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By now we’ve been talking a lot about coalgebras and coinduction, as well
as algebras and induction. It’s about time to combine them! As it turns out,
this is pretty fundamental: one can use algebra to model syntax/structure, and
coalgebra to model observable behaviour. As a motivating example, we’ll use the
good old regular expressions. Recognising the combined algebraic/coalgebraic
structure gives rise to concrete decision procedures for behavioural equivalence.
In this way we can easily check, whether two regular expressions are equivalent.
The combined algebraic/coalgebraic structure also allows us to obtain useful
proof principles properties about languages in general.

1 Regular expressions

Consider the set 2A
∗

of languages over A. To speak about regular expressions,
we first need some operations on languages:

• union L+K, defined by (L+K)(w) = L(w) ∨K(w) .

• concatenation L ·K (often written as LK), defined by (L ·K)(w) = 1 iff
there are v, u such that w = vu and L(v) = 1 = K(u).

• Kleene star L∗; we first define for a given language L and non-negative
integer i, the i-fold composition Li as L0 = 1 and Li+1 = L · Li. The
Kleene star is defined as follows: L∗ =

∑
i≥0 L

i which means L∗(w) = 1

iff there is an i such that Li(w) = 1.

We also have some important constants in the context of regular expressions:
the empty language ∅, the language {ε} just containing the empty word, and
the singleton {a} for every a ∈ A.

Thus, we’re back at the previous lectures: putting all these operations and
constants together, we define an algebra on the set 2A

∗
of languages. First of

all, the signature: we have two binary operators (union and concatenation), one
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unary (Kleene star) and a bunch of constants. This is modelled by the functor
R : Set→ Set, defined by:

R(X) = X ×X +X ×X +X + {0}+ {1}+A

where from left to right, the components refer to union, concatenation, Kleene
star, 0, 1, and a ∈ A for each a. The corresponding operations on 2A

∗
then give

us an algebra
ρ : R(2A

∗
)→ 2A

∗

thus specifying the ‘regular’ operations.
In this context, what is a regular expression? It is just syntax for the opera-

tions and constants that we’ve defined before. Using our newly found expertise
from the previous lectures: they are ‘just’ the initial algebra of the functor R,
that is, the terms over these operations! Let’s denote the underlying set of this
algebra by ExpA, so it is an algebra of the form:

α : R(ExpA)→ ExpA .

More explicitly, the set ExpA is defined by the following grammar:

r :: = r + r | r · r | r∗ | a | 1 | 0

where a ranges over A. We often abbreviate r · s by rs. For instance, (a + b)∗,
a∗(ba∗)∗, a+ 1, abc, b(a+ ac)∗ are all examples of regular expressions.

Now, we have our initial algebra α and the algebra ρ defining the regular
operations. Thus, we get a unique morphism by intiality:

R(ExpA)

α

��

R(L) // R(2A
∗
)

ρ

��
ExpA L

// 2A
∗

If we spell it out, we get:

L(0)(w) = 0

L(1)(w) =

{
1 if w = ε

0 otherwise

L(a)(w) =

{
1 if w = a

0 otherwise

L(r + s)(w) = (L(r) + L(s))(w)

L(r · s)(w) = (L(r)L(s))(w)

L(r∗) = L(r)∗
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for all r, s ∈ ExpA. The map L is the usual semantics of regular expressions,
which we have thus recovered using (initial) algebras!

As usual, for a regular expression r, we call L(r) the language denoted by r,
or simply the language of r. A language L ∈ 2A

∗
is called regular if there is a

regular expression r such that L(r) = L.

1.1 The syntactic automaton of regular expressions

In the previous section, we recalled the semantics of regular expressions, and
showed how it arises algebraically. As it turns out, we can also retrieve it coalge-
braically, and the two approaches coincide. Somewhat more precisely, we’ll turn
the set of all regular expressions into an automaton, whose language semantics
coincides with the semantics of expressions.

