Coalgebra, lecture 7:
Non-deterministic systems

Jurriaan Rot

October 18, 2018

The examples of coalgebras that we’ve seen so far—streams, automata, trees
and variations—are all deterministic. In this lecture we’ll study coalgebras with
non-determinism, which typically make use of the powerset functor P. In partic-
ular, we start out with labelled transition systems, which are a classical example,
and a fundamental model of computation which is used a lot, e.g., in concur-
rency theory and semantics. The associated notion of bisimulation predates,
and inspired, the theory of coalgebras. Then we’ll consider non-deterministic
automata and their determinisation. Based on these techniques, we finally ar-
rive at an efficient algorithm for equivalence of non-determistic automata, using
a smart variation of bisimulations.

The part on non-deterministic automata is partially based on lecture notes
by Filippo Bonchi and myself (see [1[).

1 Labelled transition systems

A labelled transition system (LTS) over a set of labels A consists of a set X and
a transition relation — C X x A x X. We write z % 2’ for (x,a,z’) € —. For
instance:

b a
a RN a b N\
Ty —> Ty <,— T3 (7 Y2 Y3 Ya (D

As always, we’ll be concerned with whether states ‘behave the same’. For in-
stance, should z; and y; be deemed equivalent?

They’re not isomorphic in any sense: the right-hand side LTS has more states.
However, they do generate the same paths of actions, or ‘traces’. To make this
more precise define trace semantics of an LTS is the unique map tr: X — 24"
such that tr(z)(¢) = 1, and tr(z)(aw) = 1 iff 3z’.2 & 2’ and tr(z')(w) = 1.
We say x,y are trace equivalent if tr(xz) = tr(y). For instance, in the above
example, tr(x;) contains the empty word, and every word of alternating a’s and

b’s starting with an a. We have that z; and y; are trace equivalent. But is trace
equivalence always the right notion of behavioural equivalence?

Let’s consider another example: the famous coffee machine. The problem
of modelling coffee machines is a driving force behind the theory of LTSs! So,
here goes, two machines:

Uy U1
. coin coin
coin
coffee tea
Uz U2 U3
coffee tea
req-coffee req-tea
req-coffee req-tea

us U4 () Vs

Are u; and vy equivalent? Well, they are certainly trace equivalent. However,
these model quite different coffee machines. An ‘external observer’, that is, user
of the coffee machine, can only see the available actions, not the states: so in
the beginning one just has the possibility of inserting a coin. In w4, this takes
the machine to uo; afterwards, the user has the possibility of choosing coffee or
tea. In contrast, on the right-hand side, after inserting a coin the user either can
choose only tea, or only coffee.

The two are distinguished by our favorite notion of equivalence: bisimu-
lation. For a labelled transition system (X,—), a relation R C X x X is a
bisimulation if for all (x,y) € R:

e ifz % 2/ then 3y € X s.t.y = ¢/ and (¢/,y') € R, and
o ify % ¢/ then 32’ € X s.t. x % 2’ and (2/,9) € R.

As always, the greatest bisimulation is called bisimilarity, and denoted by ~, and
states x,y are called bisimilar if x ~ y. For instance, in (I]), we have x; ~ y;: it
is easy to check that (z1, y2) is contained in a bisimulation. However, the coffee
machines are not bisimilar: (u;,v;) can not be contained in a bisimulation. For

suppose (u1,v1) € R for some bisimulation R; then v; M, vs, to which u; can

. coin req-coffee .
only ‘answer’ with u; — ua, so (ug,v2) € R. But now us e, ug, which

can’t be matched by v;. So R is not a bisimulation; contradiction.

Bisimulation distinguishes between the two coffee machines, whereas trace
equivalence does not. In fact, one can show that bisimilarity implies traces
equivalence, which is left as an exercise. But what is so special about bisimi-
larity? Well, there’s several answers to that ...and bisimulation occurs in nu-
merous places (also, for instance, in logic). In any case, it really captures when
two states behave the same to an ‘external observer’, who doesn’t have access
to the states. Indeed, within the theory of coalgebras, it is the canonical notion
of behavioural equivalence, which we’ll see next.

! Have a look at this wonderful video: it keeps occupying the mind of researchers, and was
deeply inspiring for the algorithm we consider later today. https://cacm.acm.org/magazines/
2015/2/182642-hacking-nondeterminism-with-induction-and-coinduction/abstract

https://cacm.acm.org/magazines/2015/2/182642-hacking-nondeterminism-with-induction-and-coinduction/abstract
https://cacm.acm.org/magazines/2015/2/182642-hacking-nondeterminism-with-induction-and-coinduction/abstract

Recall the powerset functor P: Set — Set. We define the functor F': Set —
Set by F(X) = P(A x X). An F-coalgebra now isamap f: X — P(4 x X),
which corresponds to an LTS: for every state x, f(x) is the set of transitions from
xz. And now, a bisimulation between F'-coalgebras, instantiating the abstract
coalgebraic notion, coincides with a bisimulation as defined concretely above!
This, as well, we leave as an exercise.

