

Colecture 2: Monads

Aleks Kissinger (and Juriaan Rot)

November 11, 2018

1 Terms

An important kind of algebraic data type is a type of *terms* for a signature Σ . These form the connection between initial algebras of a functor and algebraic structures in the usual sense (groups, rings, etc.).

A *signature* Σ is a collection of *symbols* with *arities*. Symbols are just names (i.e. the names of some collection of functions we care about), and arities tell us how many arguments those function symbols take. For example:

$$\Sigma_G = \{m : 2, i : 1, e : 0\}$$

is a signature. A valid *term* for this signature is any composition of those symbols respecting arities. For example:

$$m(m(i(e), e), e)$$

is a valid term, but $e(m)$ is not.

Signatures are the starting point for defining an algebraic structure. They tell us what operations are allowed. For example, the signature Σ above defines the allowed operations for a *group*, namely: multiplication, inverse, and unit.

The set of terms for a signature is the initial algebra of a functor of the form:

$$F(X) = X^{n_1} + X^{n_2} + \dots + X^{n_k}$$

where n_i is the arity of the i -th generator. For example, the functor for the group-signature given above is:

$$F(X) = X^2 + X + 1$$

In datatype-notation, this initial algebra is given by:

$$\begin{aligned} \text{datatype GTerm} &= m \text{ of GTerm} \times \text{GTerm} \\ &\quad | \quad i \text{ of GTerm} \\ &\quad | \quad e \end{aligned}$$

Exercise 1.1. Give a functor whose initial algebras are terms for a ring.

The elements of GTerm are terms constructed using the symbols from the group signature Σ_G . However, the elements of this algebra are only *ground terms*, i.e. they have no variables in them, only constants. In particular, we have no way of stating the axioms of a group (which indeed involve variables):

$$\begin{aligned} m(a, m(b, c)) &= m(m(a, b), c) \\ m(a, e) &= a = m(e, a) \quad m(a, i(a)) = e = m(i(a), a) \end{aligned}$$

We can fix this by adding a parameter, like we had for lists, and pass it to a new constructor called `var`:

$$\begin{aligned} \text{datatype GTerm}(A) &= \text{var of } A \\ &\quad | \quad m \text{ of } \text{GTerm} \times \text{GTerm} \\ &\quad | \quad i \text{ of } \text{GTerm} \\ &\quad | \quad e \end{aligned}$$

That is, we take the initial algebra of the functor:

$$F_A(X) = A + X^2 + X + 1 \tag{1}$$

Now, elements of $\text{GTerm}(A)$ look like, e.g.:

$$m(\text{var}(a), m(\text{var}(b), y, \text{var}(c)))$$

where $a, b, c \in A$ are variables taken from an arbitrary set A . Cool! We are one step closer to being able to talk about real algebraic stuff using endofunctors. But before we get there, lets make a couple of observations.

First, if we have an $f : A \rightarrow B$, we can build a function

$$\text{GTerm}(f) : \text{GTerm}(A) \rightarrow \text{GTerm}(B)$$

much like we did for lists:

$$\begin{array}{ccc} A + \text{GTerm}(A)^2 + \text{GTerm}(A) + 1 & \dashrightarrow & A + \text{GTerm}(B)^2 + \text{GTerm}(B) + 1 \\ \downarrow [\text{var}, m, i, e] & & \downarrow [\text{var} \circ f, m, i, e] \\ \text{GTerm}(A) & \dashrightarrow & \text{GTerm}(B) \end{array}$$

This function recurses all the way down to variables, then applies f . We can see the associated ML code by listing the recurrence relations:

$$\begin{aligned} \text{fun GTerm}(f)(m(x, y)) &= m(\text{GTerm}(f)(x), \text{GTerm}(f)(y)) \\ &| \quad \text{GTerm}(f)(i(x)) = i(\text{GTerm}(f)(x)) \\ &| \quad \text{GTerm}(f)(e) = e \\ &| \quad \text{GTerm}(f)(\text{var}(a)) = \text{var}(f(a)) \end{aligned}$$

Now, we can take any set A to be the set of variables for $\text{GTerm}(A)$. So, what happens if we take $\text{GTerm}(A)$ itself? Well, we have terms who's “variables” are themselves terms, e.g.

