Coalgebra, lecture 6: Bisimulations

Jurriaan Rot

October 8, 2018

In the lectures so far, we have seen that, given a functor F': Set — Set, we
obtain notions of:

e F'-coalgebras, which model state based systems;
e homomorphisms between F'-coalgebras are behaviour-preserving maps;

e final F-coalgebra (if it exists), which models the behaviour of all F'-coalgebras,
and assigns behaviour to states of F'-coalgebras.

Final coalgebra thereby gives us a notion of behavioural equivalence: given
states z,y € X of an F-coalgebra (X, f), we say = and y are behaviourally
equivalent if beh(z) = beh(y), where beh is the unique coalgebra homomor-
phism from (X, f) to the final F'-coalgebra. For instance:

e For the functor F/(X) = A x X, F-coalgebras are stream systems over A,
and the final coalgebra consists of the set of streams A“ over A; two states
of a stream system are behaviourally equivalent if they represent the same
stream.

e For F(X) = 2 x X4, F-coalgebras are deterministic automata, and the
final coalgebra consists of the set of languages 24" . Two states of a deter-
ministic automaton are behaviourally equivalent if they accept the same
language.

e For F(X) = X + 1, F-coalgebras, are ..., well, maps f: X — X +1
(deterministic systems with termination?), and the final coalgebra con-
sists of ‘extended natural numbers’ N + {w}. Two states are behaviourally
equivalent if they terminate in the same number of steps.

It’s nice that we can define behavioural equivalence, but how do we actually
prove that two states are equivalent? This is, of course, an important problem
if we want to analyse state-based systems: it’s one of the most fundamental
decision problems.

This question leads us to the main concept of today’s lecture: the notion of
bisimulation between coalgebras. Bisimulations are one of the most important
concepts in the theory: they correspond to proofs of behavioural equivalence.
What is nice, is that bisimulation is defined abstractly in terms of coalgebras;

by instantiating to a specific functor (such as the one for stream systems, or
for automata) one can then derive a concrete proof technique (to prove, for
instance, language equivalence of states of an automaton) and actually derive
algorithms from this technique!

We'll start with the general definition of bisimulation, show some exam-
ples, and then prove that bisimulations are indeed a sound proof technique for
behavioural equivalence; this is sometimes called ‘coinduction proof principle’.
We use automata as an extended example, and derive an algorithm for language
equivalence.

1 Bisimulations and bisimilarity

Although it is possible to formulate the notion of bisimulation for coalgebras for
functors on arbitrary categories, we’ll focus on endofunctors on Set, since this
significantly simplifies matters while still conveying the main ideas (and most
of the basic examples are on Set anyway). So let F': Set — Set be a functor.

Given F-coalgebras (X, f) and (Y, g), a relation R C X x Y is a bisimulation
(between (X, f) and (Y, g)) if there exists a coalgebra structure ¢: R — F(R)
on R such that the following diagram commutes:

™1 2

X R

1T

F(X) g F(R) > F(Y)

where 71, w9 are the projection maps of R. If (X, f) = (Y, g) then we say R is a
bisimulation on (X, f).

Of particular interest is the largest bisimulation (w.r.t subset inclusion) be-
tween (X, f) and (Y, g). It is called bisimilarity, and is often denoted by ~ C
X x Y. So, x ~ y iff there exists a bisimulation R C X x Y such that z R y. If
x ~ y then we say x and y are bisimilar.

1.1 Stream systems

First, as an example, let’s spell out the details in case of our favorite Set endo-
functor: F(X) = A x X, where A is a fixed set. And, to slightly simplify nota-
tion, we’ll just consider bisimulations on a single F-coalgebra, that is, a stream
system (o, f): X — A x X. Instantiating the definition: a relation R C X x X
is a bisimulation if there exists a stream system (og, fr): R — A x R such that
the following diagram commutes:

1 2

X R X

<va>l J{(OvaR> \L<07f>

Ax X <—AXR——Ax X
idxmy idxmo

So that means we have, for all (z,y) € R,
e o(z) = or((z,y)) = o(y)
o f(z) =m(fr(z,9))
o f(y) = m(fr(z,y))

The second and third point together amount to: fr(z,y) = (f(x), f(y)). For
this to be correct, we should of course have (f(x), f(y)) € R.