Here are some brief comments on final coalgebras for LTSs. The functor F
does not have a final coalgebra, as we've seen in one of the previous lectures
(for P). However, we can restrict things a little to obtain one, using the fi-
nite powerset functor Py, given by Py(X) = {S§ C X | Sis finite }. Define
Fp,: Set — Set by Fp(X) = Ps(A x X). An Fp,-coalgebra is called a finitely
branching labelled transition system. Alternatively, one can take the functor Fj;
given by Fi;(X) = (P;(X))*. An Fj-coalgebra is called an image-finite LTS
(what's the difference between image-finite and finitely branching LTSs?). The
functor F, (and also F§;) does have a final coalgebra: it consists of equivalence
classes of rooted trees edge-labelled in A (with multiple, or zero edges possible)
w.r.t. bisimilarity. Behavioural equivalence coincides with bisimilarity; and of-
ten it’s most useful to just consider bisimilarity on the LTS at hand (rather than
looking at the image in the final coalgebra).

2 Non-deterministic automata

We’ve made quite a fuss about deterministic automata (DA). A non-deterministic
automaton (NDA)E] is a coalgebra for the functor F': Set — Set, FI(X) = 2 x
(P#(X))A. That is, it consists of a set X and a pair

(0,6): X — 2 x (’Pf(X))A

of an output function o: X — 2 and a transition function §: X — (P;(X))4.
For a state z and label a, we think of d(x)(a) as the set of states reached from
x with an a-transition. To emphasise this, we sometimes write z = z’ for
x’ € §(z)(a). Note that F is the composition of the functor for deterministic
automata and the powerset functor.

The language semantics of a non-deterministic automaton (X, (o,)) is given
by the map I: X — 24", defined for all z € X, a € A and w € A* by:

(@) U(2)(e) = ofa),

(b) forall a € A and w € A*, l(x)(aw) = 1 iff there exists y € d(x)(a) such
that I(y)(w) = 1.

For by,by,...,b, € 2, we let \/,b; = by V by V...V b, where V is the usual
Boolean ‘or’. The second point in the above definition can then be conveniently

20One typically speaks of an NFA, for nondeterministic finite automata. However, we won't require
the state space to be finite, for now.

rewritten as l(z)(aw) =V cs0z)(0) Uy)(w). We say that z,y € X are language
equivalent if [(x) = I(y).
Here’s an example of a non-deterministic automaton:

a,b a,b

oS ONORG
We have [(z) = {w € {a,b}* | w has aba as subword}.

The functor F has a final coalgebra; and behavioural equivalence coincides
with bisimilarity, so let’s have a look at the latter. It is a minor variation on
labelled transition systems, and indeed, if we work out the details, it turns out
that the coalgebraic definition amounts to: R C X x X is a bisimulation if for
all (z,y) € R:

* o(x) = o(y),
e ifz % 2/ then 3y € X s.t.y = ¢/ and (¢/,y') € R, and
o ify % ¢/ then 32’ € X s.t. % 2’ and (2/,9') € R.

This is stronger than language equivalence! It's much the same problem sit-
uation as with LTSs: for instance, if we consider the coffee machines as non-
deterministic automata (with, say, all of the states accepting) then u; and v; are
language equivalent but they are not bisimilar.

Similarly to LTSs, we have that bisimilarity of NFAs implies language equiva-
lence (exercise), but not the converse, as shown by the coffee machine example.
Does this mean the coalgebraic perspective fails here, as bisimilarity (and be-
havioural equivalence) is too strong? Not quite: it’s just that usually, in NFAs,
we're interested in traces, and not in bisimilarity (which takes into account the
precise moment of branching).

2.1 Determinisation

An early automata theory course typically introduces deterministic automata,
non-deterministic automata and then shows that any non-deterministic automata
can be ‘determinised’, preserving the language. But since this is a master course,
we’ll make this pretty intuitive construction look really complicated! It will be
our first example of interplay between coalgebra and algebra, which we’ll cover
more in-depth in later lectures.