$$m(\text{var}(\text{m}(e, \text{var}(a))), \text{var}(e)) \in \text{GTerm}(\text{GTerm}(A))$$

Well, this is really just a term in $\text{GTerm}(A)$ again. All we have to do is “flatten” it, i.e. delete one layer of var :

$$m(\text{var}(\text{m}(e, \text{var}(a))), \text{var}(e)) \mapsto m(m(e, \text{var}(a)), e)$$

As ML, this function looks like:

$$\begin{aligned} \mathbf{fun} \text{ flat}(\text{var}(a)) &= a \\ | \text{ flat}(m(x, y)) &= m(\text{flat}(x), \text{flat}(y)) \\ | \text{ flat}(i(x)) &= i(\text{flat}(x)) \\ | \text{ flat}(e) &= e \end{aligned}$$

We can also do the opposite thing. For any $a \in A$, we can get a term just by wrapping it in “ var ”. We’ll call this lift :

$$\mathbf{fun} \text{ lift}(a) = \text{var}(a)$$

We can build these using the initial algebra structure as well. But first, note we don’t really need the exact definition of F from (1) to construct $\text{GTerm}(A)$, we just need the fact that:

$$F_A(X) := A + F(X)$$

has an initial algebra. Let $F^*(A)$ be the initial algebra of F_A .

Exercise 1.2. Prove that F^* extends to a functor for any F such that F_A has an initial algebra for all $A \in \text{ob}(\mathcal{C})$.

Every initial algebra comes with a morphism. For $F^*(A)$, let’s call it:

$$[\text{lift}, \text{gens}] : A + F(F^*(A)) \rightarrow F^*(A)$$

Boom! We already have lift . It is just part of the initial algebra structure. For the group example, $\text{lift} = \text{var}$ and gens is the rest, all wrapped into a single map:

$$\text{gens} = [m, i, e] : \text{GTerm}(A)^2 + \text{GTerm}(A) + 1 \rightarrow \text{GTerm}(A)$$

So, flat should be defined in terms of gens , recursively. By definition, $F^*(F^*(A))$ is the initial algebra of $F_{F^*(A)}$. Hence we can get a function

$$\text{flat}_A : F^*(F^*(A)) \rightarrow F^*(A)$$

by giving $F^*(A)$ the structure of an $F_{F^*(A)}$ algebra. That's a little bit mind-bending, but it's actually not too bad if we keep a clear head. We need to complete this square:

$$\begin{array}{ccc} F_{F^*(A)}(F^*(F^*(A))) & \dashrightarrow & F_{F^*(A)}(F^*(A)) \\ a \downarrow & & \downarrow ? \\ F^*(F^*(A)) & \xrightarrow{\text{flat}} & F^*(A) \end{array}$$

i.e. this square:

$$\begin{array}{ccc} F^*(A) + F(F^*(F^*(A))) & \dashrightarrow & F^*(A) + F(F^*(A)) \\ [\text{lift}, \text{gens}] \downarrow & & \downarrow ? \\ F^*(F^*(A)) & \xrightarrow{\text{flat}} & F^*(A) \end{array}$$

Well, if we already have a term in $F^*(A)$, do nothing with it. Otherwise, we use gens:

$$\begin{array}{ccc} F^*(A) + F(F^*(F^*(A))) & \xrightarrow{F^*(A) + F(\text{flat})} & F^*(A) + F(F^*(A)) \\ [\text{lift}, \text{gens}] \downarrow & & \downarrow [\text{id}_{F^*(A)}, \text{gens}] \\ F^*(F^*(A)) & \xrightarrow{\text{flat}} & F^*(A) \end{array}$$

So, that get pretty abstract, so lets see if we did The Right Thing. The commutative square captures the equation:

$$\text{flat} \circ [\text{lift}, \text{gens}] = [\text{id}, \text{gens} \circ F(\text{flat})]$$

which written again in ML-style notation gives us:

$$\begin{aligned} \mathbf{fun} \text{ flat}(\text{lift}(a)) &= \text{id}(a) \\ | \text{ flat}(\text{gens}(z)) &= \text{gens}(F(\text{flat})(z)) \end{aligned}$$

