
Coalgebra, lecture 11:
Lattices and Coinduction

Jurriaan Rot

November 26, 2018

So far, we’ve talked quite a bit about coinduction within the framework of
(final) coalgebras. In this lecture, we will look at a more basic foundation,
in terms of lattices, which are certain ordered structures. This lattice-theoretic
perspective on coinduction is, as we will see later, a special case of the theory of
coalgebras; however, it is interesting on its own for a variety of reasons:

• it gives an elementary view of coinductive proofs, without talking about
coalgebras;

• it allows to talk about other coinductive predicates than equivalence (for
instance, language inclusion, or increasing streams);

• it allows us to speak systematically about up-to techniques;

• it’s a standard way of talking about (co)induction, used quite a bit in math
and computer science.

Further, the lattice-theoretic picture can be a stepping-stone towards more com-
plicated coalgebraic theory. Lattices and coalgebras/categories will be con-
nected in the following lecture. We’ll start with a few examples, and then show
the general case.

1 Coinductive predicates on automata

Let 〈o, δ〉 : X → 2×XA be a deterministic automaton. Recall that the language
semantics is a function beh : X → P(A∗), mapping each state to the language
that it accepts. We say two states x, y are language equivalent if beh(x) = beh(y).

We denote by RelX the set of all relationsR ⊆ X×X on the state space of our
automaton. This set is ordered by inclusion. Consider the function b : RelX →
RelX , defined by

b(R) = {(x, y) | o(x) = o(y) and for all a ∈ A. , (δ(x)(a), δ(y)(a)) ∈ R} . (1)

We are particularly interested in relations R such that R ⊆ b(R); such a relation
is a bisimulation. Indeed, we have R ⊆ b(R) iff for all (x, y) ∈ R:

1



1. o(x) = o(y), and

2. for all a ∈ A: (δ(x)(a), δ(y)(a)) ∈ R.

That looks familiar: it is the concrete notion of bisimulation between automata
that we’ve seen before in this course.

The union of a set of bisimulations is again a bisimulation. In particular, we
let ∼ be the union of all bisimulations. This is then the greatest bisimulation
with respect to set inclusion. Since it is the greatest we immediately obtain the
following principle for all x, y ∈ X and R ∈ RelX :

(x, y) ∈ R ⊆ b(R)
x ∼ y

Why is this interesting? The point is that the greatest bisimulation characterises
language equivalence.

Proposition 1.1. For all (x, y) ∈ X: x ∼ y iff beh(x) = beh(y).

We’ve already seen a proof of this: in one of the previous lectures, we proved
that beh is the unique coalgebra homomorphism to the final coalgebra, and that
(hence) bisimilarity coincides with language equivalence. All in all, we obtain
the following proof principle for language equivalence:

(x, y) ∈ R ⊆ b(R)
beh(x) = beh(y)

which we refer to as a coinductive proof principle. So far, so good: this is just a
slight rephrasing of things that we already got from the coalgebraic perspective
on automata.

But we can also do something slightly different: consider b′ : RelX → RelX
defined by

b′(R) = {(x, y) | o(x) ≤ o(y) and for all a ∈ A. , (δ(x)(a), δ(y)(a)) ∈ R} . (2)

A relation R satisfies R ⊆ b′(R) if and only if for all (x, y) ∈ R:

1. o(x) ≤ o(y), and

2. for all a ∈ A: (δ(x)(a), δ(y)(a)) ∈ R.

We call such a relation a simulation. This is different than bisimulations: here,
we only require that whenever x is accepting, y is accepting as well, but when x
is not accepting we don’t care whether y accepts or not. What does this capture?

To see this, we first observe that, similar to the case of bisimulations, the
union of an arbitrary set of simulations is again a simulation. Let’s write � for
the union of all simulations. What is this?

Proposition 1.2. For all (x, y) ∈ X: x � y iff beh(x) ⊆ beh(y).

2



It captures language inclusion. Thus, we’ve captured language inclusion
as the greatest simulation. Hence, we obtain the following proof principle for
language inclusion.

(x, y) ∈ R ⊆ b′(R)
beh(x) ⊆ beh(y)

Great; so to prove that the language of a state x is included in the language of
a state y, it suffices to come up with a simulation that contains (x, y).

Language inclusion is not quite behavioural equivalence, and it is not imme-
diately clear how it would follow from the coalgebraic perspective on automata.
Nevertheless, we would like to view the above proof principle as coinductive:
with the rather unprecise idea that we capture it as the “greatest” relation satis-
fying a few properties, just like with bisimulations. In order to make this more
precise, we use lattices.

