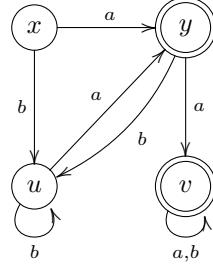


Exercises Coalgebra for Lecture 13

The exercises labeled with (*) are optional and more advanced.

1. Use the partition refinement approach from the lecture to compute the greatest bisimulation on the following automaton.



2. Let $f: X \rightarrow (B \times X)^A$ be a Mealy machine.
 - Define $b: \text{Rel}_X \rightarrow \text{Rel}_X$ such that R is a bisimulation iff $R \subseteq b(R)$.
 - Describe a concrete algorithm for minimising Mealy machines, using the final sequence $X \times X \supseteq b(X \times X) \supseteq \dots$.
 - Apply your algorithm to a (non-trivial) Mealy machine.
3. Consider the following monotone function $b: \text{Rel}_{\mathbb{N}^\omega} \rightarrow \text{Rel}_{\mathbb{N}^\omega}$:

$$b(R) = \{(\sigma, \tau) \mid \sigma(0) \leq \tau(0) \text{ and } (\sigma', \tau') \in R\}.$$
 - Show that b is cocontinuous.
 - Give a concrete description of $b^i(\mathbb{N}^\omega \times \mathbb{N}^\omega)$; prove your claim by induction.
 - By the Kleene fixed point theorem, $\text{gfp}(b) = \bigwedge_{i \in \mathbb{N}} b^i(\mathbb{N}^\omega \times \mathbb{N}^\omega)$. Use this to give a concrete description of $\text{gfp}(b)$.
4. Consider the functor $B: \text{Set} \rightarrow \text{Set}$, $B(X) = A \times X + 1$.
 - Draw the first few elements of the final sequence of B .
 - Give a concrete description of the i -th element $B^i(1)$ of the final sequence.
 - (*) Find the limit of this sequence.
5. (*) Show that every cocontinuous function on a complete lattice is also monotone, and show that the converse does not hold.
6. (*) Spell out the notion of continuous function; formulate and prove the Kleene fixed point theorem for computing the least fixed point of a continuous function.