Before doing so, first recall that we have our beloved final coalgebra of the
functor F (X) = 2×XA on Set:

〈e, d〉 : 2A
∗
→ 2× (2A

∗
)A

Thus, the set of languages carries both an (interesting)R-algebra and F -coalgebra
structure. The connection between these two structures is at the heart of this
lecture.

The R-algebra ρ computes the operations on languages. The F -coalgebra
〈e, d〉 computes the derivatives, and whether the empty word is in the language.
The two interact as follows.

Lemma 1.1. For any two languages L,K and for any a, b ∈ A:

0(ε) = 0 0a = 0
1(ε) = 1 1a = 0

{b}(ε) = 0 {b}a =

{
1 if b = a

0 otherwise
(L+K)(ε) = L(ε) ∨K(ε) (L+K)a = La +Ka

(L ·K)(ε) = L(ε) ∧K(ε) (L ·K)a = La ·K + L(ε) ·Ka

L∗(ε) = 1 (L∗)a = La · L∗

In the above, we abuse notation and also use 0 to denote ∅ and 1 to denote {ε}.
Note that in the derivative (L ·K)a, we have

La ·K + L(ε) ·Ka =

{
La ·K +Ka if L(ε) = 1

La ·K otherwise
.

Proof. Exercise!

This lemma connects coalgebraic structure (derivatives, output) to algebraic
structure (operations). It allow us to compute derivatives of operations induc-
tively: once we know the derivatives of smaller bits, we can derive the deriva-
tives of the entire thing. That’s nice, but what is it good for? Well, as we’ll see
later, one can use this to prove all kinds of properties about languages.
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But first, let’s return to expressions. Using the above insights, we can now
define properly an automaton on the set ExpA of all expressions, basically by
copying the above lemma. This characterisation is due to Brzozowski [1], hence
these are often called Brzozowski derivatives. For more depth and detail on the
(co)algebraic presentation, see [2].

Definition 1.2. We define an automaton (ExpA, 〈o, t〉), whose state space is the
set ExpA of regular expressions. The functions o : ExpA → 2 and t : ExpA →
ExpAA are defined by induction, below. For r ∈ ExpA and a ∈ A, we abbreviate
t(r)(a) by ra.

o(0) = 0 0a = 0
o(1) = 1 1a = 0

o(b) = 0 ba =

{
1 if b = a

0 otherwise
o(r + s) = o(r) ∨ o(s) (r + s)a = ra + sa

o(r · s) = o(r) ∧ o(s) (r · s)a =

{
ra · s+ sa if o(r) = 1

ra · s otherwise
o(r∗) = 1 (r∗)a = ra · r∗

for all a, b ∈ A and r, s ∈ ExpA.
We call (ExpA, o, t) the automaton of regular expressions. For a regular ex-

pression r ∈ ExpA and a letter a ∈ A, we call o(r) the output and ra the a-
derivative of r.

Example 1.3. We draw the part of the automaton (ExpA, o, t) that starts in state
a+ b and in ab:

a+ b

a

{{

b

##
0 + 1

a,b ##

1 + 0

a,b{{
0 + 0

a,b

TT

ab

a

��

b // 0b

a,b

UU

1b

a

��

b

$$
0b+ 0

a,b

TT
0b+ 1

a,b
oo

Recall that for every automaton there is a map beh that sends a state to the
language it accepts, given by the unique map into the final coalgebra:

ExpA

〈o,t〉
��

beh // 2A
∗

〈e,d〉
��

2× (ExpA)
A

id×behA
// 2× (2A

∗
)A
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We have thus obtained two maps of the same type, from regular expressions to
languages:

• beh, given by finality using the coalgebraic (automaton) structure on ExpA,
and

• L, given by initiality using the algebraic structure on 2A
∗

given by the
regular operations of union, concatenation etc.

It is time to connect the two. In a sense, this assures that way we characterised
the derivatives of operations is correct.

