
Coalgebra, lecture 12: Induction; coinduction
in lattices and categories

Jurriaan Rot

December 6, 2018

In the first part of this lecture, we’ll have a look at induction in the setting of
lattices (Sections 1 and 2). In the second part, the lattice-theoretic perspective
is related to the coalgebraic perspective (Sections 3 and 4).

1 Processes with a finite trace

We start with a basic example of an inductive predicate.1 Assume a labelled
transition system (X,→) over a set of labels A. We’ll refer to the elements
p ∈ X as processes (or states). A process p is said to be stopped if it has no
outgoing transition. We would like to define a predicate ↓ on processes (states
p ∈ X), such that p ↓ holds if there exists a path to a stopped state. This
predicate should is characterised by the following rules:

p stopped
p ↓

p
a−→ p′ p′ ↓
p ↓

(actually, on the right we have one rule for each a ∈ A). We interpret these
rules inductively: the set of processes which satisfy p ↓ is the least set satisfying
the above two rules, read from top to bottom: if a process p is stopped, or it
transitions to a state p′ with p′ ↓, then p ↓.

This is formalised in terms of the lattice P(X) of predicates (subsets) on X,
with the inclusion order; the join is given by union, and the meet by intersection.
Consider b↓ : P(X)→ P(X) defined by

b↓(P) = {p ∈ X | p is stopped, or p a−→ p′ and p′ ∈ P for some a ∈ A, p′ ∈ P}

A pre-fixed point of b↓ is a predicate P such that b↓(P) ⊆ P . This means that

• p ∈ P for all stopped processes p, and

• if p a−→ p′ and p′ ↓, then p ∈ P .

1The examples in this section are taken from: D. Sangiorgi, Introduction to Bisimulation and
Coinduction, Cambridge Universty Press.

1

Our predicate p ↓ is the least pre-fixed point (actually, the least fixed point
lfp(b↓)) of b↓. Since p ↓ is defined in this way, we call it an inductive predicate.

Just like for coinduction, we get an inductive proof principle from the fact
that the set of processes satisfying p ↓ is the least pre-fixed point: it says that, if
f(P) ⊆ P , then for all p ∈ X: if p ↓ then p ∈ P .

As an example of such a proof, consider a partial function f : X ⇀ N defined
by f(p) = 0 if p is stopped, and otherwise

f(p) =

{
0 if p is stopped
min{f(p′) + 1 | p a−→ p′ for some a, p′ s.t. f(p′) is defined} otherwise

The set of which we’re taking a minimal element may be empty; in that case,
f(p) is undefined. We write dom(f) for the domain of f , that is, the subset of
X on which f is defined. Claim: if p ↓, then p ∈ dom(f). To prove this, we
should use that p ↓ is defined by induction. Formally, this means showing that
b↓(dom(f)) ⊆ dom(f). So we should show:

• p ∈ dom(f) for all stopped processes p, and

• if p a−→ p′ and p′ ∈ dom(f), then p ∈ dom(f).

Both follow directly from the definition of f . Hence dom(f) is a pre-fixed point
of b↓, so that for all p: if p ↓ then p ∈ dom(f).

1.1 Infinite paths

It is nice to contrast this to a coinductive definition of the existence of an infinite
path of processes, which we denote by p ↑. We’d like to define this by the rule

p
a−→ p′ p′ ↑

p ↑

(again, actually one rule for all a ∈ A). The inductive interpretation is not quite
right here: it gives the empty set! Because that’s the least set which is closed
under the rule (read from top to bottom).

Instead, we should use a coinductive interpretation: the set of processes
satisfying p ↑ is the greatest subset of X such that every process in it is justified by
the above rule. More concretely, we mean, it is the greatest predicate such that

• if p ↑ then there is a p′ ∈ X such that p a−→ p′ for some a, and p′ ↑.

This is quite a different reading of the inference rule than in the inductive inter-
pretation.