2.1.1 Semi-lattices

So after all this coalgebra, here’s an algebraic structure. A semi-lattice (X, +,0)
consists of a set X and a function +: X x X — X which is associative, com-
mutative, idempotent (ACI), and has 0 € X as unit. This means that for all
x,y,z € X,

e z+ (y+2) = (x+y)+ z (associativity)
e r+y =y + z (commutativity)

e ©+ x = x (idempotence)

e =+ 0=z (unit)

Given two semi-lattices (X1, +1,01) and (Xs, +2,02), a semi-lattice homomor-
phism is a function f: X; — X, such that for all z,y € X3, f(z +1y) =

f(@) 42 f(y) and f(01) = 0.
Example 2.1.

e The set 2 = {0,1} is a semi-lattice when taking + to be the ordinary
Boolean ‘or’, often denoted by V. and 0 is the empty language.

e More generally, for any set .S, P,(S) is a semi-lattice where + is the union
of sets and 0 is the empty set.

e The set of all languages 24" is a semi-lattice; for f,g € 24", we let (f +
9)(w) = f(w) V g(v), and 0 the function which maps everything to 0 € 2.
Thus, this is essentially union of languages. We sometimes denote f + ¢
by f V g as well.

e Generalising the previous example, if (S, +,0) is a semi-lattice, then ST
is again a semi-lattice, for any set T. For f,g € ST, we let (f + g)(z) =
f(x) + g(z) for all x € T. (What is 0?)

e The function g: P;(2) — 2 given by ¢g(0) = 0, g({0}) = 0, g({1}) =1
and ¢({0,1}) = 1 is a homomorphism. Let g': P;(2) — 2 be defined by
¢’'({0,1}) = 0 and equal to g on the other elements. Then ¢’ is not a
homomorphism (why not?).

The following fact is super-important for our purposes. It shows that Pz(S)
is a special semi-lattice.

Lemma 2.2. Let S be a set, and (X, +,0) a semi-lattice. For every map f: S —
X, there exists a unique semi-lattice homomorphism f*: P;(S) — X such that

Fi({z}) = f(z) forall z € S.

This is left as an exercise, but here’s the idea. That f¥ is a homomorphism
means that f#(SUT) = f4(S)+ f#(T) and f*(()) = 0. This essentially chacterises
f* everywhere except on the singletons {z}, where it is given by f.

For instance, taking the identity function id: 2 — 2, we get a unique map
id*: P;(2) — 2, which coincides with the map g in Example

2.1.2 Determinisation construction
Consider a non-deterministic automaton
(0,8): X — 2 x (Py(X)™.
We define a deterministic automaton
(0F,6%): Pr(X) — 2 x (Pp(X))2.

on the set P¢(X), as follows:

o*(8) =\ o) @)
zeS

§(S)(a) = | d(z)(a). 3
€S

Equivalently, of(S) = 1iff 3z € S.o(z) = 1, and y € 6*(S)(a) iff 3x € S.y €
§(z)(a). We call (Ps(X), (0, %)) the determinisation of (X, (0,5)). These are
precisely the unique semi-lattice homomorphisms obtained by applying Lemm42.2]
to o and 4, using that 2 and (P;(X))# are semi-lattices.

Example 2.3. Consider the following non-deterministic automaton:
a

S ot

N~—
a

Part of the determinisation of this automaton (only the stuff starting from {x})
looks as follows:

As you can see in the above example, and possibly remember from an earlier
automata theory course, the language of a state x in the original NDA coincides
with the language of {«} in the determinisation. This is really the point of the
construction, and we will now see how this fits into the current perspective.

First, since (P;(X), (0, 6%)) is a deterministic automaton, we obtain a unique
map beh: P;(X) — 24" to the final coalgebra:

Pf(X) beh 2A*
<0”75”>l (e,d)
A A*\A
2 x (Pr(X)) m2x(2)

Concretely, we have:

e beh(S)(g) = 0*(S), and

e beh(S)(aw) = beh(6%(S)(a))(w)
forall S € Pr(X), a € A, w € A*. Then beh satisfies the following property:
Lemma 2.4. Let (P;(X),(0*,4")) be the determinisation of an NDA (X, (0,)).

Then beh: P;(X) — 24" is a semi-lattice homomorphism, from the semi-lattice
(Ps(X),U,0) to the semi-lattice 24" in Example . (also given by union).

This means that:

beh({z1,...,zn}) = beh({z1}) U...Ubeh({z,}),

that is, the language of a set of states in the determinised automaton is given by
the language of each of the singletons.
So, taking stock:

e We start out with a non-deterministic automaton (X, (o, d)). It has a lan-
guage semantics [: X — 247,

e We transform it to a deterministic automaton (P;(X), (o, 4")). This, in
turn, has a language semantics beh: P;(X) — 24" coming from the final
coalgebra.