From the above considerations, we can reformulate the notion of bisimula-
tion on our stream system: R is a bisimulation iff for all (z,y) € R:

e o(z) = o(y), and
o (f(z),f(y)) € R.

This concrete characterisation is equivalent to the instance of coalgebraic bisim-
ulation which we started from.

As an example, consider the stream system (o, f): X — A x X, with X =
{z,y, z,u,v} and the output and transitions given by:

a

W N)

r——
z

Let’s prove that z ~ u. We should come up with a bisimulation R such that

2 R u. The most economical choice would be Ry = {(z,u)}. But does it work?

Well, o(x) = a = o(u), so that’s fine, but ... (f(z), f(u)) = (y,v) € Ro. So Ry

is not a bisimulation. Ok, but we don’t give up: lets take Ry = {(z,u), (y,v)}.

Then (z,w) is fine, but for (y,v) we have (f(y), f(v)) € Ry ...and this game
continues for a while, until we arrive at

R = {(xuu)v (yﬂ)), (z,u), (;v,v)7 (yau)v (Z, 1})}

and we finally have our desired bisimulation! By the way, which pairs are actu-
ally in the largest bisimulation ~ in this example?

We conclude our little streams excursion by recovering an old friend from
the second lecture: bisimulations between streams. Take the final coalgebra
(i,d): A — A x A¥. Arelation R C A¥ x A“ on it is a bisimulation if for all
(o,7) €R,

e i(0) =i(r), thatis, o(0) = 7(0), and
e (d(0),d(T)) € R, that is, (¢/,7') € R.

This is exactly the notion we saw in lecture 2, where we showed for instance
that the relation

R = {(even(tail(c)), odd(0)) | c € A¥} (2)

is a bisimulation. The point, which we showed in lecture 2, is that, whenever
R C A¥ x AY is a bisimulation, then (0,7) € R implies 0 = 7. Or, phrased
differently, the greatest bisimulation ~ is simply the equality relation {(c, o) |
o € A¥}. We call this a coinduction proof principle. In a moment, we’ll see that
such a principle holds not only for streams but much more generally, using the
final coalgebra.

1.2 Deterministic systems with termination

Of course, if 'm pretending to give a really general definition, we should have
at least one more example. So let’s consider coalgebras for the functor F' given
by F'(X) = X + 1. According to the definition, a relation R C X x X on the
states of a coalgebra f: X — X + 1 is a bisimulation if for all (z,y) € R (let’s
assume for simplicity that X is disjoint from 1 = {x}):

e either f(z) = * = f(y), or (f(z), f(y)) € R (which implicitly means
f(@), fly) € X).

This is equivalent to the coalgebraic definition of bisimulation for this functor;
if you're not convinced immediately, working this out is a good exercise. We'll
see some further instances in the weekly exercises.

2 Coinduction

So we defined when two states of a coalgebra are bisimilar, denoted = ~ 1y,
which means (x,y) € R for some bisimulation R. But what’s the point? Well,
first of all, bisimilarity ~ is a really important notion of equivalence in itself.
For instance, in concurrency theory, it captures behavioural equivalence of pro-
cesses; we’ll talk about this next week. However, as it turns out, within the
theory of coalgebras, it is a proof technique for behavioural equivalence. This is
formally stated by the following result.

Theorem 2.1 (Coinduction proof principle). Let F': Set — Set be a functor
which has a final coalgebra (Z, z), and let (X, f) and (Y, g) be F-coalgebras. If
R C X x Y is a bisimulation, then forallz € X andy € Y:

(r,y) e R = behy(z) =behy(y),

where behy: X — Z and beh,: Y — Z are the unique coalgebra homomorphisms.

