
Colecture 2: Monads

Aleks Kissinger (and Juriaan Rot)

November 11, 2018

1 Terms

An important kind of algebraic data type is a type of terms for a signature Σ.
These form the connection between initial algebras of a functor and algebraic
structures in the usual sense (groups, rings, etc.).

A signature Σ is a collection of symbols with arities. Symbols are just names
(i.e. the names of some collection of functions we care about), and arities tell
us how many arguments those function symbols take. For example:

ΣG “ tm : 2, i : 1, e : 0u

is a signature. A valid term for this signature is any composition of those sym-
bols respecting arities. For example:

mpmpipeq, eq, eq

is a valid term, but epmq is not.
Signatures are the starting point for defining an algebraic structure. They

tell us what operations are allowed. For example, the signature Σ above defines
the allowed operations for a group, namely: multiplication, inverse, and unit.

The set of terms for a signature is the initial algebra of a functor of the form:

FpXq “ Xn1 ` Xn2 ` . . .` Xnk

where ni is the arity of the i-th generator. For example, the functor for the
group-signature given above is:

FpXq “ X2 ` X` 1

In datatype-notation, this initial algebra is given by:

datatype GTerm “ m of GTermˆGTerm

| i of GTerm

| e

1



Exercise 1.1. Give a functor whose initial algebras are terms for a ring.

The elements of GTerm are terms constructed using the symbols from the
group signature ΣG. However, the elements of this algebra are only ground
terms, i.e. they have no variables in them, only constants. In particular, we
have no way of stating the axioms of a group (which indeed involve variables):

mpa, mpb, cqq “ mpmpa, bq, cq

mpa, eq “ a “ mpe, aq mpa, ipaqq “ e “ mpipaq, aq

We can fix this by adding a parameter, like we had for lists, and pass it to a
new constructor called var:

datatype GTermpAq “ var of A

| m of GTermˆGTerm

| i of GTerm

| e

That is, we take the initial algebra of the functor:

FApXq “ A` X2 ` X` 1 (1)

Now, elements of GTermpAq look like, e.g.:

mpvarpaq, mpvarpbq, y, varpcqqq

where a, b, c P A are variables taken from an arbitrary set A. Cool! We are one
step closer to being able to talk about real algebraic stuff using endofunctors.
But before we get there, lets make a couple of observations.

First, if we have an f : A Ñ B, we can build a function

GTermp f q : GTermpAq Ñ GTermpBq

much like we did for lists:

A`GTermpAq2 `GTermpAq ` 1 A`GTermpBq2 `GTermpBq ` 1

GTermpAq GTermpBq
GTermp f q

rvar, m, i, es rvar ˝ f , m, i, es

This function recurses all the way down to variables, then applies f . We
can see the associated ML code by listing the recurrence relations:

fun GTermp f qpmpx, yqq “ mpGTermp f qpxq,GTermp f qpyqq

| GTermp f qpipxqq “ ipGTermp f qpxqq

| GTermp f qpeq “ e

| GTermp f qpvarpaqq “ varp f paqq

2



Now, we can take any set A to be the set of variables for GTermpAq. So, what
happens if we take GTermpAq itself? Well, we have terms who’s “variables” are
themselves terms, e.g.

mpvarp mpe, varpaqq q, varp e qq P GTermpGTermpAqq

Well, this is really just a term in GTermpAq again. All we have to do is “flatten”
it, i.e. delete one layer of var:

mpvarp mpe, varpaqq q, varp e qq ÞÑ mpmpe, varpaqq, eq

As ML, this function looks like:

fun �atpvarpaqq “ a

| �atpmpx, yqq “ mp�atpxq, �atpyqq

| �atpipxqq “ ip�atpxqq

| �atpeq “ e

We can also do the opposite thing. For any a P A, we can get a term just by
wrapping it in “var”. We’ll call this lift:

fun liftpaq “ varpaq

We can build these using the initial algebra structure as well. But first, note
we don’t really need the exact definition of F from (1) to construct GTermpAq,
we just need the fact that:

FApXq :“ A` FpXq

has an initial algebra. Let F˚pAq be the initial algebra of FA.

Exercise 1.2. Prove that F˚ extends to a functor for any F such that FA has an
initial algebra for all A P obpCq.