Now, the point of all this, is that these are the same: the language I(z) of a state
x € X of the original non-deterministic automaton coincides with the language
of the singleton {z} in the determinized automaton.
Theorem 2.5. Let (P;(X), (0%, §%)) be the determinisation of an NDA (X, (o, §)).
Then forall x € X:

beh({z}) = i(z).

Proof. We prove that for all w € A* and for all z € X, beh({z}) = I(z), by
induction on w.

For the base case, we have beh({z})(¢) = o(z) = I(g). Next, let w € A*, and
suppose for all x € X, beh({z}) = i(x). Let a € A. Then

beh({z})(aw) = beh (U 5y) w) (beh a coalgebra homomorphism)

yE{x}
= beh(d(z)(a))(w)
= (\/ beh({y})) (w) (Lemma [2.4)
yEd(x)(a)
=\ (beh({y})(w)) (definition v on 247)
y€é(z)(a)
= \/ (I(y)(w)) (induction hypothesis)
y€é(z)(a)
= I(z)(aw) (definition 1)
This concludes the inductive step. O

2.2 Using bisimulations to compute language equivalence of
non-deterministic automata

We'’ve now seen:

e the language semantics of non-deterministic automata, which does not
coincide with bisimilarity for the associated functor;

e determinisation of a non-deterministic automaton, which yields the lan-
guage semantics of a state x as the semantics beh({z}) of the singleton.

By the second point, we get something nice, since in the last lecture, we've
seen that we can prove behavioural equivalence of deterministic automata us-
ing bisimulations! If we instantiate the notion of bisimulation of deterministic
automata to a determinised automaton (P;(X), (0*, 6%)), we get the following.
Arelation R C Py(X) x Py(X) is a bisimulation if for all (S,T') € R:

e 0*(S) = of(T), and
e foralla € A: (6(9)(a),6*(T)(a)) € R.

By the results of the previous lecture, we know that beh({z}) = beh({y}) iff
({z},{y}) € R for some bisimulation R. So, together with Theorem [2.5] we
get:

Corollary 2.6. Let (X, (0,6)) be an NDA. For any two states x,y € X, we have
l(z) = l(y) if and only if there is a bisimulation R C Ps(X) x Ps(X) on the
determinisation (Py(X), (0%, 6*)) such that ({z},{y}) € R.

So to prove language equivalence of states of an NDA, it suffices to construct
a bisimulation on the determinisation.

Example 2.7. Consider the following NDA. For simplicity, we view the automa-
ton below as a single automaton; and we’re interested in comparing the lan-
guage of x and u. (We've already seen the left part in Example [2.3)

S0 Goob

If we determinise these automata, we get (as a part):

The dashed lines give a bisimulation between {z} and {u}. Hence, we have
shown that I(x) = I(y).

3 HKC and bisimulation up to congruence

In the last lecture, we used bisimulations to develop an algorithm for language
equivalence of deterministic automata. We ended the lecture with Hopcroft and
Karp’s algorithm (HK), which computes a bisimulation up to equivalence rather
than a bisimulation, improving the plain bisimulation technique considerably.

In particular, starting from a non-deterministic automaton, we can deter-
minise it and then just feed it to the HK algorithm. In fact, the determinisa-
tion can be computed on-the-fly, step by step when we need it. However, it
turns out that, in the context of determinised non-deterministic automata as we
considered in the last section, one can do even better than bisimulation up to
equivalence. This exploits the algebraic (semi-lattice) stucture of the state space
of the determinised automaton, and is a prime example of a technique which
combines algebra and coalgebra. This algorithm was introduced by Bonchi and
Pous [2]—the guys from the video mentioned before!

Consider, for instance, the NDA in Example and the corresponding de-
terminised automaton. Intuitively a bisimulation up to congruence does not
need to relate {z,y} with {u,v,w} as soon as {x} is already related to {u} and
{y} to {v,w}. To define it formally, we first need the notion of congruence
closure.

Definition 3.1. For a relation R C Py(X) x Ps(X), define the congruence
closure cgr(R) of R as the least relation satisfying the following rules.

SRT Scgr(R)T Scgr(R)T Tcgr(R)U
Scgr(R) T S cgr(R) S T cgr(R) S Scgr(R)U
S1 cgr(R) Th S cgr(R) Ts
(S1US2) cgr(R) (T1 UTy)

The first four rules are the same as for the equivalence closure. The last one
closes the relation with respect to set union.

Definition 3.2. Let (X, (0,0)) be an NDA. A relation R C Py(X) x Ps(X)
is a bisimulation up to congruence (on the determinised automaton) iff for all
(S,T) € R:

1. 0%(S) = o*(T) and,
2. foralla € A, (6%(S)(a),d*(T)(a)) € cgr(R).