Returning to our group example, $\text{lift} = \text{var}$, so the first line exactly matches our code of flat from before. For the second line, $\text{gens} = [m, i, e]$ so this takes an incoming value z from a coproduct of 3 sets and applies the appropriate constructor:

$$\text{gens}(z) = \begin{cases} m(x, y) & \text{if } z = (x, y) \in \text{GTerm}(A) \times \text{GTerm}(A) \\ i(x) & \text{if } z = x \in \text{GTerm}(A) \\ e & \text{if } z = * \in 1 \end{cases}$$

Similarly, we have: $F(\text{flat}) = \text{flat} \times \text{flat} + \text{flat} + \text{id}_1$, so:

$$F(\text{flat})(z) = \begin{cases} (\text{flat}(x), \text{flat}(y)) & \text{if } z = (x, y) \in \text{GTerm}(A) \times \text{GTerm}(A) \\ \text{flat}(x) & \text{if } z = x \in \text{GTerm}(A) \\ * & \text{if } z = * \in 1 \end{cases}$$

1.1 More natural transformations

One thing we notice about the definitions of flat_A and lift_A is that they don't look directly at the elements of A . They just shuffle them around inside of terms. We saw last time, this corresponds to *polymorphic functions*, or categorically to *natural transformations*.

Recall this definition from last time:

Definition 1.3. For any two functors F, G a natural transformation $\phi : F \rightarrow G$ is a family of functions $\phi_A : F(A) \rightarrow G(A)$ which makes the follow diagram commute, for all sets A, B and all functions $f : A \rightarrow B$:

$$\begin{array}{ccc} F(A) & \xrightarrow{F(f)} & F(B) \\ \phi_A \downarrow & & \downarrow \phi_B \\ G(A) & \xrightarrow{G(f)} & G(B) \end{array}$$

Note in particular that we write the whole family ϕ is a morphism going from the functor F to the functor G . This seems to suggest there is a *category* whose objects are functors and whose morphisms are natural transformations. This is indeed the case:

Definition 1.4. The category $[\mathcal{C}, \mathcal{D}]$ has as objects functors $F : \mathcal{C} \rightarrow \mathcal{D}$ and as morphisms natural transformations.

Exercise 1.5. Show that $[\mathcal{C}, \mathcal{D}]$ is a category. What are its identities? What is composition?

We can show that the families of functions lift_A and flat_A yield the following natural transformations:

$$\begin{aligned} \text{lift} &: \text{Id} \rightarrow F^* \\ \text{flat} &: F^* \circ F^* \rightarrow F^* \end{aligned}$$

Note everything in sight is an endofunctor on Set , so both of the above natural transformations are morphisms in the category $[\text{Set}, \text{Set}]$.

We have already (secretly) shown that `lift` is a natural transformation in exercise 1.2. Much like we did with the examples from last time, we should define $F^*(f)$ as:

$$\begin{array}{ccc}
 A + F(F^*(A)) & \xrightarrow{\text{id}_A + F(F^*(f))} & A + F(F^*(B)) \\
 \downarrow [\text{lift}, \text{gens}] & & \downarrow [\text{lift} \circ f, \text{gens}] \\
 F^*(A) & \xrightarrow{F^*(f)} & F^*(B)
 \end{array}$$

Just reading the A -part of this commutative square gives:

$$\begin{array}{ccc}
 A & \xrightarrow{\text{id}_A} & A \\
 \downarrow \text{lift} & & \downarrow \text{lift} \circ f \\
 F^*(A) & \xrightarrow{F^*(f)} & F^*(B)
 \end{array}$$

Shifting the f around to the top, we can write the same equation as this commutative square:

$$\begin{array}{ccc}
 A & \xrightarrow{f} & B \\
 \downarrow \text{lift} & & \downarrow \text{lift} \\
 F^*(A) & \xrightarrow{F^*(f)} & F^*(B)
 \end{array}$$

which is exactly naturality for `lift`! `flat` is a bit harder, due to the recursive definition. So, we'll make this an optional exercise:

Exercise* 1.6. (Bonus) Prove that the following diagram commutes:

$$\begin{array}{ccc}
 F^*(F^*(A)) & \xrightarrow{F^*(F^*(f))} & F^*(F^*(B)) \\
 \downarrow \text{flat} & & \downarrow \text{flat} \\
 F^*(A) & \xrightarrow{F^*(f)} & F^*(B)
 \end{array}$$

In addition to naturality, we notice that `lift` and `flat` interact well with each other. For instance, if I lift a term then flatten it, I get back where I started:

$$m(e, \text{var}(a)) \mapsto \text{var}(\boxed{m(e, \text{var}(a))}) \mapsto m(e, \text{var}(a))$$

I can write this as a commutative diagram:

$$\begin{array}{ccc}
 F^*(A) & \xrightarrow{\text{id}} & F^*(A) \\
 \downarrow \text{lift}_{F^*(A)} & & \nearrow \text{flat}_A \\
 F^*(F^*(A)) & &
 \end{array}$$

Similarly, if I lift all the `var`'s in a term, via $F^*(\text{lift})$, then flat , I get back where I started:

$$m(e, \text{var}(a)) \mapsto m(e, \text{var}(\text{var}(a))) \mapsto m(e, \text{var}(a))$$

I can also write this as a commutative diagram:

$$\begin{array}{ccc}
 F^*(A) & \xrightarrow{\text{id}} & F^*(A) \\
 \downarrow F^*(\text{lift}_A) & & \nearrow \text{flat}_A \\
 F^*(F^*(A)) & &
 \end{array}$$

Finally, if I have “triple terms”, there are two ways I can flatten them. I can first recurse into all the `var`'s and flatten those, using $F^*(\text{flat}_A)$, then flatten the whole term using flat_A :

$$\begin{aligned}
 & m(e, \text{var}(\text{m}(\text{var}(e), \text{var}(\text{var}(a))))) \\
 & \mapsto m(e, \text{var}(\text{m}(e, \text{var}(a)))) \\
 & \mapsto m(e, \text{m}(e, \text{var}(a)))
 \end{aligned}$$

...or I can first flatten at the top level using $\text{flat}_{F^*(A)}$, then flatten again using flat_A :

$$\begin{aligned}
 & m(e, \text{var}(\text{m}(\text{var}(e), \text{var}(\text{var}(a))))) \\
 & \mapsto m(e, \text{m}(\text{var}(e), \text{var}(\text{var}(a)))) \\
 & \mapsto m(e, \text{m}(e, \text{var}(a)))
 \end{aligned}$$

These should of course be the same:

$$\begin{array}{ccc}
 F^*(F^*(F^*(A))) & \xrightarrow{\text{flat}_{F^*(A)}} & F^*(F^*(A)) \\
 \downarrow F^*(\text{flat}_A) & & \downarrow \text{flat}_A \\
 F^*(F^*(A)) & \xrightarrow{\text{flat}_A} & F^*(A)
 \end{array}$$

2 Monads

A monad is an endofunctor that comes with a natural transformation like `lift` (typically called η) and a natural transformation like `flat` (typically called μ), satisfying the commutative diagrams we have already seen.

Definition 2.1. A *monad* is an endofunctor $M : \mathcal{C} \rightarrow \mathcal{C}$ along with two natural transformations $\mu : M \circ M \rightarrow M$ and $\eta : \text{Id}_{\mathcal{C}} \rightarrow M$ such that for all $A \in \text{ob}(\mathcal{C})$, the following diagrams commute:

$$\begin{array}{ccc}
 M(M(M(A))) & \xrightarrow{\mu_{M(A)}} & M(M(A)) \\
 \mu_A \downarrow & & \downarrow \mu_A \\
 M(M(A)) & \xrightarrow{\mu_A} & M(A) \\
 \\
 M(A) & \xrightarrow{\text{id}} & M(A) \\
 \eta_{M(A)} \downarrow & \nearrow \mu_A & \\
 M(M(A)) & & \\
 \\
 M(A) & \xrightarrow{\text{id}} & M(A) \\
 M(\eta_A) \downarrow & \nearrow \mu_A & \\
 M(M(A)) & &
 \end{array}$$

Exercise 2.2. Show that the powerset endofunctor $\mathcal{P} : \text{Set} \rightarrow \text{Set}$ is a monad. What are μ and η ?

