
Coalgebra, lecture 13
Final sequence

Jurriaan Rot

December 10, 2018

Before, we’ve seen that every monotone function on a complete lattice has
a greatest fixed point. In this lecture, we’re going to look at the final sequence,
which provides a more concrete way of actually computing greatest fixed points,
and underlies algorithms for computing the greatest bisimulation of automata
and transition systems, for instance. In the second half of the lecture we’ll see
that all this can be generalised to categories and coalgebras, giving a recipe for
computing final coalgebras (under some conditions on the functor). This second
part is not described in these notes; see Section 4.6 of the book by Jacobs.

1 Greatest bisimulation of an automaton

As (almost) always, we’ll first look at deterministic automata, and then de-
scribe the more general picture in the next section. So let 〈o, δ〉 : X → 2 ×XA

be a deterministic automaton, and consider our favorite monotone function
b : RelX → RelX defined by

b(R) = {(x, y) | o(x) = o(y) and for all a ∈ A : (δ(x)(a), δ(y)(a)) ∈ R} .

A bisimulation is a post-fixed point of b (an R with R ⊆ b(R)) and the greatest
fixed point gfp(b) is the greatest bisimulation. We also know that this coincides
with language equivalence.

Before, we’ve often used this as follows: to show that states x, y ∈ X are
bisimilar (language equivalent), we construct a bisimulation, by starting with
{(x, y)} and adding pairs until the relation is a bisimulation (or a counterex-
ample is found). Now, rather than computing bisimulations from below (in the
lattice of relations), we’ll compute the greatest bisimulation from above, that is,
by starting with a lot of pairs and removing non-bisimilar pairs until we end up
with gfp(b). This addresses a slightly different problem: it computes the great-
est bisimulation (rather than showing two specific states to be bisimilar). The
greatest bisimulation is a very useful thing to have: by identifying states that
are bisimilar, we obtain a minimal automaton.

1



The approach is to start with the relation X × X, relating everything, and
then iteratively apply b. First, we compute b(X ×X):

b(X ×X) = {(x, y) | o(x) = o(y)} .

So that relates everything with the same output. We apply b to the result:

b(b(X ×X)) = {(x, y) | o(x) = o(y) and for all a ∈ A : (δ(x)(a), δ(y)(a)) ∈ b(X ×X)}
= {(x, y) | o(x) = o(y) and for all a ∈ A : o(δ(x)(a)) = o(δ(y)(a))}

That relates all states which have the same output and the same output after
one transition. More generally, let bi be the i-fold composition of b (formally
b0 = id and bi+1 = b ◦ bi). Then bi(X ×X) relates states (x, y) if, whenever we
read a word w of length below i from x and y, we end up with states with the
same output. What does this mean in terms of languages?

The above construction gives a decreasing sequence:

X ×X ⊇ b(X ×X) ⊇ b(b(X ×X)) ⊇ . . . ⊇ bi(X ×X) ⊇ . . .

If X is finite, then this sequence stabilises (stops decreasing) after a finite num-
ber of steps (why?). More precisely, then there exists a natural number i such
that bi(X×X) = b(bi(X×X)). In that case, we also have bi(X×X) = bj(X×X)
for all j ≥ i. Notice that, when the sequence stabilises at i, bi(X ×X) is a fixed
point; the important observation, which we’ll prove in a more general setting
in the next section, is that it is the greatest fixed point of b. So the above recipe
gives us a way of computing the greatest bisimulation of an automaton: start
with X × X, and keep applying b until that has no more effect, that is, we
reached a fixed point.

As an example, consider the following automaton.

x
a //

b ��

y

a,b

��
z

a,b

GG

Here X = {x, y, z} and we compute the first few steps of the decreasing se-
quence:

X ×X = . . .

b(X ×X) = {(x, x), (y, y), (z, z), (x, y), (y, x)}
b(b(X ×X)) = {(x, x), (y, y), (z, z)}

b(b(b(X ×X))) = {(x, x), (y, y), (z, z)}

Since b2(X ×X) = b3(X ×X), the sequence stabilises after two steps, and we
may stop here. We conclude with the relation {(x, x), (y, y), (z, z)}, which is

2



hence the greatest bisimulation. Note that in the second step, (x, y) (and (y, x))
are not related since x a−→ y and y a−→ z but (y, z) 6∈ b(X ×X).

We have an equivalence relation in each step in the above example. In fact,
it is not so difficult to prove that, in general, if R is an equivalence relation then
b(R) as well, for our choice of b. This allows us to represent the steps in the
computation of the decreasing sequence as partitions rather than equivalence
relations, which is much more useful from a computational (and notational)
perspective. For instance, in the above example, the partitions become:

{{x, y, z}} (X ×X)

{{x, y}, {z}} (b(X ×X))

{{x}, {y}, {z}} (b(b(X ×X)))

The above approach for computing the greatest bisimulation (and, hence, lan-
guage equivalence), with the relations presented as partitions, is called partition
refinement. We start with the partition containing everything, and refine it at
each step according to b, until it stabilises. This means we states x, y end up in
the same equivalence class at step i+1 if x and y have the same output and for
each letter a, given x

a−→ x′ and y
a−→ y′, x′ and y′ are in the same equivalence

class at step i.
As another example, consider the automaton below.

x

a,b

��

y

b

		

a

		
z

b

WW
a // u
b

jj

b

OO
(1)

The steps of partition refinement are:

{{x, y, z, u}}
{{x, y, z}, {u}}
{{x}, {y, z}, {u}}
{{x}, {y, z}, {u}}

and we stop. So y, z are language equivalent.
A sensible way of implementing all this is to start with the partition that

distinguishes accepting and non-accepting states (corresponding to the relation
b(X ×X)), and then computing the next step based on inverse images of each
equivalence class in the current step, along the transitions. We won’t go into de-
tails here, but if you’re interested: the basic version doing this is called Moore’s
algorithm. There’s also a more advanced version, called Hopcroft’s algorithm,
which is more involved, but has a better complexity.