We are going to prove that the two maps are equal: beh = L. The idea is
to show that L is a coalgebra morphism, from the automaton of regular expres-
sions to the final coalgebra. Since beh is the unique such coalgebra morphism,
the result then follows (note that we could also prove that beh is an algebra
morphism, but this is harder). So here is the important step:

Lemma 1.4. The map L is a coalgebra morphism from the automaton of regular
expressions to the final coalgebra.

Proof. We need to prove that

o(r) = L(r)(ε) and L(r)a = L(ra)

for all r ∈ ExpA, which can be shown by structural induction on r. It essentially
follows from Lemma 1.1 and the definition of L.

We only treat the case of concatenation. Suppose it holds for r and s. Then

o(r · s) = o(r) ∧ o(s) (def. o)

= L(r)(ε) ∧ L(s)(ε) (IH)

= (L(r) · L(s))(ε) (Lemma 1.1)

= L(r · s) (def. L)

and for all a ∈ A:

L(r · s)a = (L(r) · L(s))a (def. L)

= L(r)a · L(s) + L(r)(ε) · L(s)a (Lemma 1.1)

= L(ra) · L(s) + o(r) · L(sa) (IH)

= L(ra · s+ o(r) · sa) (def. L)

= L((r · s)a) (def. (r · s)a)

Of course, one needs to treat the other cases as well. Anyway, note that all relies
on the definition of L, the automaton of regular expressions, and Lemma 1.1.

Corollary 1.5. We have L = beh.
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The situation can be summarised as follows: we have that L is the unique
map (both an algebra and a coalgebra morphism!) making the following dia-
gram commute:

R(ExpA)

α

��

R(L) // R(2A
∗
)

ρ

��
ExpA

〈o,t〉
��

L // 2A
∗

〈e,d〉
��

2× (ExpA)
A

id×LA

// 2× (2A
∗
)A

1.2 Bisimulations between regular expressions

We have seen that L is defined by initiality, but it is also the coalgebra homomor-
phism from the automaton of regular expressions to the final coalgebra. This
gives us a proof principle: bisimulations! To prove that two regular expressions
are language equivalent, it suffices to prove that they are related by bisimilarity
∼ on the automaton of regular expressions. Simply instantiating the definition
of bisimulations of deterministic automata, we have r ∼ s iff there exists a
relation R ⊆ ExpA × ExpA such that for all (r, s) ∈ R:

1. o(r) = o(s), and

2. ∀a ∈ A: (ra, sa) ∈ R.

We summarize the above discussion in the following theorem.

Theorem 1.6. We have L(r) = L(s) iff there exists a bisimulation R ⊆ ExpA ×
ExpA on the automaton of regular expressions such that (r, s) ∈ R.

For instance, using bisimulations and Theorem 1.6 one can prove that, for
any regular expressions r, s, t we have:

1. L(r + (s+ t)) = L((r + s) + t)

2. L(r + s) = L(s+ r)

3. L(r + r) = L(r)

This is left as an exercise. These equations will play an important role later on.
We would like to apply Theorem 1.6 to define an algorithm that automati-

cally proves equivalence of regular expressions, by constructing a bisimulation.
To this end, we could try to use the algorithm Naive(r, s). However, the prob-
lem is that this algorithm may not terminate! The issue is that, for a regular
expression r, the part of the automaton of regular expressions starting in r may
be infinite. In other words, r may have infinitely many derivatives.
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Example 1.7. Let A = {a}. Consider the part of the automaton of regular
expressions starting in a∗:

a∗
a // 1a∗

a // 0a∗ + 1a∗
a // 0a∗ + 1a∗

a // 0a∗ + (0a∗ + 1a∗)
a // . . .

This already goes out of the margin of this document! But of course it’s much
worse: it goes on forever, the state a∗ has infinitely many derivatives. However,
notice that each of these derivatives is language equivalent to a∗.

To make this problem more precise, we define the set of derivatives D(r) ⊆
ExpA of a regular expression as the least set such that

1. r ∈ D(r), and

2. for each s ∈ D(r) and a ∈ A: sa ∈ D(r).