Exercise 2.3. Show that $F(X) = X \times \mathbb{N}$ admits at least two distinct monad structures.

The monad we met in the previous section is called the *free monad* of an endofunctor. We'll (hopefully) hear a bit more about this later.

A particularly handy monad for programmers is the “option” or “exception” monad. This is a monad for the functor: $\text{Option}(A) = A + 1$. This is particularly handy for defining partial functions, i.e. functions that could fail on some inputs. Thus, it has one constructor to give a value (in the case where the function was successful), and one to indicate failure:

$$[\text{yay}, \text{boo}] : A + 1 \rightarrow \text{Option}(A)$$

So, in **datatype** notation, it looks like this:

$$\begin{array}{c}
 \text{datatype } \text{Option}(A) = \text{yay } \text{of } A \\
 \quad \quad \quad \mid \text{boo}
 \end{array}$$

This gives us a functor via:

$$\begin{aligned} \mathbf{fun} \text{ Option}(f)(\text{yay}(x)) &= f(x) \\ |\text{ Option}(f)(\text{boo}) &= \text{boo} \end{aligned}$$

and a monad via:

$$\begin{aligned} \mathbf{fun} \text{ eta}(a) &= \text{yay}(a) \\ \mathbf{fun} \text{ mu}(\text{boo}) &= \text{boo} \\ |\text{ mu}(\text{yay}(x)) &= x \end{aligned}$$

So, eta lifts an element of A to a “successful” element of $\text{Option}(A)$, whereas mu flattens two levels of Option, propagating success/failure to outside:

$$\text{mu} :: \text{boo} \mapsto \text{boo}, \text{ yay}(\text{boo}) \mapsto \text{boo}, \text{ yay}(\text{yay}(a)) \mapsto \text{yay}(a)$$

Now, a function that might fail is of type $f : A \rightarrow \text{Option}(B)$. Consider, for example, adding plus 1 and minus 1 functions to natural numbers, which allow for failure:

$$\begin{aligned} \mathbf{fun} \text{ plus1}(x) &= \text{yay}(\text{suc}(x)) \\ \mathbf{fun} \text{ minus1}(\text{suc}(x)) &= \text{yay}(x) \\ |\text{ minus1}(\text{zero}) &= \text{boo} \end{aligned}$$

Then, these give us functions of the form $\mathbb{N} \rightarrow \text{Option}(\mathbb{N})$, which we can “compose” using the monad structure:

$$\begin{aligned} \mathbf{infix} \text{ THEN} \\ \mathbf{fun} (f \text{ THEN } g) &= \text{mu} \circ \text{Option}(g) \circ f \end{aligned}$$

Now, we can chain together things that might fail, e.g.

$$\mathbf{val} f = \text{minus1} \text{ THEN } \text{plus1} \text{ THEN } \text{plus1}$$

Then, we have:

$$\begin{aligned} f(\text{suc}(\text{zero})) &\mapsto \text{yay}(\text{suc}(\text{suc}(\text{zero}))) \\ f(\text{zero}) &\mapsto \text{boo} \end{aligned}$$

This style of composition using μ is called *Kleisli composition*. It is in fact normal composition, just in a different category!

Definition 2.4. The *Kleisli category* $\text{Kl}(M)$ of a monad M is defined as follows:

- *objects* are the original objects $\text{ob}(\mathcal{C})$ of \mathcal{C} ,
- *morphisms* $(\hat{f} : C \rightarrow D) \in \text{Kl}(M)$ are morphisms $(f : C \rightarrow M(D)) \in \mathcal{C}$,
- *composition* is given by *Kleisli composition*. For $f : A \rightarrow M(B)$ and $g : B \rightarrow M(C)$, we have:

$$\hat{g} \circ \hat{f} := \mu_C \circ M(g) \circ f$$

- *identities* are given by η . That is, $(\text{id}_A : A \rightarrow A) \in \text{Kl}(M)$ is given by $(\eta_A : A \rightarrow M(A)) \in \mathcal{C}$.

Exercise 2.5. What is the Kleisli category of Option? What is the Kleisli category of \mathcal{P} ?