Diffie-Hellman (Co-CDH)).
Suppose we have two groups, E; and Eg, with generators P and (). Given
aP, it is hard to calculate a@. [Boneh et al., 2001]

Lemma 6. Given an adversary who can forge a signature that passes verifi-
cation in step 2 and 3 for a given C, one can break the Co-CDH assumption.

Proof. For the Co-CDH problem, we are given A = aP for some unknown a.
We choose random ¢,y and z ourselves, calculate C,Y and Z, and set up an
adversary to create a signature with these inputs. However, instead of P, we
give the adversary A as the generator of E;.

The adversary supplies us with 6’, S , R and @ It also gives us a Schnorr
proof of knowledge for o, which we extract using the technique described in
§3.2.1.

The verification equation in step 2 is
e(A,0Q) = e(Y +C,5)e(Z, R),

which implies that

aQ:%((y—i—c)ngzfi).

This solves the Co-CDH problem. O

5.5.4 Linkability
Issuing to Showing protocol

For the purposes of this discussion, we will disregard the Paillier-encrypted
values that the Issuer and the User exchange, since we assume that the
Paillier encryption scheme is secure.

A run of the Issuing protocol yields the blinded logarithm of the signature
1/(Bs), or alternatively S := 1S. Each run of the Showing protocol yields

(NJ’I-, @i, §2-7 R;. We will show that given arbitrary values for each of these,
there exist a corresponding r and a tuple (v;, Bo;) for each run of the showing
protocol that makes this run correspond to the Issuing protocol. Since these

Chapter 5. Extension to the U-Prove protocols 43

exist for arbitrary transcripts, any run of the showing protocol has values
for the blinds and the User’s secret key that make it correspond to a given
issuing transcript.

Proof. Select a random r €g Z/qZ>. For each showing transcript ¢, let
0; :=logg(S;) = Bo; and set R} = 1/5; - R; (this is now equal to %(r +14)9).
Then, set v; = logg(R;) —r and C; = C; + v;Z. Now, the User could have
used (Cj, S, r) as his private data, which would result in a protocol transcript

(Ci —viZ, 0iQ, 7S, o;(r +14)S) = (Cy,Qi, Si, Ry). O

In particular, if there is only one transcript from the showing protocol, there
is an r for every C' € E1; hence, even if a user is forced to forfeit his secret
key, it is impossible to decide whether or not a single run of the showing
protocol was performed by him.

Between executions of the Showing protocol

It is known that the U-Prove proof of knowledge in step 4 is witness-
indistinguishable [Brands, 2000]. Since we use a different attribute commit-
ment each time, the linkability problem in the original U-Prove protocol is
gone; if v is chosen universally at random, the resulting C is distributed
universally at random in E; as well.

While we conjecture that the blinding of the credential and signature is
secure, we have been unable to prove this using any standard complexity
assumptions. Obvious candidates are assumptions about pairings, since the
additive blinds (v) occur in both elliptic curve groups. These fall into two
categories:

1. Computational assumptions: “given some elements of £; and Eo, it is
hard to compute a particular element of the pairing’s image;”

2. Decisional assumptions: “given some elements of the elliptic curve
groups E; and an element ¢ in the pairing’s image, it is hard to decide
whether ¢ is equal to a particular element of the pairing’s image.”

If we were to attempt to use such assumptions, the adversary we use to solve
the complex problem would have to be able to link two showing phases, which
is a decisional task. Hence, we would like to use a decisional assumption. We
have to feed the inputs mentioned in the assumption to our adversary, and
our adversary takes as its input two transactions from the Showing protocol.
The problem arises here: how are we supposed to feed t to the adversary,
if the Showing protocol does not result in any elements from the pairing’s
image?

44 Chapter 5. Extension to the U-Prove protocols

Another category of assumptions is those about product groups. These are
groups E;, Es of equal, known prime order ¢ — the kind typically used as
the domain of a pairing. However, the hard problems don’t explicitly use
any pairings. A particularly promising assumption from this category is the
following;:

Complexity Assumption (Decision Linear Problem version 2 (D-Linear2)).
Given P € Eq,aP,bP,acP,bdP and Q € Eo,aQ,bQ and T € Ky, it is hard
to decide whether T' = (¢ + d)P. [Boyen and Waters, 2006]

Since we use the type-3 variety of this assumption (i.e. there is no easily
computable isomorphism E; — Ey), we can switch the two groups used in
the assumption. This would seem to be a logical decision since the Showing
protocol offers only one point in E; and three in Es for each run. However,
we have been unsuccessful in trying to reduce the linkability problem to the
problem posed in D-Linear2.

5.5.5 Efficiency for the prover

Let ¢ = |C|. Then the prover performs

¢ + 2 point additions,

¢ + 9 point multiplications,
¢+ 5 field additions and

¢ + 4 field multiplications.

5.5.6 Summary of security requirements

We are assuming the hardness in general of DL and DLREP, DDH and
CDH. The Paillier system further uses the decisional composite residuosity
assumption (DCRA).

The security parameter ¢, in bits, defines the key size used in the main scheme.
In general, larger is more secure but slower. For elliptic curve cryptography,
a typical choice is £ = 128.

Since the fastest algorithms for DL on a curve (for example Pollard’s rho)
take O(y/n) steps, the size of the underlying field should be a prime of size
roughtly 2/, i.e. p ~ 22¢. Hasse’s theorem states that the number of points
in the elliptic curve group is close to p. For ECC, this number of points ¢
should also be prime.