The problem is thus that D(r) is infinite. When constructing a bisimulation
between r and s, in the worst case it may be that every state of D(r) and D(s)
is explored: if one of them is infinite, this means that this approach would not
terminate, which means that we do not have a proper algorithm.

1.3 Regular expressions modulo ACI

The solution is to identify regular expressions based on a few equations, by
defining a relation ≡0 ⊆ ExpA × ExpA as the least relation such that for all
r, s, t ∈ ExpA:

(r + s) + t ≡0 r + (s+ t) (associativity)

r + s ≡0 s+ r (commutativity)

r + r ≡0 r (idempotence)

and then defining ≡ as the congruence closure of ≡0: the least eequivalence
relation such that ≡0⊆≡ and that:

r ≡ r
r ≡ s
s ≡ r

r ≡ s s ≡ t
r ≡ t

r1 ≡ s1 r2 ≡ s2
r1 + r2 ≡ s1 + s2

r1 ≡ s1 r2 ≡ s2
r1 · r2 ≡ s1 · s2

r ≡ s
r∗ ≡ s∗

We say that two regular expressions r, s are equivalent modulo ACI (ACI stands
for Associativity, Commutativity and Idempotence) if r ≡ s. The reason for
introducing this, is that every regular expression has only finitely many deriva-
tives, modulo ACI. To make this claim precise, we let

[r] = {s ∈ ExpA | r ≡ s}

be the equivalence class of a regular expression r: it is the set of all regular
expressions s that are equivalent to r, modulo ACI.
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Lemma 1.8. For every regular expression r, the set

{[s] ∈ ExpA | s ∈ D(r)}

of equivalence classes (modulo ACI) of derivatives of r is finite.

Example 1.9. Recall from Example 1.7 that a∗ has infinitely many derivatives:

a∗
a // 1a∗

a // 0a∗ + 1a∗
a // 0a∗ + 1a∗

a // 0a∗ + (0a∗ + 1a∗)
a // . . .

However we have

0a∗ + (0a∗ + 1a∗) ≡ (0a∗ + 0a∗) + 1a∗ ≡ 0a∗ + 1a∗

The set
{[s] ∈ ExpA | s ∈ D(a∗)}

from Lemma 1.8 is given by

{[a∗], [1a∗], [0a∗ + 1a∗]}

which is indeed finite.

1.4 Bisimulation up to ACI

To exploit the fact that every regular expression has finitely many derivatives
modulo ACI (Lemma 1.8), we could consider an automaton where states are
equivalence classes of regular expressions, modulo ACI. Here, we take a differ-
ent approach, based on a new up-to technique. For a relation R ⊆ ExpA×ExpA,
define aci(R) ⊆ ExpA × ExpA as follows:

aci(R) = {(r, s) | r ≡ r′ and s′ ≡ s for some (r′, s′) ∈ R}

Hence, aci(R) contains all the pairs of regular expressions that are equivalent
modulo ACI to some pair in R. Now a bisimulation up to ACI is a relation
R ⊆ ExpA × ExpA such that for all (r, s) ∈ R:

1. o(r) = o(s), and

2. ∀a ∈ A: (ra, sa) ∈ aci(R), i.e., there exist (r′a, s
′
a) ∈ R such that ra ≡ r′a

and s′a ≡ sa.

We summarize the above discussion in the following theorem.

Theorem 1.10. Suppose R ⊆ ExpA × ExpA is a bisimulation up to ACI on the
automaton of regular expressions. Then for any (r, s) ∈ R, we have L(r) = L(s).