Proof. Suppose (z,y) € R, and R is a bisimulation, witnessed by some coalgebra
structure ¢c: R — F(R). Consider the following diagram:

behf ush T2 bEhg
X

A R Y A
zl fl \LC lg iz
F(Z) gy) 50y TR - FOY) i F(Z)

The above diagram commutes: the inner squares since R is a bisimulation (with
coalgebra structure ¢) and the outer two squares since beh; and beh, are, by
definition, coalgebra homomorphisms of this type.

As a consequence, both beh ;o7 and beh, o, are coalgebra homomorphisms
from (R, ¢) to the final coalgebra (Z, z), hence

behgo7r2 = behfom.

Thus, for any (z,y) € R, we have behs(x) = beh¢(m(x,y)) = behy(ma(z,y)) =
beh,(y) as needed. O

As a consequence, to show that two states x, y are behaviourally equivalent,
it suffices to show that they are related by a bisimulation. For instance, if R is
a bisimulation between stream systems, then any (z,y) € R means that x and
y represent the same stream. So in particular, we obtain the rather spectacular
fact that « and w in represent the same stream! Ok, that’s maybe not the
most exciting example; but of course, the technique works for more complicated
stream systems as well. One class of examples is the bisimulation proofs on
streams which we did in lecture 2, see for instance above. By Theorem [2.1]
we recover the correctness of this technique: if (z,y) € Z are elements of a final
coalgebra, then x = y (notice that beh = id in that case).

We formally state the above observation in a little theorem, which also in-
cludes a converse. In fact, the coinduction proof principle is sometimes stated in
the following form: bisimilarity on the final coalgebra coincides with equality.

Theorem 2.2. Let F': Set — Set be a functor which has a final coalgebra (Z, z).
Then for all (z,y) € Z: x ~yiffz =vy.

Proof. From left to right, this follows from Theorem From right to left, one
shows that the relation {(z,) | € Z} is a bisimulation. In fact, that holds on
any coalgebra: a nice exercise. O

The above theorem generalises what we showed in lecture 2: that bisimi-
larity of streams coincides with equality. Of course, the above theorem is much
more general, applying to any kind of coalgebra; for instance, it also allows us
to capture equality of languages through bisimilarity on the final deterministic
automaton. We’ll use this in another lecture; and in a moment, we’ll concider
bisimulations on (arbitrary) determinstic automata, which, by Theoremsuf—
fice to prove language equivalence of states.

We finish our discussion of coinduction with a little observation on homo-
morphisms and bisimilarity. Notice that we obtain (one side of) Theorem
as a special case Theorem As it turns out, one can also go the other way,
and obtain Theorem [2.1]from Theorem [2.2] That argument uses that, if h, k are
homomorphisms, then = ~ y implies h(x) ~ k(y) — we won’t go into details at
this point.

However, one may also wonder whether there is a converse: is it the case
that h(z) ~ k(y) implies © ~ y? And specifically, do we have a converse for
Theorem [2.1] that is, does beh(z) = beh(y) imply ~ y? This is a reasonable
question, as it is a kind of completeness: if it holds, this means that whenever
two states are behaviourally equivalent, we can prove this using bisimulations.
However, as it turns out, the answer is no: there are some functors for which
this is not the case. Fortunately, it holds under mild conditions, and in particular
for most functors that we are interested in: for instance, all (Kripke) polynomial
functors, that is, functors built using products, coproducts, exponents, constant
functors, the identity functor and the (finite) powerset functor. The condition
typically used is that the functor preserves weak pullbacks, but this is a bit
beyond the scope of the course right now; if you’re interested, have a look, for
instance, at [4].