Formally, define b↑ : P(X)→ P(X) as the monotone function given by

b↑(P) = {p ∈ P | there is a p′ ∈ X such that p a−→ p′ for some a, and p′ ∈ P}

The set of processes satisfying p ↑ is the greatest (post-)fixed point of b↑.

2

So to prove that some process has an infinite path, it suffices to prove that
it is contained in a set P which is a post-fixed point: P ⊆ b↑(P). Consider the
following transition system:

p

a

��

a // r

b

��
q

b

[[

c
// s

Here {p, q} is the (only) predicate such that {p, q} ⊆ b↑({p, q}). Hence x ↑ iff
x = p or x = q.

2 Induction in a lattice

The first example highlights the main points of induction in a lattice. The start-
ing point is a monotone function b : P → P on a complete lattice P .

We already know that a fixed point (of b) is an element x ∈ P such that
b(x) = x, and a post-fixed point is an element x such that x ≤ b(x). It shouldn’t
come as a big surprise that a pre-fixed point is an element x such that b(x) ≤ x.

The main concept of interest for coinduction in a lattice is post-fixed points;
the main concept for induction is pre-fixed points. In particular, we sometimes
speak about the inductive predicate defined by b, which we define to be the least
fixed point lfp(b) of b.

This least fixed point always exists, since b is a monotone function on a
complete lattice (dual to what we’ve seen last week), and it is the least pre-fixed
point. So, abstractly, we have the following principle:

b(x) ≤ x
lfp(b) ≤ x

that is, any pre-fixed point is below the least fixed point. We can think of this as
an inductive proof principle.

At this abstract level, the duality with coinduction becomes clear: there, we
look at gfp(b), which we sometimes call the coinductive predicate defined by b.
There, the proof principle looks as follows:

x ≤ b(x)
x ≤ gfp(b)

So induction and coinduction are, respectively, the least or the greatest fixed
point of a monotone function b. Rephrased a little, they are respectively the least
or greatest solution of the equation b(x) = x. The inductive predicate is also the
least solution of the inequation b(x) ≤ x, the coinductive predicate the greatest
solution of the the inequation x ≤ b(x); these are the proof principles. The
proof principle for induction allows you to prove that the inductive predicate
lies below something of interest, the proof principle for coinduction that the
coinductive predicates lies above some object of interest.

3

2.1 Induction on natural numbers

Of course, the most well-known instance of induction, is induction on the nat-
ural numbers. We should be able to recover that in the setting of complete
lattices. The starting point is the lattice P(N) of natural numbers, ordered by
inclusion.

Then we define b : P(N)→ P(N) by b(P) = {0} ∪ {n+ 1 | n ∈ P}. You may
convince yourself that the least fixed point of b is the set of natural numbers.
And the inductive proof principle tells us that, for any set P ⊆ N, if b(P) ⊆ P
then N ⊆ P . But b(P) ⊆ P simply means:

• 0 ∈ P ;

• if n ∈ P , then n+ 1 ∈ P ,

which should look familiar. So to prove a property by induction, we let P = {n |
n satisfies some property about the natural numbers that we want to show} and
prove that it is a pre-fixed point by checking the above two points.

2.2 Induction (and coinduction) for languages

In this example, we’re going to look at structural induction on words, for a
simple example of languages. We’ll also use coinduction, in a somewhat curious
way: in this example, induction and coinduction define the same language. But
the proof principles are different, and serve a different purpose.

Consider the context-free grammar S → aSa | bSb | a | b | ε. It generates
the palindromes. Let’s prove that formally, by induction and coinduction. First,
we slightly rephrase this and look at the equation

L = aLa+ bLb+ a+ b+ 1

on languages over A = {a, b}, that is, the set P(A∗). The least solution of this
equation is the language associated to the grammar. In fact, in this special case,
there is a unique solution, which we will use in a moment.

First, we reformulate the equation as

L = f(L)

for the function f : P(A∗)→ P(A∗) on languages, defined by

f(K) = {awa | w ∈ K} ∪ {bwb | w ∈ K} ∪ {ε, a, b} .