Now we can finally adapt use the usual algorithm for equivalence of states
of a DFA, which we’ve seen before, for equivalence of two regular expressions
r0 and s0. We call it RegExpEq:
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RegExpEq(r0, s0)

(1) R is empty; todo is empty;
(2) insert (r0, s0) in todo;
(3) while todo is not empty do
(3.1) extract (r, s) from todo;
(3.2) if there is (r′, s′) ∈ R with r ≡ r′ and s′ ≡ s then continue;
(3.3) if o(x′) 6= o(y′) then return false;
(3.4) for all a ∈ A,

insert (ra, sa) in todo;
(3.5) insert (r, s) in R;

(4) return true;

We studied this algorithm for finite automata in lecture 6; for the termination,
we used that the number of pairs in R is bounded by the size of the state space.
Here, we need to be more careful of course: indeed, if we wouldn’t use up-
to-ACI (as in the standard algorithm) it wouldn’t even terminate! However,
notice that during the algorithm R will only contain derivatives of r0, s0, and a
new pair is only added if it isn’t already there up to ACI; hence, it follows from
Lemma 1.8 that the number of pairs which can be added to R is bounded.

1.5 Kleene algebra

Using coalgebraic techniques, we have arrived at an algorithm for equivalence
of regular expressions. There’s also a completely different method to reason
about equivalence, which I can’t resist mentioning in this context. It is (at first
sight, at least) purely algebraic. The idea is to provide an axiomatisation of
equivalence of regular expressions.

A Kleene algebra (KA) is a set K together with binary operations + and ·,
a unary operation ∗, and constants 0 and 1 (the same as regular expressions—
what a coincidence!), such that the following hold for all x, y, z ∈ K:

x+ (y + z) = (x+ y) + z
x+ y = y + x
x+ x = x
x+ 0 = x
x(yz) = (xy)z
x · 1 = 1 · x = x
x · 0 = 0 · x = 0

(y + z)x = yx+ zx
x(y + z) = xy + xz
x∗x+ 1 = x∗

xx∗ + 1 = x∗

z + yx ≤ x → y∗z ≤ x
z + xy ≤ x → zy∗ ≤ x

(1)

where, for all x, y ∈ K, x ≤ y iff x+ y = y.
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For instance, the set 2A
∗

of all languages is a Kleene algebra, if we inter-
pret each of the operations as before. We are going to prove this in a minute.
Another example is the set of all regular languages. Yet another example of a
Kleene algebra is the set of all relations on a set X (how would you define the
operations?).

Notice that the terms over a Kleene algebra are just the regular expressions.
We write e ≡KA f if we can derive equivalence of e and f from the above
equations (formally, ≡KA is the congruence closure of the relation on regular
expressions induced by the equations). Now, the wonderful thing is that

e ≡KA f iff L(e) = L(f)

that is, two regular expressions represent the same language precisely if they
are provably equivalent using the axioms of Kleene algebra. From left to right,
this is known as soundness (every identity in KA is valid for regular expressions),
from right to left this is completeness (every identity between regular expressions
actually holds in Kleene algebra).

Completeness is a big result, proved by Dexter Kozen [3] and independently
by Daniel Krob (in a very different way) in the early nineties, after the problem
of giving such an axiomatisation was open for decades. There’s a lot more to
say about that, but that’s all a little outside the scope of the lecture for now.
Note that we use the equations of KA to reason about equivalence of regular
expressions. But what is possibly even better: we can use the algorithm for
language equivalence of regular expressions to check which equations are valid
in all Kleene algebras! This is useful, for instance, to prove things about algebras
of relations.

As a little side remark: is there any connection with coalgebras at all? Well,
yes: Bart Jacobs [2] rephrased completeness as follows. Take the automaton
ExpA of all regular expressions, and quotient it by the equations of Kleene alge-
bra; this yields again an automaton, this time over equivalence classes of prov-
ably equivalent expressions. Then completeness amount to the statement that
this new coalgebra is final in the category of finite (!) deterministic automata
(something to think about on a rainy afternoon).

2 Language equivalence with bisimulations

So we just claimed that the the set of all languages 2A
∗

forms a Kleene algebra,
which means each of the equalities in (1) actually holds when we substitute
languages for each of the x, y, z’s etc. But how do we prove this? Indeed, how
do we prove equations between languages in general?