3 Bisimulations on automata

In the previous lecture, we considered the functor F(X) = 2 x X4. Recall that
it’s coalgebras are deterministic automata, of the form:

(0,0): X - 2x X4

where o is the output function and ¢ the transition function. Further, recall that
the language semantics beh: X — 24" arises as the unique map into the final
coalgebra (24", (e, d)) with e(L) = L(¢) and d(L)(a) = L, (language derivative,
that is, L,(w) = L(aw)). Thus, beh is the unique map making the following
diagram commute:

beh *
X%2A

(075>l i(fzd)

2x XA ——>2x (2474
idx beh?

Concretely, we have
e beh(z)(e) = o(z), and
e beh(z)(aw) = beh(§(z)(a))(w)

forallz € X, a € A, w € A*. This corresponds to the usual language semantics
of deterministic automata.

The notion of bisimulation will provide us with the means for checking lan-
guage equivalence: whether two states z,y € X of a deterministic automaton
accept the same language, i.e., whether beh(z) = beh(y). Consider, for in-
stance, the following automaton (for simplicity of notation, we view the entire
thing as a single automaton):

(3)

In this example, x;, x3 and y, are all behaviourally equivalent; so are x5, y; and
y3. Of course, this is a simple example, just for the sake of argument; for bigger
automata, language equivalence becomes much less obvious.

First of all, we’ll spell out the notion of bisimulation for deterministic au-
tomata. As always, we start by instantiating the definition: a relation R C X x X
on the states of an automaton (X, (o, d)) is a bisimulation if there exists a coalge-
bra structure (og,dg): X — 2x X* such that the following diagram commutes:

™1 ™2

X X

R
(Ov(;)l l(OR75R> l(o/(”

2><XA<—2><RA—>2><XA
idxm idx o

So, equivalently, we must have, for all (z,y) € R:
e o(z) = or(z,y) = o(y),
e Va.d(z)(a) = m(0r(z,y)(a)) and
e Va.d(y)(a) = m2(0r(z,y)(a)).
)
(,

A coalgebra structure (og, dr satlsfymg the above conditions exists if and only

if the following holds, for all (z,y) €

e o(z) =o(y), and
o Va e A d(x)(a) RI(y)(a).

We have obtained a concrete notion of bisimulation for deterministic automata:
a relation R C X x X satisfying the above two requirements (which don’t
anymore mention a coalgebra structure!): if two states x,y are related, then
they should either both be accepting or both be non-accepting; and for every
alphabet letter, the states reached after taking a transition (labelled by that
letter) from both states should be again related.

It follows from Theorem[2.1] that if (z,y) € R for some bisimulation R, then
x and y are language equivalent: beh(z) = beh(y). Thus, to prove language
equivalence, it suffices to construct a suitable bisimulation.

To start with, let’s show that z1, 2 in (3)) are equivalent, using bisimulations.
The first attempt could be

Ro = {(71,92)}-

Both x4, y2 are non-accepting. However, (x1)(a) = x3, whereas §(y2)(a) = yo,
so this is not a bisimulation, since (x3,y2) & Ro; also, (§(x1)(b),d(y2)(b) =
(x2,y1) & Ro. So we add both pairs, and let

R1 = {(%1,2), (z3,92), (2,91) }

This is still not a bisimulation ... however, after one more step, we reach

Ry = {(x1,92), (3, 92), (x2,91), (x2,¥3) }

which is actually a bisimulation. Hence, beh(z1) = beh(yz), that is, z; and y»
are language equivalent.

Note that we could have (somehow) guessed the entire relation R, at once;
it’s not at all necessary to construct in the above, incremental way. However,
what is nice about this, is that it looks pretty algorithmic: one just adds succes-
sor states and keeps checking whether both are accepting/non-accepting, until
either the relation is a bisimulation, or one has to add some pair (z,y) which
violates the first condition, that is, where one is accepting and the other is not.
In fact, in the latter case, we have found a counterexample: a reason that the
two states are not language equivalent.