2 Lattices

A partially ordered set, or poset for short, is a pair (P,≤) where ≤ ⊆ P × P is
reflexive, transitive and anti-symmetric, that is, for all x, y, z ∈ P :

1. x ≤ x,

2. x ≤ y and y ≤ z imply x ≤ z,

3. x ≤ y and y ≤ x imply x = y.

The appropriate notion of morphisms between lattices is given by the notion of
monotone function. Given posets (P,≤P ) and (Q,≤Q), a function f : P → Q is
monotone if for all x, y ∈ P : x ≤P y implies f(x) ≤Q f(y).

Let (P,≤) be a poset. An element x ∈ P is called top if for all y ∈ P : y ≤ x.
An element x ∈ P is called bottom if for all y ∈ P : x ≤ y. A top element does
not need to exist, but if it does, it is unique. In that case we denote it by >.
Similarly for a bottom element, which we denote by ⊥.

An upper bound of a set S ⊆ P is an element x ∈ P such that for all y ∈ S:
y ≤ x. The least upper bound or supremum or join of a set S is an element

∨
S

such that

•
∨
S is an upper bound of S, and

• if x is an upper bound of S then,
∨
S ≤ x.

The dual notion is that of a greatest lower bound, also called infimum or meet.
Given elements x, y ∈ P , we write x ∨ y for

∨
{x, y} and x ∧ y for

∧
{x, y}.

A lattice is a poset P which has a bottom and a top element, and such that
x∨ y and x∧ y exist for all x, y ∈ P . A complete lattice is a poset P in which the
join

∨
S and the meet

∧
S exist for every subset S ⊆ P .

Example 2.1. There are many, many examples of posets, (complete) lattices.
We only list a few that we need in the examples in the next sections.

3



1. Given a setX, the poset (RelX ,⊆) of relations onX ordered by inclusion is
a complete lattice. The join of a set of relations is given by union, and the
meet by intersection; the top element is X ×X, and the bottom element
is the empty relation on X.

2. A very similar example is the complete lattice of predicates on X: this is
just the set of subsets P ⊆ X of X. Again the order is set inclusion. We
denote this complete lattice by PredX .

3. How about the set of natural numbers ordered as usual? Is it a lattice? Is
it complete? How about the set of integers? (These are exercises!)

3 Coinduction in a lattice

Now that we know what a lattice is, let’s focus on coinduction again. The ex-
ample in the first section is the lattice RelX of relations; we looked at a function
b : RelX → RelX on it, and in particular the relations R such that R ⊆ b(R).

More generally, let b : P → P be a monotone function on a poset. A post
fixed-point of b is an element x ∈ P such that x ≤ b(x). A fixed point of b is an
element such that b(x) = x. A function b may or may not have a greatest fixed
point, written gfp(b), which is a fixed point of b such that for every fixed point x
of b: x ≤ gfp(b). In a complete lattice, such a greatest fixed point always exists;
this is a fundamental result known as the Knaster-Tarski theorem.

Theorem 3.1. Let b : P → P be a monotone function on a complete lattice P .
Then b has a greatest fixed point gfp(b), given by

gfp(b) =
∨
{x ∈ P | x ≤ b(x)} .

Proof. Let z =
∨
{x ∈ P | x ≤ b(x)}. We should show that z is a fixed point: z =

b(z), and that it is the greatest fixed point. We leave this as an exercise. Hint:
to prove that z is a fixed point, first prove that z ≤ b(z), then that b(z) ≤ z.

With this theorem in hand, we have a basic infrastructure to speak about
coinduction, starting from a monotone function b : P → P on a complete lattice.
The above theorem tells us that the greatest fixed point of b exists, and it gives
us the following principle:

x ≤ b(x)
x ≤ gfp(b)

which we may refer to as a coinductive proof principle.
Let’s look at the first example of the first section. There, the lattice of interest

is RelX , the relations on the state space X of an automaton. The function
b : RelX → RelX given in (1) is the one we’re interested in; a post-fixed of
b is a relation R such that R ⊆ b(R), which we recognise as a bisimulation.
This function is monotone (exercise) and hence, by the above theorem, it has a
greatest fixed point gfp(b), given as the join of all post-fixed points. But this is

4



just the greatest bisimulation that we’ve seen before! And the coinductive proof
principle tells us that any relation R is contained in the greatest one. This is
useful, as we proved (separately) that the greatest bisimulation coincides with
language equivalence. A similar story holds for simulation, where we use b′ as
defined in (2).

This scheme is pretty general: it allows us to define many kinds of predicates
on many kinds of systems. As another example, let 〈o, f〉 : X → N × X be a
stream system. We look at the complete lattice PredX of predicates (subsets) on
X, and define b : PredX → PredX by

b(P ) = {x ∈ X | o(x) ≤ f(o(x)) and f(x) ∈ P} .

