Exercises Coalgebra, final week

Here are a few exercises that cover some of the main topics of the course: (final)
coalgebras, homomorphisms, lattices and monads. Note that these do not at all
cover the entire material of the course; they’re meant for some extra practice
with some of the harder topics, during the last exercise class.

1. 'Tis that time of the year again: time to put some (more) Christmas trees
into the Mercator building. Of course, plain old finite trees would be
boring: we're going to construct some infinite trees! So, we let B be a set
of wonderful decorations for our tree.

(a)

We'll represent such trees by a set X of states together with some
transitions: for each x € X, either we're at a leaf, which we decorate
with an element b € B, or we are at a node; in that case, we get a pair
(y, z) of states in X, modelling the left and right subtree respectively.
Give a functor F': Set — Set whose coalgebras correspond to these
systems.

Derive a concrete notion of homomorphisms between representations
of Christmas trees, that is, F'-coalgebras, from the coalgebraic notion.

Give a concrete notion of (coalgebraic) bisimulation for F-coalgebras.

Our Christmas trees will be of the form
t: {l,r}* > B+1,

satisfying the property t(w) € B — t(w) = t(wv) for all w,v,€
{l,r}*.

Show that the set of all such trees can be extended to a final F-
coalgebra. Hint: after defining your coalgebra structure, first try
and properly understand what homomorphisms into this coalgebra
are.

Unfortunately, someone has put a number of tasteless diamonds ¢ €
B in the tree; we’'d better replace these all by a nice box [1 € B.
Use that C is a final coalgebra to define a map h: C — C from the
set C' of Christmas trees to itself, which replaces every diamond by
a box.

Several colleagues find the idea of infinite trees in Mercator a bit silly;
help them out by giving the initial algebra of F' (no proof needed).

Derive an induction principle for Christmas trees from your answer
to the previous question.

Someone stole all the decorations; so that B = (). What are the
initial algebra and final coalgebra in this case?

2. (Adapted from the second homework assigment of 2016; and the exercises
for week 12) Let (X,—) be a labelled transition system over A. Let



A>® = A“ U A* be the set of streams and (finite) words over A. The
empty word is denoted by e. Consider the following rules, involving a
relation | C X x A,

TSy ylw

(1)

xle x| aw
(for all a € A, w € A>).

Let Relx, 4 be the set of relations of the form R C X x A, partially
ordered by subset inclusion C. This partial order is a complete lattice.

Given z € X and w € A®, we say w is a trace of z if there is a path from
z labelled by w, that is, a path 21 — x5 —2 23 — ... such that 21 = z
and w = ajagas.... If w € A* then we call this a finite trace, if w € A%
we call it an infinite trace.

(a) Describe the least upper bound \/ S and greatest lower bound A S of
an arbitrary set S C Relx s, and give the top and bottom elements
of the lattice.

(b) Formulate the rules (1) in terms of a function b: Relx 4. — Relx gc.
Show that your function is monotone.

(¢) Use the Kleene fixed point theorem (initial sequence L, b(L),b(b(L),...)
to compute the least fixed point of b.

(d) Use the Kleene fixed point theorem (final sequence T,b(T), b(b(T),...)
to compute the greatest fixed point of b.

(e) Use your answer to one of the previous questions to show that, in

the transition system below, every finite trace of x is a prefix of the
stream ababab . . ..

(f) Use your answer to one of the previous questions to show that, in the
transition system above, the stream ababab. .. is an infinite trace of
x.

(g) (*) Suppose that our transition system is finitely branching, meaning
that for each = € X, the set {y | * = y for some a} is finite. Consider
the relation || € X x A%, given by: z|jw iff there are infinitely many
prefixes that are finite traces of x. Prove that for all z € X and
w € A®: if z||w, then w is an infinite trace of .

3. As usual, the powerset functor is denoted by P: Set — Set, defined as
usual by P(X) ={U | U C X} and on functions by taking direct image.

In an attempt to define a new monad, we try the following:

nx : X —=PX) ux : PPX)) — P(X)
x— {x} S NyesU-



for any set X. Does this work: is it a monad?



