

Exercises Coalgebra, final week

Here are a few exercises that cover some of the main topics of the course: (final) coalgebras, homomorphisms, lattices and monads. Note that these do *not* at all cover the entire material of the course; they're meant for some extra practice with some of the harder topics, during the last exercise class.

1. 'Tis that time of the year again: time to put some (more) Christmas trees into the Mercator building. Of course, plain old finite trees would be boring: we're going to construct some infinite trees! So, we let B be a set of wonderful decorations for our tree.
 - (a) We'll represent such trees by a set X of states together with some transitions: for each $x \in X$, *either* we're at a leaf, which we decorate with an element $b \in B$, or we are at a node; in that case, we get a pair (y, z) of states in X , modelling the left and right subtree respectively. Give a functor $F: \text{Set} \rightarrow \text{Set}$ whose coalgebras correspond to these systems.
 - (b) Derive a concrete notion of homomorphisms between representations of Christmas trees, that is, F -coalgebras, from the coalgebraic notion.
 - (c) Give a concrete notion of (coalgebraic) bisimulation for F -coalgebras.
 - (d) Our Christmas trees will be of the form

$$t: \{l, r\}^* \rightarrow B + 1,$$

satisfying the property $t(w) \in B \rightarrow t(w) = t(wv)$ for all $w, v \in \{l, r\}^*$.

Show that the set of all such trees can be extended to a final F -coalgebra. Hint: after defining your coalgebra structure, first try and properly understand what homomorphisms into this coalgebra are.

- (e) Unfortunately, someone has put a number of tasteless diamonds $\diamond \in B$ in the tree; we'd better replace these all by a nice box $\square \in B$. Use that C is a final coalgebra to define a map $h: C \rightarrow C$ from the set C of Christmas trees to itself, which replaces every diamond by a box.
- (f) Several colleagues find the idea of infinite trees in Mercator a bit silly; help them out by giving the initial algebra of F (no proof needed).
- (g) Derive an induction principle for Christmas trees from your answer to the previous question.
- (h) Someone stole all the decorations; so that $B = \emptyset$. What are the initial algebra and final coalgebra in this case?

2. (Adapted from the second homework assignment of 2016; and the exercises for week 12) Let (X, \rightarrow) be a labelled transition system over A . Let

$A^\infty = A^\omega \cup A^*$ be the set of streams and (finite) words over A . The empty word is denoted by ε . Consider the following rules, involving a relation $\downarrow \subseteq X \times A^\infty$.

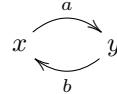
$$\frac{}{x \downarrow \varepsilon} \quad \frac{x \xrightarrow{a} y \quad y \downarrow w}{x \downarrow aw} \quad (1)$$

(for all $a \in A$, $w \in A^\infty$).

Let Rel_{X,A^∞} be the set of relations of the form $R \subseteq X \times A^\infty$, partially ordered by subset inclusion \subseteq . This partial order is a complete lattice.

Given $x \in X$ and $w \in A^\infty$, we say w is a *trace* of x if there is a path from x labelled by w , that is, a path $x_1 \xrightarrow{a_1} x_2 \xrightarrow{a_2} x_3 \xrightarrow{a_3} \dots$ such that $x_1 = x$ and $w = a_1 a_2 a_3 \dots$. If $w \in A^*$ then we call this a *finite* trace, if $w \in A^\omega$ we call it an *infinite* trace.

- (a) Describe the least upper bound $\bigvee S$ and greatest lower bound $\bigwedge S$ of an arbitrary set $S \subseteq \text{Rel}_{X,A^\infty}$, and give the top and bottom elements of the lattice.
- (b) Formulate the rules (1) in terms of a function $b: \text{Rel}_{X,A^\infty} \rightarrow \text{Rel}_{X,A^\infty}$. Show that your function is monotone.
- (c) Use the Kleene fixed point theorem (initial sequence $\perp, b(\perp), b(b(\perp), \dots)$ to compute the least fixed point of b .
- (d) Use the Kleene fixed point theorem (final sequence $\top, b(\top), b(b(\top), \dots)$ to compute the greatest fixed point of b .
- (e) Use your answer to one of the previous questions to show that, in the transition system below, every finite trace of x is a prefix of the stream $ababab\dots$



- (f) Use your answer to one of the previous questions to show that, in the transition system above, the stream $ababab\dots$ is an infinite trace of x .
- (g) (*) Suppose that our transition system is finitely branching, meaning that for each $x \in X$, the set $\{y \mid x \xrightarrow{a} y \text{ for some } a\}$ is finite. Consider the relation $\parallel \subseteq X \times A^\infty$, given by: $x \parallel w$ iff there are infinitely many prefixes that are finite traces of x . Prove that for all $x \in X$ and $w \in A^\infty$: if $x \parallel w$, then w is an infinite trace of x .

3. As usual, the powerset functor is denoted by $\mathcal{P}: \text{Set} \rightarrow \text{Set}$, defined as usual by $\mathcal{P}(X) = \{U \mid U \subseteq X\}$ and on functions by taking direct image.

In an attempt to define a new monad, we try the following:

$$\begin{array}{ll} \eta_X : X \rightarrow \mathcal{P}(X) & \mu_X : \mathcal{P}(\mathcal{P}(X)) \rightarrow \mathcal{P}(X) \\ x \mapsto \{x\} & S \mapsto \bigcap_{U \in S} U \end{array}$$

for any set X . Does this work: is it a monad?