

Exercises Coalgebra for Lecture 10

The exercises labeled with (*) are optional and more advanced.

1. Prove the following equalities over languages $L, K, M \in 2^{A^*}$ using bisimulations (up to congruence):
 - (a) $L \cdot 1 = L = 1 \cdot L$
 - (b) $LL^* + 1 = L^*$
 - (c) Let $A = \{a, b\}$; prove that $(a + 1)^* = a^*$.
 - (d) $L(K + M) = LK + LM$
 - (e) $(L^*)^* = L^*$
 - (f) $L^*L^* = L^*$
2. (*) Re-prove the last two identities in the previous exercise using the axioms of Kleene algebra, and while you're at it, prove that $(L^*K)^*L^* = (L + K)^*$ either in KA or with bisimulations (or both).
3. In the lecture, we have characterized the output and derivative of $L + K$, LK and L^* in terms of the output and derivatives of L and K .
 - (a) Give a similar characterization for intersection $L \cap K$ and complement \bar{L} , with the latter defined by $\bar{L} = \{w \mid w \notin L\}$.
 - (b) The *shuffle* operation is defined on words w, v inductively as follows: $w \odot \varepsilon = \varepsilon \odot w = w$ and $aw \odot bv = a(w \odot bv) + b(aw \odot v)$ for any alphabet letters a, b . This is extended to languages L, K as $L \odot K = \sum_{w \in L, v \in K} w \odot v$. Give a characterization of output and derivative for the shuffle. Prove that your answer is correct.
 - (c) Use your result in the previous exercise to prove that $L \odot K = K \odot L$ for all $L, K \in 2^{A^*}$.
 - (d) We define the set of *extended regular expressions* \mathbf{EExp} by

$$r ::= r + r \mid r \cdot r \mid r^* \mid \bar{r} \mid r \sqcap r \mid a \mid 1 \mid 0$$

The semantics $L: \mathbf{EExp} \rightarrow 2^{A^*}$ is defined by extending the semantics of regular expressions with the cases of \bar{r} and $r \sqcap s$ using complement and intersection. Define a suitable deterministic automaton over \mathbf{EExp} , such that the language semantics coincides with L .

- (e) (*) There are unique languages L and K such that

$$\begin{aligned} L &= \{a\}L\{a\} + \{b\}L\{b\} + \{a\} + \{b\} + 1 \\ K &= \{a\}K\{a\} + \{b\}K\{b\} + \{a\}A^*\{b\} + \{b\}A^*\{a\} \end{aligned}$$

L is the language of *palindromes*: words which are equal to their own reverse. The aim of this exercise is to prove that K is the language of all *non-palindromes*, by showing that the relation $R = \{(L, K)\}$ is a bisimulation up to congruence. Hint: to relate the derivatives, use that $\bar{L}\{\bar{a}\} = (\bar{L}\{a\} + A^*\{b\} + 1)$ (which holds for every language L).

4. (*) Prove that for all languages $L, K \in 2^{A^*}$ and all $a \in A$:

$$\begin{aligned}(L + K)_a &= L_a + K_a \\ (LK)_a &= L_a K + L(\varepsilon)K_a \\ (L^*)_a &= L_a L^*\end{aligned}$$