What is a post-fixed point of b? What is the greatest fixed point?

4 Bisimulation up-to: automata

Consider the following automata, over a singleton alphabet.

x0 // x1 // x2 // x3 // x4
uu

y0 // y1 // y2 // y3 // y4jj

For simplicity, no state is accepting. To show that x0 and y0 are bisimilar, we may
show that they are contained in a bisimulation, that is, (x0, y0) ∈ R for some R
such thatR ⊆ b(R), with b as defined in (1). The typical approach is to start with
{(x0, y0)}; since that is not a bisimulation, we expand to {(x0, y0), (x1, y1)};
again not a bisimulation, and so on. This will go on for a while!

If we depict the bisimulation that we obtain in this way with dashed arrows,
we obtain a very readable picture.

x0 // x1 // x2 // x3 // x4
uu

y0 // y1 // y2 // y3 // y4jj

This is in fact the smallest bisimulation that contains (x0, y0).
Luckily we can do better, by using an up-to technique. We’ve seen up-to

techniques before in the context of bisimulations between languages. Consider
the following relation R depicted by the dashed lines:

x0 // x1 // x2 // x3 // x4
uu

y0 // y1 // y2 // y3 // y4jj

5



This is not a bisimulation: the pair (x4, y3) violates it, since (x1, y4) is not re-
lated. However, (x1, y4) is related by the least equivalence relation eqv(R) con-
taining R. More precisely, eqv(R) is the least relation satisfying the following
rules:

x R y

x eqv(R) y x eqv(R) x

x eqv(R) y

y eqv(R) x

x eqv(R) y y eqv(R) z

x eqv(R) z

With that in place, for the above relation given by the dashed lines, we have
R ⊆ b(eqv(R)). Such a relation is called a bisimulation up to equivalence.

And now what? Well, it turns out that bisimulations up to equivalence suffice
to prove language equivalence. This is called soundness, and we may express it
nicely as another coinduction principle:

(x, y) ∈ R ⊆ b(eqv(R))
beh(x) = beh(y)

So bisimulations up to equivalence suffice to prove language equivalence. This
underlies a classical algorithm by Hopcroft and Karp, for language equivalence
of deterministic automata. It starts by relating the two states that are to be com-
pared, and keeps adding pairs until the result is a bisimulation up to equivalence
(or a counterexample is found).

4.1 Non-deterministic automata

In Lecture 7, we’ve talked a lot about determinisation, and we briefly recall it
here. Given a non-deterministic automaton

〈o, δ〉 : X → 2× (P(X))A

we transform it into a deterministic automaton

〈o], δ]〉 : P(X)→ 2× (P(X))A

using the powerset construction. The familiar coalgebra homomorphism

beh : P(X)→ P(A∗)

gives us the language semantics. More precisely, the language of a state x ∈ X
is given by beh({x}).

The first observation is that, to check whether two states x, y ∈ X of the
non-deterministic automaton accept the same languages, it suffices to construct
a bisimulation R ⊆ P(X) × P(X) on the deterministic automaton 〈o], δ]〉 that
contains the pair ({x}, {y}). Or we compute a bisimulation up to equivalence
that contains it; that also suffices.

But it turns out that, for non-deterministic automata, we can do something
even smarter to compare their languages—this idea, and examples below, are

6



from [2]. Consider the following example. For simplicity, we view the au-
tomaton below as a single automaton; and we’re interested in comparing the
language of x and u.

x

a

��
z

a //aoo y

a

ff u
a //

a

��
w

a

gg v
aoo

If we determinise these automata, we get (as a part):

{x} a // {y} a // {z} a // {x, y} a // {y, z} a // {x, y, z}

a

RR

{u} a // {v, w} a // {u,w} a // {u, v, w}

a

RR

The dashed lines give a bisimulation between {x} and {u}. That suffices to
prove language equivalence. But we can do better. Consider

R = {({x}, {u}), ({y}, {v, w}), ({z}, {u,w})} ,

that is, the first three dashed lines from the left. It is not a bisimulation, since
({x, y}, {u, v, w}) is not inR. However, the missing pair is a (pointwise) union of
pairs that are already in R. This shows that R is a bisimulation up to congruence.

To define that notion in general, for a relation R ⊆ P(X)×P(X), we define
the congruence closure cgr(R) as the least relation such that

X R Y

X cgr(R) Y X cgr(R) X

X cgr(R) Y

Y cgr(R) X

X cgr(R) Y Y cgr(R) Z

X cgr(R) Z

X1 cgr(R) Y1 X2 cgr(R) Y2
(X1 ∪X2) cgr(R) (Y1 ∪ Y2)

A bisimulation up to congruence is a relation R ⊆ P(X) × P(X) such that R ⊆
b(cgr(R)), where b is the function we’ve talked about all the time (Equation (1)).
The good news is that this is a sound technique.