3



Minimisation. With the procedure above, we can compute language equiv-
alence of a given automaton. Once this is done, one nice result is a minimal
automaton; we briefly and informally sketch how we get this. To phrase this
coalgebraically, let (X, f) be an automaton, and consider the unique coalgebra
morphism beh : X → 2A

∗
to the final coalgebra. Language equivalence means

taking the image of this map: let P be the partition of X which identifies lan-
guage equivalent states (it can be computed by the algorithm described above),
with the quotient map q : X → P . Then beh factors as

X

beh
))

q
// P

m
// 2A

∗

where m is the injective map sending an equivalence class of states to the lan-
guage they (all) represent.

Now, we can turn P into a coalgebra structure (P, f), by choosing an arbi-
trary representative of each equivalence class (yes, this is well-defined). This
turns q, m into coalgebra morphisms, and we get a commutative diagram:

X

beh

,,
q

//

f

��

P
m

//

f
��

2A
∗

〈o,d〉
��

2×XA id×qA //

id×behA
222× PA id×mA

// 2× (2A
∗
)A

The automaton (P, f) is the minimisation of (X, f). For instance, the DFA de-
scribed above has the following minimisation:

x

a,b

��

y, z

b

		

a

		
z

b

WW
a // u
b

jj

b

OO

2 Kleene fixed point theorem

We generalise the computation of the greatest bisimulation of automata from
the previous section, to the computation of the greatest fixed point of a mono-
tone function b : P → P on a complete lattice P . In fact, this will require some
additional assumptions on b.

The idea is to look at the final sequence:

> ≥ b(>) ≥ b(b(>)) ≥ . . .

4



where > is the top element of P . And then take the meet of all those:∧
i∈N

bi(>)

(formally, we mean
∧
{bi(>) | i ∈ N}). Is this the greatest fixed point? It

turns out that this doesn’t quite work in general, and we need some additional
assumptions on b. We’ll leave it as an (optional) exercise to find an example
of a monotone b such that

∧
i∈N b

i(>) 6= gfp(b). By the way, one eventually
reaches the greatest fixed point by applying b some more: by extending it to an
ordinal-indexed sequence. We won’t treat that here.

A decreasing sequence is a sequence α0, α1, α2, . . . of elements of P such that
αi ≥ αi+1 for all i. A function b : P → P on a complete lattice P is called
cocontinuous if for every decreasing sequence (αi)i∈N:

b(
∧
i∈N

αi) =
∧
i∈N

b(αi) .

Every cocontinuous function is also monotone (but the converse is not true);
this is an exercise.

Theorem 2.1 (Kleene fixed point theorem). Let b : P → P be a cocontinuous
function on a complete lattice P . Then

gfp(b) =
∧
i∈N

bi(>) .

This theorem gives us an abstract construction for the greatest fixed point of
a cocontinuous function b : P → P , as follows:

1. R := >;

2. while (R 6= b(R)) {R := b(R)};

3. return R;

In case of the function b for a deterministic automaton, as in the previous sec-
tion, this procedure amounts to an abstract version of the partition refinement
algorithm, and it terminates when the state space is finite. Of course, we can
also apply it to compute, for instance, the greatest simulation on a deterministic
automaton, or another coinductive predicate. It is also interesting to instantiate
this procedure to bisimilarity on labelled transition systems: this idea underlies
standard algorithms for computing bisimilarity. Both for deterministic automata
and transition systems, there are more advanced and efficient versions of par-
tition refinement, but the basic underlying idea is given by Kleene’s fixed point
theorem.

In general, the above fixed point theorem computes it by approximation, and
it can be useful to identify how the greatest fixed point of a given monotone

5



function looks. Let’s see a few more examples. For 〈o, δ : 〉X → 2 × XA a
deterministic automaton, define s : RelX → RelX by

s(R) = {(x, y) | o(x) ≤ o(y) and ∀a ∈ A. (δ(x)(a), δ(y)(a)) ∈ R}

Then it is not hard to check that si(>) ⊆ X × X relates those pairs of states
(x, y) such that all words of length below i accepted by x are also accepted by
y.

For 〈o, t〉 : X → N×X, defined ϕ : P(X)→ P(X) by

ϕ(P ) = {x | o(x) ≤ o(t(x)) and t(x) ∈ P} .

Then ϕi(>) contains those streams such that the first i elements are non-decreasing,
and ϕω is the intersection of {ϕi(>) | i ∈ N}: the non-decreasing streams.

Finally, let f : X → P(A×X) be an LTS, and let

ψ(P ) = {x | ∃(a, x′) ∈ f(x) s.t. x′ ∈ P} .

Then ψi(>) consists of all states which have a path of length at least i.
In the second part of this lecture, we look at a categorical generalisation of

the Kleene fixpoint theorem, to compute final coalgebras. This is not described
in these notes; see [1, Section 4.6] for details.

References

[1] B. Jacobs. Introduction to Coalgebra: Towards Mathematics of States and
Observation, volume 59 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2016.

6


	Greatest bisimulation of an automaton
	Kleene fixed point theorem