Not only does this look algorithmic, we can just turn it into an algorithm! To
this end, we’ll focus now on finite automata: we assume that the set of states X
is finite. We call the algorithm Naive, as we’ll see in a moment how to improve
it. This, as well as the adapated algorithm in the next section, is more or less
literally copied from [2] and from notes written by Filippo Bonchi and myself
(see [1I). Given a deterministic automaton (X, (o, d)), and states o, yo € X,
the algorithm is as follows:

Naive(wo, yo)

(1) R is empty; todo is empty;
(2) insert (zg,y0) in todo;
(3) while todo is not empty do
(3.1) extract (z,y) from todo;
(3.2) 1if (x,y) € R then continue;
(3.3) if o(z) #0(y) then return false;
(3.4) for all ac A,

insert (d(x)(a), d(y)(a)) in todo;
(3.5) insert (z,y) in R;
(4) return true;

First of all, observe that the algorithm is correct: Naive(zy,yo) returns true iff
xo ~ yo (iff beh(xg) = beh(yp)). To see this, notice that the following is a loop
invariant: for all (x,y) € R, we have

e o(x) = o(y), and
e Va e A. (6(x)(a),d(y)(a)) € RU todo.

Since in the end todo is empty, it follows that, if the algorithm terminates re-
turning true, the relation R is a bisimulation. Conversely, suppose beh(zg) #
beh(yo). Then eventually a pair (z, y) will be added such that o(z) # o(y), hence
the algorithm returns false, in (3.3).

If the state space X is finite, then the algorithm terminates. To see this, no-
tice first that every iteration of the loop, an element is taken from todo. Further,
new elements are added to todo only if some new element is also added to R.
Hence, the number of times new elements are added to todo is bounded by the
number of pairs of elements of X.

3.1 Bisimulation up to equivalence

The previous algorithm was derived more or less directly from the instance of
coalgebraic bisimulation for deterministic automata. One can think of similar
algorithms for other types of coalgebras, just based on the associated notion of
bisimulation.

This is all nice, but . .. it turns out that, in many cases, one can do better: it is
possible to prove behavioural equivalence in an ‘easier’ way, by slightly relaxing
the requirements of a bisimulation. In case of deterministic automata, this leads
to a classical algorithm for language equivalence, as was observed in [2].

We first look at a motivating example. Consider the following automaton,
over a singleton alphabet.

For simplicity, no state is accepting. So it should be easy to prove that z, and
yo are bisimilar! However ...the bisimulation we compute by starting with
{(z0,y0)} and proceeding with our algorithm is slightly unpleasant. Depicting
it with dashed arrows, we obtain a very readable picture.

D @

< —

\}

N =S S=7 <Z7
> ~
~ S>> X >
///}/ 7> TN
A AT A 2K X
-~

9\\\
Y \
WA
A\
\\
\ \\
\\
WA
\
Ne)
\\/\
X
(=)
Wi
1/
=F-4

This is in fact the smallest bisimulation that contains (zg, yo).

Luckily we can do better, by using a so-called bisimulation up-to technique.
In the course, we’ll hear much more about up-to techniques, but this is our first
aquaintance. Bisimulations up-to are variants of bisimulations which are easier
to construct than bisimulations. However, if they’re any good (they come in dif-
ferent kinds) than they are sound, which means that, even though they’ren not
a bisimulation themselves, they represent a good old bisimulation. Therefore,
they still suffice to prove behavioural equivalence.

Back to the example: consider the following relation R depicted by the

dashed lines:
N
(o () —(r)—(=0)
s/ s/ s/

Ve
/

L L, L, l !
.w/‘/ () =)

This is not a bisimulation: the pair (x4, ys3) violates it, since (x1,y4) is not re-

lated. However, (1, y4) is related by the least equivalence relation eqv(R) con-

taining R. More precisely, eqv(R) is the least relation satisfying the following
rules:

xRy zequ(R)y zeqv(R)y yeqv(R) z
zequ(R)y xequ(R)z yeqv(R)zx x eqv(R) z

With that in place, for the above relation given by the dashed lines, we have,
for all (z,y) € R:

e o(z) = o(y), and
e Va e A. (6(x)(a),d(y)(a)) € equ(R).