The pairing introduces some requirements: the main curve’s embedding
degree should be small, and there should be no efficiently computable homo-
morphism from the second elliptic curve group to the first. Furthermore, the
discrete logarithm problem should be hard in the pairing’s co-domain.

Discussion

In this thesis, we have discussed the U-Prove system by Brands for issuing
and disclosing an electronic credential. In particular, we have treated a
disadvantage of the system: to maintain full unlinkability of transactions, the
user should not use a credential more than once. This means users have to
obtain many credentials, which can be impractical if they have to be stored
on limited devices like smart cards.

In an effort to solve this problem, we have proposed a new set of protocols for
issuing and disclosing a credential. Though the new method is not compatible
with ‘old” U-Prove credentials, it does allow for the same kind of attributes,
and the existing U-Prove protocols based on the DLREP function can be
rewritten to work with the new credentials.

We have proven correctness and soundness for these protocols, and unlinka-
bility between the protocols for issuing and showing credentials. While we
conjecture that different executions of the showing protocol are also unlin-
kable, we have not been able to prove this. The main cause for this is the
fact that we use both additive and multiplicative blinds during the showing
protocol. Few computational complexity assumptions are known for product
groups on which a pairing exists, that accomodate both types of blinding at
the same time.

6.1 Future work

A few options remain for assessing the unlinkability of the showing proto-
col. An obvious approach, if difficult, is to find or define more complexity

46 Chapter 6. Discussion

assumptions that are applicable to the situation. This most likely includes
assumptions about product groups, i.e. the product of two groups of known
(and equal) prime order; while assumptions about pairings might be feasible,
a situation like ours does not seem to call for them.

One could also avoid reductionist proofs entirely in favour of other techniques
we have not attempted. One such technique is the ideal functionality model
[Canetti, 2000] for protocol security. This model proposes a trusted third
party which receives the secret inputs for all parties, and then computes
the output of the protocol for each party and sends it back to them. An
adversary controls one of the participants, and the protocol is considered
secure if the adversary learns no more from it than from an interaction with
the trusted third party.

Bibliography

Dan Boneh and Xavier Boyen. Short signatures without random oracles
and the SDH assumption in bilinear groups. Journal of Cryptology, 21:
149-177, 2008.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. In Colin Boyd, editor, Proceedings of Asiacrypt 2001, volume 2248
of Lecture Notes in Computer Science, pages 514-32. Springer, December
2001.

Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based
encryption. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO
2006, volume 4117 of Lecture Notes in Computer Science, pages 290-307.
Springer, 2006.

Stefan A. Brands. Rethinking public key infrastructures and digital certifi-
cates: building in privacy. MIT Press, 2000.

Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.

Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Advances in Cryptology, pages 10-18. Springer,
1985.

Jaap-Henk Hoepman and Wouter Lueks. Towards efficiently revocable
self-blindable credentials. Unpublished manuscript, 2012.

David Jao and Kayo Yoshida. Boneh-boyen signatures and the strong
diffie-hellman problem. In Hovav Shacham and Brent Waters, editors,
Puairing-Based Cryptography — Pairing 2009, volume 5671 of Lecture Notes
in Computer Science, pages 1-16. Springer, 2009. URL eprint.iacr.
org/2009/221.pdf.

Moni Naor, Yael Naor, and Omer Reingold. Applied kid cryptography. 1999.
URL www.wisdom.weizmann.ac.il/~naor/PAPERS/waldo.ps.

eprint.iacr.org/2009/221.pdf
eprint.iacr.org/2009/221.pdf
www.wisdom.weizmann.ac.il/~naor/PAPERS/waldo.ps

48 Bibliography

Pascal Paillier and David Pointcheval. Efficient public-key cryptosystems
provably secure against active adversaries. In Advances in Cryptology,
ASTACRYPT 99, pages 165-179, London, UK, 1999. Springer.

David Pointcheval and Jacques Stern. Provably secure blind signature
schemes. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances
in Cryptology GAT ASIACRYPT 96, volume 1163 of Lecture Notes in
Computer Science, pages 252-265. Springer, 1996.

Joseph H. Silverman and John T. Tate. Rational Points on Elliptic Curves.
Springer, 1992.

Nigel P. Smart. Cryptography: an introduction. McGraw-Hill education.
McGraw-Hill, 2003.

Latanya Sweeney. Comments to the Department of Health and Human
Services on standards of privacy of individually identifiable health informa-
tion. April 2002. URL web.archive.org/web/20040324182628/http:
//privacy.cs.cmu.edu/dataprivacy/HIPAA/HIPAAcomments.html.

web.archive.org/web/20040324182628/http://privacy.cs.cmu.edu/dataprivacy/HIPAA/HIPAAcomments.html
web.archive.org/web/20040324182628/http://privacy.cs.cmu.edu/dataprivacy/HIPAA/HIPAAcomments.html

	Introduction
	Credentials
	U-Prove
	Problem statement
	TNO
	Reading guide

	Basic cryptography
	Secrets and eavesdroppers
	Public-key cryptography
	Signatures
	Cryptography using elliptic curves
	Proof techniques

	Proofs of knowledge
	An example: where's Wally?
	The Schnorr proof of knowledge

	Anonymous credentials based on U-Prove
	Credentials
	Setup phase
	The issuing protocol
	The showing protocol
	Combining the protocols

	Extension to the U-Prove protocols
	Design considerations
	Stakeholders
	System setup
	Issuing protocol
	Showing protocol

	Discussion
	Future work

	Bibliography