Every initial algebra comes with a morphism. For F˚pAq, let’s call it:

rlift, genss : A` FpF˚pAqq Ñ F˚pAq

Boom! We already have lift. It is just part of the initial algebra structure. For
the group example, lift “ var and gens is the rest, all wrapped into a single map:

gens “ rm, i, es : GTermpAq2 `GTermpAq ` 1 Ñ GTermpAq

So, �at should be defined in terms of gens, recursively. By definition, F˚pF˚pAqq
is the initial algebra of FF˚pAq. Hence we can get a function

�atA : F˚pF˚pAqq Ñ F˚pAq

3



by giving F˚pAq the structure of an FF˚pAq algebra. That’s a little bit mind-
bending, but it’s actually not too bad if we keep a clear head. We need to
complete this square:

FF˚pAqpF˚pF˚pAqqq FF˚pAqpF˚pAqq

F˚pF˚pAqq F˚pAq
�at

a ?

i.e. this square:

F˚pAq ` FpF˚pF˚pAqqq F˚pAq ` FpF˚pAqq

F˚pF˚pAqq F˚pAq
�at

rlift, genss ?

Well, if we already have a term in F˚pAq, do nothing with it. Otherwise, we
use gens:

F˚pAq ` FpF˚pF˚pAqqq F˚pAq ` FpF˚pAqq

F˚pF˚pAqq F˚pAq

F˚pAq ` Fp�atq

�at

rlift, genss ridF˚pAq, genss

So, that get pretty abstract, so lets see if we did The Right Thing. The com-
mutative square captures the equation:

�at ˝ rlift, genss “ rid, gens ˝ Fp�atqs

which written again in ML-style notation gives us:

fun �atpliftpaqq “ idpaq

| �atpgenspzqq “ genspFp�atqpzqq

Returning to our group example, lift “ var, so the first line exactly matches
our code of �at from before. For the second line, gens “ rm, i, es so this takes
an incoming value z from a coproduct of 3 sets and applies the appropriate
constructor:

genspzq “

$

’

&

’

%

mpx, yq if z “ px, yq P GTermpAq ˆGTermpAq
ipxq if z “ x P GTermpAq
e if z “ ˚ P 1

4



Similarly, we have: Fp�atq “ �atˆ �at` �at` id1, so:

Fp�atqpzq “

$

’

&

’

%

p�atpxq, �atpyqq if z “ px, yq P GTermpAq ˆGTermpAq
�atpxq if z “ x P GTermpAq
˚ if z “ ˚ P 1

1.1 More natural transformations

One thing we notice about the definitions of �atA and liftA is that they don’t
look directly at the elements of A. They just shuffle them around inside of
terms. We saw last time, this corresponds to polymorphic functions, or categori-
cally to natural transformations.

Recall this definition from last time:

Definition 1.3. For any two functors F, G a natural transformation φ : F Ñ G
is a family of functions φA : FpAq Ñ GpAq which makes the follow diagram
commute, for all sets A, B and all functions f : A Ñ B:

FpAq FpBq

GpAq GpBq

Fp f q

Gp f q

φA φB

Note in particular that we write the whole family φ is a morphism going
from the functor F to the functor G. This seems to suggest there is a category
whose objects are functors and whose morphisms are natural transformations.
This is indeed the case:

Definition 1.4. The category rC,Ds has as objects functors F : C Ñ D and as
morphisms natural transformations.

Exercise 1.5. Show that rC,Ds is a category. What are its identities? What is
composition?

We can show that the families of functions liftA and �atA yield the following
natural transformations:

lift : IdÑ F˚

�at : F˚ ˝ F˚ Ñ F˚

Note everything in sight is an endofunctor on Set, so both of the above natural
transformations are morphisms in the category rSet, Sets.

5



We have already (secretly) shown that lift is a natural transformation in
exercise 1.2. Much like we did with the examples from last time, we should
define F˚p f q as:

A` FpF˚pAqq A` FpF˚pBqq

F˚pAq F˚pBq

idA ` FpF˚p f qq

F˚p f q

rlift, genss rlift ˝ f , genss

Just reading the A-part of this commutative square gives:

A A

F˚pAq F˚pBq

idA

F˚p f q

lift lift ˝ f

Shifting the f around to the top, we can write the same equation as this com-
mutative square:

A B

F˚pAq F˚pBq

f

F˚p f q

lift lift

which is exactly naturality for lift! �at is a bit harder, due to the recursive
definition. So, we’ll make this an optional exercise:

Exercise* 1.6. (Bonus) Prove that the following diagram commutes:

F˚pF˚pAqq F˚pF˚pBqq

F˚pAq F˚pBq

F˚pF˚p f qq

F˚p f q

�at �at

In addition to naturality, we notice that lift and �at interact well with each
other. For instance, if a lift a term then flatten it, I get back where I started:

mpe, varpaqq ÞÑ varp mpe, varpaqq q ÞÑ mpe, varpaqq

6



I can write this as a commutative diagram:

F˚pAq F˚pAq

F˚pF˚pAqq

id

liftF˚pAq
�atA

Similarly, if I lift all the var’s in a term, via F˚pliftq, then �at, I get back where I
started:

mpe, varpaqq ÞÑ mpe, varp varpaq qq ÞÑ mpe, varpaqq

I can also write this as a commutative diagram:

F˚pAq F˚pAq

F˚pF˚pAqq

id

F˚pliftAq
�atA

Finally, if I have “triple terms”, there are two ways I can flatten them. I can
first recurse into all the var’s and flatten those, using F˚p�atAq, then flatten the
whole term using �atA:

mpe, varp mpvarp e q, varp varpaq qq qq

ÞÑ mpe, varp mpe, varpaqq qq

ÞÑ mpe, mpe, varpaqqq

...or I can first flatten at the top level using �atF˚pAq, then flatten again using
�atA:

mpe, varp mpvarp e q, varp varpaq qq qq

ÞÑ mpe, mpvarp e q, varp varpaq qqq

ÞÑ mpe, mpe, varpaqqq

These should of course be the same:

F˚pF˚pF˚pAqqq F˚pF˚pAqq

F˚pF˚pAqq F˚pAq

�atF˚pAq

�atA

F˚p�atAq �atA

7



2 Monads

A monad is an endofunctor that comes with a natural transformation like lift

(typically called η) and a natural transformation like �at (typically called µ),
satisfying the commutative diagrams we have already seen.

Definition 2.1. A monad is an endofunctor M : C Ñ C along with two natural
transformations µ : M ˝ M Ñ M and η : IdC Ñ M such that for all A P obpCq,
the following diagrams commute:

MpMpMpAqqq MpMpAqq

MpMpAqq MpAq

µMpAq

µA

µA µA

MpAq MpAq

MpMpAqq

id

ηMpAq
µA

MpAq MpAq

MpMpAqq

id

MpηAq µA

Exercise 2.2. Show that the powerset endofunctor P : Set Ñ Set is a monad.
What are µ and η?

Exercise 2.3. Show that FpXq “ X ˆN admits at least two distinct monad
structures.

The monad we met in the previous section is called the free monad of an
endofunctor. We’ll (hopefully) hear a bit more about this later.

A particularly handy monad for programmers is the “option” or “excep-
tion” monad. This is a monad for the functor: OptionpAq “ A ` 1. This is
particularly handy for defining partial functions, i.e. functions that could fail
on some inputs. Thus, it has one constructor to give a value (in the case where
the function was successful), and one to indicate failure:

ryay, boos : A` 1 Ñ OptionpAq

So, in datatype notation, it looks like this:

datatype OptionpAq “ yay of A

| boo

8



This gives us a functor via:

fun Optionp f qpyaypxqq “ f pxq

| Optionp f qpbooq “ boo

and a monad via:

fun etapaq “ yaypaq

fun mupbooq “ boo

| mupyaypxqq “ x

So, eta lifts an element of A to a “successful” element of OptionpAq, whereas
mu flattens two levels of Option, propagating success/failure to outside:

mu :: boo ÞÑ boo, yaypbooq ÞÑ boo, yaypyaypaqq ÞÑ yaypaq

Now, a function that might fail is of type f : A Ñ OptionpBq. Consider,
for example, adding plus 1 and minus 1 functions to natural numbers, which
allow for failure:

fun plus1pxq “ yaypsucpxqq

fun minus1psucpxqq “ yaypxq

| minus1pzeroq “ boo

Then, these give us functions of the form N Ñ OptionpNq, which we can
“compose” using the monad structure:

infix THEN

fun p f THEN gq “ mu ˝Optionpgq ˝ f

Now, we can chain together things that might fail, e.g.

val f “ minus1 THEN plus1 THEN plus1

Then, we have:

f psucpzeroqq ÞÑ yaypsucpsucpzeroqqq

f pzeroq ÞÑ boo

This style of composition using µ is called Kleisli composition. It is in fact
normal composition, just in a different category!

Definition 2.4. The Kleisli category KlpMq of a monad M is defined as follows:

9



• objects are the original objects obpCq of C,

• morphisms ppf : C Ñ Dq P KlpMq are morphisms p f : C Ñ MpDqq P C,

• composition is given by Kleisli composition. For f : A Ñ MpBq and g : B Ñ
MpCq, we have:

pg ˝ pf :“ µC ˝Mpgq ˝ f

• identities are given by η. That is, pidA : A Ñ Aq P KlpMq is given by
pηA : A Ñ MpAqq P C.

Exercise 2.5. What is the Kleisli category of Option? What is the Kleisli category
of P?

10


	Terms
	More natural transformations

	Monads