Such a relation is called a bisimulation up to equivalence.

And now what? Well, it turns out that bisimulations up to equivalence suffice
to prove language equivalence. This is called soundness, and we may express it
nicely as another coinduction principle:

Theorem 3.1. If R is a bisimulation up to equivalence on a deterministic automa-
ton (X, (o0, 9)), then for any (z,y) € R: beh(z) = beh(y).

Proof. One can show that, if R is a bisimulation up to equivalence, then eqv(R)
is a bisimulation (exercise!). O

In the second half of the course, we’'ll treat up-to techniques in general, and
show really nice ways of proving such soundness results.

Anyway, the point here is that bisimulations up to equivalence suffice to
prove language equivalence. And they’re easier to construct than plain bisimu-
lations! We can now update our Naive algorithm to something we call HK:

HK (o, yo)

10

(1) R is empty; todo is empty;
(2) insert (xg,y0) in todo;
(3) while todo is not empty do
(3.1) extract (z,y) from todo;
(3.2) 1if (x,y) €eqv(R) then continue;
(3.3) if o(z) #0(y) then return false;
(3.4) for all ac A,

insert (d(x)(a), 8(y)(a)) in todo;
(3.5) insert (z,y) in R;
(4) return true;

The only difference with Naive is in (3.2); this algorithm constructs a bisim-
ulation up to equivalence rather than a bisimulation. Hence, it is still correct,
but it terminates earlier in general. In fact, the above algorithm was devised
by Hopcroft and Karp (not knowing about bisimulations, as far as we know); it
was observed in [2] that this amounts to the computation of a bisimulation up
to equivalence.

4 Final remarks

The main thing of this lecture is the notion of bisimulation, which provides
a general notion and proof technique for behavioural equivalence of coalge-
bras. We’ve mainly seen our favorite instances, streams and automata; how-
ever, bisimulation is defined rather generally, in terms of a (Set) endofunctor.
For instance, next week, we’ll consider the case of labelled transition systems,
recovering the classical case of bisimulations introduced first, historically (and
which is still the most famous instance of bisimulation).

A little remark on terminology: we’ve been using the word coinduction some-
times to define maps into a final coalgebra (“coinductive” definition of an oper-
ation such as even or odd on streams), and, mainly today, to talk about a proof
technique. The common theme here is that we refer to coinduction as the “use
of final coalgebras”; as, for instance, in [[3]. In computer science, there’s also
a more classical use of the word ‘coinduction’, in the context of partial orders;
we’ll see this in the last part of the course.

References

[1] Filippo Bonchi, Marcello Bonsangue, and Jurriaan Rot. Lecture notes: coal-
gebraic methods for automata, 2018. http://essl11i2018.folli.info/
wp-content/uploads/coma.pdf.

[2] Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimula-
tions up to congruence. In Roberto Giacobazzi and Radhia Cousot, editors,
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2013, proceedings, pages 457-468. ACM, 2013.

11

http://esslli2018.folli.info/wp-content/uploads/coma.pdf
http://esslli2018.folli.info/wp-content/uploads/coma.pdf

[3] Bart Jacobs and Jan Rutten. An introduction to (co)algebras and
(co)induction. In Advanced Topics in Bisimulation and Coinduction, pages
38-99. Cambridge University Press, 2012.

[4] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor
Comput. Sci., 249(1):3-80, 2000.

12

	Bisimulations and bisimilarity
	Stream systems
	Deterministic systems with termination

	Coinduction
	Bisimulations on automata
	Bisimulation up to equivalence

	Final remarks