Theorem 4.1. Let
〈o], δ]〉 : P(X)→ 2× (P(X))A

be the determinisation of a deterministic automaton (X, 〈o, δ〉). If R ⊆ P(X) ×
P(X) is a bisimulation up to congruence, then cgr(R) is a bisimulation.

As a consequence, we get the following principle for proving language equiv-
alence.

({x}, {y}) ∈ R ⊆ b(cgr(R))
beh({x}) = beh({y})

So to prove that states x, y are language equivalent, it suffice to show that the
singletons {x} and {y} are related by a bisimulation up to congruence.

7



4.2 Up-to-congruence for operations

In the previous lecture, we talked about a different kind of up-to-congruence, to
prove things such as L∗L+1 = L∗; when constructing a bisimulation, one finds
the derivatives La(L

∗L + 1) and LaL
∗ which are related by the congruence

closure of the relation R = {(L∗L + 1, L∗) | L ∈ 2A
∗} (see the notes of the

previous lecture), but not by the relation R itself.
Indeed, this is a congruence closure with respect to a slightly different alge-

braic structure: the one given by regular operations on the set 2A
∗

of languages,
whereas the one above uses the algebraic structure on the state space of a de-
terminised automaton. In both cases, the techniques are sound: they suffice to
prove language equivalence (soundness is defined in general below).

One may wonder, whether we can use up-to-congruence for, say, operations
on languages (other than the regular ones). The answer is no: the operations
have to be causal, something we studied for streams but also makes sense on
languages. This is a bit beyond the scope of today’s lecture: see [1] if you want
to know more.

5 A theory of up-to techniques

In the previous sections, we’ve seen a few nice proof techniques: bisimulations
up-to equivalence, and bisimulations up to congruence. Also, in one of the
previous lectures, we’ve seen a different proof technique, also called bisimula-
tion up to congruence, but where the congruence closure was a bit different:
there, we looked at the regular operations (union, concatenation, Kleene star)
on languages, rather than the structure of determinised automata.

Now one may wonder: how to actually prove the soundness of these tech-
niques? Can we say something more general about it? Here, the notion of
coinduction in a complete lattice helps a lot.

So let b : P → P be a monotone function on a complete lattice. What is an
up-to technique? We start with some monotone function f : P → P . Before,
we’ve looked at post-fixed points of the form x ≤ b(x); now, we look at post-
fixed points x ≤ b(f(x)). And we say f is b-sound if the following principle
holds:

x ≤ b(f(x))
x ≤ gfp(b)

In the lattice of relations, this means that if R ⊆ b(f(R)), R should be contained
in the greatest fixed point of b.

That gives at least the soundness, but how do we prove it? Well, here we
observe that the various functions decompose into simpler ones: the congru-
ence closure is built from the equivalence closure and something called the
contextual closure, and the equivalence closure in turn decomposes as transi-
tive, symmetric, reflexive closure. So we’d like to prove soundness in terms of
these simpler functions.

8



The problem is that this doesn’t work, in general: the composition of sound
functions is not necessarily sound. The solution is to look at a slightly stronger
notion: that of a compatible function. With f ,b as above, we say f is b-compatible
if f(b(x)) ≤ b(f(x)) for all x ∈ P . This has two important properties:

• if f is b-compatible, then f is b-sound;

• if f, g are both b-compatible, then f ◦ g is b-compatible.

There are many more ways of combining compatible functions; but this is the
most crucial one. If you’d like to read more about this, the paper [2] is a good
start, as it explains these things in the basic context of automata. Up-to tech-
niques, especially in the context of coalgebras, are also the main topic of my
PhD thesis.

References

[1] Filippo Bonchi, Marcello Bonsangue, and Jurriaan Rot. Lecture notes: coal-
gebraic methods for automata, 2018. http://esslli2018.folli.info/
wp-content/uploads/coma.pdf. 8

[2] Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimula-
tions up to congruence. In Roberto Giacobazzi and Radhia Cousot, editors,
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2013, proceedings, pages 457–468. ACM, 2013.
7, 9

9

http://esslli2018.folli.info/wp-content/uploads/coma.pdf
http://esslli2018.folli.info/wp-content/uploads/coma.pdf

	Coinductive predicates on automata
	Lattices
	Coinduction in a lattice
	Bisimulation up-to: automata
	Non-deterministic automata
	Up-to-congruence for operations

	A theory of up-to techniques