Well, by now there can only be one answer: bisimulations of course! We start
with the following observation, which follows immediately from (2A

∗
, 〈e, d〉)

being a final coalgebra.

Theorem 2.1. Let (L,K) ∈ 2A
∗
. Then L = K iff there exists a bisimulation R on

the final coalgebra (2A
∗
, 〈e, d〉) such that (L,K) ∈ R.
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Thus, to prove L0 = K0, it suffices to come up with a relation R such that
(L0,K0) ∈ R and for all (L,K) ∈ R:

1. L(ε) = K(ε) and

2. for all a ∈ A: (La,Ka) ∈ R.

Example 2.2. We will prove that L+ 0 = L for all L. To this end, consider the
relation

R = {(L+ 0, L) | L ∈ 2A
∗
}

We show that R is a bisimulation. First, we have

(L+ 0)(ε) = L(ε) ∨ 0(ε) = L(ε) ∨ 0 = L(ε)

using Lemma 1.1. Then, again using Lemma 1.1, we have for any a ∈ A:

(L+ 0)a = La + 0a

= La + 0

R La .

Thus, we have shown that R is a bisimulation. By Theorem 2.1, we obtain
L+ 0 = L for all languages L.

Example 2.3. We prove that L · 0 = L. Consider the relation

R = {(L · 0, 0) | L ∈ 2A
∗
}

To show that R is a bisimulation, we first consider the output:

(L · 0)(ε) = L(ε) ∧ 0(ε) = L(ε) ∧ 0 = 0 = 0(ε)

again using Lemma 1.1. For any a ∈ A, if L(ε) = 0 then

(L · 0)a = La · 0 R 0 = 0a

and if ε ∈ L, then

(L · 0)a = La · 0 + 0a = La · 0 + 0 = La · 0 R 0 = 0a

Here we used that La · 0+ 0 = La · 0, which follows from the previous example.
We have shown that R is a bisimulation, so that L · 0 = L for every language
L ∈ 2A

∗
.

2.1 Bisimulation up to congruence for regular operations

In this section, we introduce an enhancement of the bisimulation proof method
for equality of languages. We first illustrate the need for such an enhancement
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with a few examples. Consider the property LL∗ + 1 = L∗ (one of the KA
axioms). In order to prove this identity coinductively, we may try to show that

R = {(LL∗ + 1, L∗) | L ∈ 2A
∗
}

is a bisimulation. Using Lemma 1.1, we may prove that (LL∗ + 1)(ε) = L∗(ε)
for any language L ∈ 2A

∗
(exercise). Further, for any a ∈ A:

(LL∗ + 1)a = LaL
∗ + L(ε)LaL

∗ + 0 = LaL
∗ = (L∗)a

where the leftmost and rightmost equality are by Lemma 1.1, and in the second
step we use some standard identities. Now we have shown that the derivatives
are equal; this does not show that R is a bisimulation, since for that, the deriva-
tives need to be related by R. The solution, however, is straightforward. If we
augment the relation R as follows:

R′ = R ∪ {(L,L) | L ∈ 2A
∗
}

then the derivatives of LL∗ + 1 and L∗ are related by R′; and it can be shown
that R′ is a bisimulation. This solves the problem, but it is arguably somewhat
inconvenient that additional work is required to deal with derivatives that are
already equal. As another motivating example, we consider the relation

R = {(L∗L+ 1, L∗) | L ∈ 2A
∗
} .

The derivatives are (using Lemma 1.1):

(L∗L+ 1)a = LaL
∗L+ La + 0 = La(L

∗L+ 1) and (L∗)a = LaL
∗

The language LaL∗ can be obtained from La(L
∗L+ 1) by replacing L∗L+ 1 by

L∗, and indeed the latter two languages are related by R. However, since these
derivatives are not related directly by R, this argument does not show R to be
a bisimulation. Extending R to an actual bisimulation is possible but requires a
bit of work that one would rather skip.