The language semantics of the grammar is simply the least fixed point, or equiv-
alently, the least pre-fixed point.

However, in our case, the language L is the unique fixed point of f . This
means it’s both the least and the greatest: and we can use both induction and
coinduction to prove things about it. Let P be the language of palindromes: we
would like to prove that P = L, which we do by showing two inclusions.

4

1. For L ⊆ P , we use induction: if we show f(P) ⊆ P , then L ⊆ P . Showing
f(P) ⊆ P means:

(a) if w ∈ P , then awa ∈ P and bwb ∈ P ;

(b) ε, a, b ∈ P .

Both are clear.

2. For P ⊆ L, we use coinduction: if we show P ⊆ f(P), then P ⊆ L.
This means that given a palindrome w (over the alphabet A = {a, b}), we
either have

(a) w = ava or w = bvb for some palindrome v, or

(b) w is the empty word, or a single letter.

This follows from the definition of palindromes.

This concludes the proof that L = P , that is, L really is the language of palin-
dromes. We’ve used induction to prove that everything in L is indeed a palin-
drome, and coinduction to prove that every palindrome is the language defined
by the grammar.

3 Lattice-theoretic coinduction and coalgebras

In the course, we’ve talked a lot about coinduction; but it still depends a bit
on the setting what we mean with it. In any case, we have two formalisations
of coinduction: the first in terms of final coalgebras, where the final coalgebra
allows us, for instance, to define operations on streams or languages, and prove
behavioural equivalence. In this context, we may refer informally to coinduction
as the use of finality of coalgebras. The second formalisation of coinduction
is in terms of fixed points and lattices, which allows us to define coinductive
predicates in a rather flexible way.

It turns out that the lattice-theoretic perspective on coinduction is a special
case of the coalgebraic one. To see this, first recall that any partial order (so in
particular any complete lattice) (P,≤) defines a category, whose set of objects
is just the set P , and where there is a (unique) arrow x→ y iff x ≤ y.

If we take partial orders P and Q, seen as a category, then a functor from
P to Q boils down to a monotone function b : P → Q (if you don’t see this, it’s
useful to work out the details as an exercise!).

Now, take a functor (monotone function) b : P → P on a single partial order,
seen as a category. A coalgebra for such a functor (monotone function) is, by
just instantiating the definition, an object x with an arrow x → b(x). So that
means, an element x ∈ P such that x ≤ b(x). So coalgebras are post fixed
points!

Again, just instantiating the definitions, we find that a final coalgebra is
precisely a greatest post-fixed point of b. Again, this is not immediate, and it

5

is useful to work out the details. So the coinductive proof principle in lattices
turns out to be a special case of the use of final coalgebras.

All in all, we’ve seen two main uses of coalgebras, which carry a significantly
different intuition.

1. Coalgebras as state-based systems: for instance, coalgebras for F : Set →
Set, F (X) = 2×XA (deterministic automata).

2. Coalgebras as (proofs of) coinductive predicates: coalgebras as post fixed
points of a monotone function.

So shouldn’t we look at lattices at all and just work with coalgebras, since it’s
more general anyway? This would be a wrong conclusion: as we’ve seen, coin-
duction in lattices give us a lot of flexibility, and also are very useful as an
intuition. And they may just suffice for certain purposes. Further, they can be a
source of inspiration for coalgebraic constructions, as we will see later.

4 Bisimulations and relation lifting

In the final part of this lecture, we look at another connection between the
theory of coalgebras and the lattice-theoretic picture of coinduction. The point
is this: we know well what a bisimulation between coalgebras is: a relation R
with a coalgebra structure on it, turning its projections into coalgebra homomor-
phisms. But we’ve also seen that we can capture a bisimulation, on automata
and streams at least, as a post-fixed point: a relation R such that R ⊆ b(R) for
some b. We next show how to systematically define such a b from the functor at
hand: this gives another version of coalgebraic bisimulations, in terms of post
fixed points.