Example 3.3. Recall the NDA from Example The relation R given by the
dashed lines is a bisimulation up to congruence.

To see this, notice that we have:

{z} R {u} {y} R {v,w}
{z} cer(R) {u} {y} cer(R) {v, w}
{z,y} cgr(R) {u, v, w}

Note that R is not a bisimulation.

Bisimulations up to congruence suffice to prove language equivalence. This
follows from the following result:

Theorem 3.4. Let (X, (0,0)) be an NDA. If R C P;(X) x P;(X) is a bisim-
ulation up to congruence on the determinisation of (X, (0,0)), then cgr(R) is a
bisimulation (on the determinisation).

In one of the later lectures, we’ll consider bisimulations up-to, in general,
and give a much nicer proof of the above fact. But, for completeness, here goes.

Proof. Consider the relation
U = {(S,T) | 0*(S) = o*(T) and Va € A. (6*(S)(a),6*(T)(a)) € cgr(R)}.

We need to prove that cgr(S) C . Since cgr(9S) is characterised as the least
relation satisfying the rules in Definition it suffices to show that S satisfies
all these rules:

o If (S,T) € R, then (S,T) € ¥ by the assumption that R is a bisimulation
up to congruence;

e Forall S € P;(X), it is easy to show that (S, 5) € ¥;

e If (S,T) € U then (T, S) € ¥ (exercise);

e If (S,7T) € ¥and (T,U) € ¥ then (S,U) € U (exercise);

e Suppose (S1,71) € ¥ and (S2,7%) € ¥. Then

0%(S1) V 0*(S;) (since of a semilattice homomorphism)

oﬁ(Tl) vV oﬁ(Tg) (since (S1,71) € ¥ and (S3,T3) € ¥)

oﬁ(Tl UTs). (since of a semilattice homomorphism)

Oﬁ(Sl U 52)

Moreover, for all a € A, we have:

§%(S1 U S2)(a) = 6%(S1)(a) U 6*(S2)(a)
(since 6% a semilattice homomorphism)

cgr(R) 6%(T1)(a) U 6*(T3)(a)
(since (S1,T1) € ¥ and (SQ,TQ) cw)

= 6ﬁ(T1 UTy) (since 5% a semilattice homomorphism)

10

This concludes the proof that cgr(R) C ¥, and hence that cgr(R) is a bisimula-
tion. O

Corollary 3.5. Let (X, (0,0)) be an NDA. If R C P¢(X) x P#(X) is a bisimulation
up to congruence on the determinisation of (X, (o,9)), then for all z,y € X:
(=}, {y}) € R implies I(z) = I(y)-

Proof. Suppose R is such a bisimulation. By Theorem cgr(R) is a bisim-
ulation. Let ({z},{y}) € R. Then ({z},{y}) € cgr(R), hence I(z) = I(y) by
Corollary 2.6 O

Thus, bisimulations up to congruence suffice to prove language equivalence.
And they can be (much) smaller than plain bisimulations!

To conclude, we adapt the HK algorithm to use bisimulation up to congru-
ence, as follows. It takes as input a non-deterministic automaton (X, (o, §)), and
two sets of states Sy, Ty C X.

HKC (SO :TO)

(1) R is empty; todo is empty;
(2) imnsert (Sp,7p) in todo;
(3) while todo is not empty do
(3.1) extract (5,7) from todo;
(3.2) if (S,T) € cgr(R) then continue;
(3.3) if 0%(S)#0*T) then return false;
(3.4) for all ac A,

insert (6%(9)(a), 6*(T)(a)) in todo;
(3.5) insert (S,7) in R;
(4) return true;

If we instantiate the algorithm with singletons {z}, {y} the algorithm checks
language equivalence, i.e., whether [(x) = I(y).

References

[1] Filippo Bonchi, Marcello Bonsangue, and Jurriaan Rot. Lecture notes: coal-
gebraic methods for automata, 2018. http://essl11i2018.folli.info/
wp-content/uploads/coma.pdf.

[2] Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimula-
tions up to congruence. In Roberto Giacobazzi and Radhia Cousot, editors,
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2013, proceedings, pages 457-468. ACM, 2013.

11

http://esslli2018.folli.info/wp-content/uploads/coma.pdf
http://esslli2018.folli.info/wp-content/uploads/coma.pdf

	Labelled transition systems
	Non-deterministic automata
	Determinisation
	Semi-lattices
	Determinisation construction

	Using bisimulations to compute language equivalence of non-deterministic automata

	HKC and bisimulation up to congruence