To deal with examples such as the above in a more natural and easy way,
we introduce the notion of bisimulation up to congruence. This requires the
definition of congruence closure.

Definition 2.4. For a relation R ⊆ 2A
∗ × 2A

∗
, define the congruence closure

cgr(R) of R as the least relation satisfying the following rules

LRK

L cgr(R) K L cgr(R) L

L cgr(R) K

K cgr(R) L

L cgr(R) K K cgr(R)M

L cgr(R)M

L1 cgr(R) K1 L2 cgr(R) K2

L1 + L2 cgr(R) K1 +K2

L1 cgr(R) K1 L2 cgr(R) K2

L1 · L2 cgr(R) K1 ·K2

L cgr(R) K

L∗ cgr(R) K∗

The first rule ensures that R ⊆ cgr(R). The three rules on the right in the
first row turn cgr(R) into an equivalence relation. The three rules on the sec-
ond row ensure that cgr(R) is closed under the operations under consideration,
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which in particular means that cgr(R) relates languages obtained by (syntactic)
substitution of languages related by R. For example, if (L∗L+ 1, L∗) ∈ R, then
we can derive from the above rules that La(L∗L+ 1) cgr(R) LaL

∗:

La cgr(R) La

(L∗L+ 1) R L∗

(L∗L+ 1) cgr(R) L∗

La(L
∗L+ 1) cgr(R) LaL

∗ (2)

We use the congruence closure in the definition of bisimulation up to congru-
ence.

Definition 2.5. A relation R ⊆ 2A
∗ × 2A

∗
is a bisimulation up to congruence if

for any pair (L,K) ∈ R:

1. L(ε) = K(ε), and

2. for all a ∈ A : (La,Ka) ∈ cgr(R).

In a bisimulation up to congruence, the derivatives can be related by the
congruence cgr(R) rather than the relation R itself, and therefore, bisimulations
up to congruence may be easier to construct than bisimulations. Indeed, to
prove that R is a bisimulation up to congruence, the derivatives can be related
by familiar equational reasoning.

A bisimulation up to congruence is, in general, not a bisimulation. However,
as we show below, it represents one.

Theorem 2.6. If R is a bisimulation up to congruence then cgr(R) is a bisimula-
tion.

Proof. We show that any pair (L,K) in cgr(R) satisfies the properties

1. L(ε) = K(ε) and

2. for any a ∈ A: La cgr(R) Ka

of a bisimulation, by induction on (L,K) ∈ cgr(R). This amounts to show-
ing that the set of pairs (L,K) satisfying these properties is closed under the
inference rules of Definition 2.4. For the base cases:

1. for the pairs contained in R, the conditions are satisfied by the assumption
that R is a bisimulation up to congruence;

2. the case L cgr(R) L is trivial.

Now assume languages L,K,M,N such that L cgr(R) K, M cgr(R) N , L(ε) =
K(ε), M(ε) = N(ε) and for all a ∈ A: La cgr(R) Ka and Ma cgr(R) Na. We
need to prove that (L + M,K + N), (LM,KN), (L∗,K∗), (K,L) and (L,N)
(if K = M) again satisfy the properties of a bisimulation, i.e., (L +M)(ε) =
(K + N)(ε) and for all a ∈ A: (L +M)a cgr(R) (K + N)a, and similarly for
the other operations. We treat the case of union: (L+M)(ε) = L(ε) ∨M(ε) =
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K(ε) ∨ N(ε) = (K + N)(ε); moreover by assumption and closure of cgr(R)
under + we have La+Ma cgr(R) Ka+Na, and so (L+M)a = La+Ma cgr(R)
Ka +Na = (K +N)a.

Concatenation and Kleene star are treated in a similar manner, and sym-
metry and transitivity hold as well (exercise). Thus, by induction, cgr(R) is a
bisimulation, so by Theorem 2.1 we have L = K for any L cgr(R) K and for
any (L,K) ∈ R, in particular.