The main categorical tool is the notion of relation lifting. The idea is that,
given a functor F : Set → Set (whose coalgebras we’re interested in) and a
relation R ⊆ X ×X, we would like to construct a relation on F (X). Formally,
given a relation R ⊆ X ×X, we define

Rel(F)(R) ⊆ F (X)× F (X) by

Rel(F)(R) = {((Fπ1)(z), (Fπ2)(z)) | z ∈ F (R)}

where π1, π2 are the projections of R. This means we apply Fπ1 and Fπ2 to all
the stuff that’s in F (R). Typically, things in F (R) will look like things that have
pairs in them. And Fπ1 and Fπ2 take the first, respectively the second projection
of all those pairs, given things in FX. These are the pairs in Rel(F)(R).

For example, take our familiar functor of streams: F (X) = A×X. Then

Rel(F)(R) = {((id× π1)(z), (id× π2)(z)) | z ∈ A×R}
= {((a, x), (a, y)) | (a, (x, y)) ∈ A×R}
= {((a, x), (a, y)) | a ∈ A, (x, y) ∈ R}

6

Now, let 〈o, f〉 : X → A × X be stream system, and let RelX be the lattice of
relations on X. We define b〈o,f〉 : RelX → RelX by:

b〈o,f〉(R) = {(x, y) | (〈o, f〉(x), 〈o, f〉(y)) ∈ Rel(F)(R)} .

Then, after a bit of careful staring at definitions, we see

b〈o,f〉(R) = {(x, y) | o(x) = o(y) and (f(x), f(y)) ∈ R} .

That’s a familiar function to those who’ve done the exercise last week: we have
R ⊆ b〈o,f〉(R) if and only if R is a bisimulation on streams.

The nice thing is that this construction works not only for streams, but for
any functor (on Set). In general, given a functor F : Set→ Set, and a coalgebra
f : X → F (X), we define bf : RelX → RelX by

bf (R) = {(x, y) | (f(x), f(y)) ∈ Rel(F)(R)} .

This gives us a notion of bisimulation: we say R ⊆ X ×X is a Hermida-Jacobs
bisimulation (after Claudio Hermida and Bart Jacobs) if R ⊆ bf (R).

And we say R is an Aczel-Mendler bisimulation on a (single) coalgebra
f : X → F (X) if it is a bisimulation in the sense we know: if there exists a
coalgebra r : R→ F (R) such that the following diagram commutes.

X

f

��

R
π1oo π2 //

r

��

X

f

��
F (X) F (R)

F (π1)
oo

F (π2)
// F (X)

The following result establishes the connection.

Theorem 4.1. Let F : Set → Set be a functor, and f : X → F (X) a coalgebra.
A relation R ⊆ X × X is a Hermida-Jacobs bisimulation if and only if it is an
Aczel-Mender bisimulation.

Proof. Exercise (relax, it’s an optional one). The main tool is to observe that
there is a surjective map e making the following diagram commute:

F (X) F (R)
F (π1)oo F (π2) //

e

��

F (X)

Rel(F)(R)

π′
1

ee

π′
2

99

where π′1, π
′
2 are the projections of Rel(F)(R).

One of the nice things about relation lifting is that it’s possible to concretely
define it for large classes of functors, such as the polynomial ones. These can
then be used to derive concrete descriptions of bisimulations for such functors.

7

We now have two equivalent definitions of bisimulations; for Set functors, at
least. These are somewhat different in nature: one of them views a bisimulation
as a relation with a “transition” structure on it (Aczel-Mendler), while the other
views a bisimulation as a relation with a property (Hermida-Jacobs). For a
lot more information on Hermida-Jacobs bisimulations, and the relation with
Aczel-Mendler bisimulations, have a look at Chapter 3 of Jacobs’s book.

8

	Processes with a finite trace
	Infinite paths

	Induction in a lattice
	Induction on natural numbers
	Induction (and coinduction) for languages

	Lattice-theoretic coinduction and coalgebras
	Bisimulations and relation lifting