This gives us a proof principle:

Corollary 2.7. If R is a bisimulation up to congruence then for any (L,K) ∈ R,
we have L = K.

Any bisimulation is also a bisimulation up to congruence, so Corollary 2.7
is a generalization of Theorem 2.1 for the case of languages. Consequently, its
converse holds as well.

We proceed with a number of example proofs based on bisimulation up to
congruence.

Example 2.8. Recall the relation

R = {(L∗L+ 1, L∗) | L ∈ 2A
∗
}

from the beginning of this section. As we have seen, the a-derivatives are
La(L

∗L+1) and LaL∗, which are not related by R. However, it is shown in (2)
that they are related by cgr(R). So R is a bisimulation up to congruence, and
consequently L∗L+ 1 = L∗, by Corollary 2.7.

Moreover, the relation {(LL∗ + 1, L∗) | L ∈ 2A
∗} from the beginning of this

section is a bisimulation up to congruence as well; there, the derivatives are
equal and thus related by cgr(R).

Example 2.9. Arden’s rule states that if L = KL+M for some languages L,K
and M , and K does not contain the empty word, then L = K∗M . In order to
prove it, let L,K,M be languages such that K(ε) = 0 and L = KL +M , and
let

R = {(L,K∗M)} .

Using that K(ε) = 0, we have L(ε) = (KL+M)(ε) = (K(ε) ∧ L(ε)) ∨M(ε) =
(0 ∧ L(ε)) ∨M(ε) =M(ε) = 1 ∧M(ε) = K∗(ε) ∧M(ε) = K∗M(ε). Further,

La = (KL+M)a = KaL+K(ε) · La +Ma

= KaL+Ma cgr(R) KaK
∗M +Ma = (K∗M)a

for any a ∈ A. So R is a bisimulation up to congruence, proving Arden’s rule.

Arden’s rule is closely related to the axiom z + yx ≤ x→ y∗z ≤ x in Kleene
algebra. However, the latter do not talk about the empty word. We cover it as
well:
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Example 2.10. In order to prove M+KL ⊆ L⇒ K∗M ⊆ L (one of the Kleene
algebra axioms!) we use that K∗M ⊆ L if and only if K∗M +L = L, and try to
prove that the relation

R = {(K∗M + L,L) |M +KL ⊆ L; L,K,M ∈ 2A
∗
}

is a bisimulation up to congruence. Let L,K,M be such languages and note that
M +KL+L = L. Since (M +KL+L)(ε) = L(ε) it follows that (M +L)(ε) =
L(ε), so (K∗M + L)(ε) = L(ε). For any alphabet letter a we have

(K∗M + L)a = KaK
∗M +Ma + La

= KaK
∗M +Ma + (M +KL+ L)a

= KaK
∗M +Ma +Ma +KaL+K(ε)La + La

= Ka(K
∗M + L) +Ma +K(ε)La + La

cgr(R)KaL+Ma +K(ε)La + La

= (M +KL+ L)a

= La .

In conclusion, R is a bisimulation up to congruence, proving M +KL ⊆ L ⇒
K∗M + L = L.

Example 2.11. We prove that for any language L: if LL = 1 then L = 1.
Assume LL = 1 and let R = {(L, 1)}. Since (LL)(ε) = 1(ε) = 1 also L(ε) =
1 = 1(ε). We show that the derivatives of L and 1 are equal, turning R into a
bisimulation up to congruence. First, for any a ∈ A:

LaL+ La = LaL+ L(ε)La = (LL)a = 1a = 0 .

Now, one proves that this implies La = 0 (exercise). Thus La = 0 = 1a, so
La cgr(R) 1a.

2.2 Final remarks

The up-to techniques that we considered above, crucially rely on the interplay
between algebra and coalgebra: basically, they allows us to use algebraic rea-
soning (congruence) within the coalgebraic (bisimulation) technique. In the
next lecture, we’ll study up-to techniques on their own right.
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