

Exercises Coalgebra for Lecture 3

1. In the lecture, we have seen the *powerset functor*, which maps a set X to the powerset $\mathcal{P}(X)$, and a function f to $\mathcal{P}(f)$, $\mathcal{P}(f)(S) = \{f(x) \mid x \in S\}$.

(a) Show that the *finite powerset* \mathcal{P}_f , defined on a set X by

$$\mathcal{P}_f(X) = \{U \subseteq X \mid U \text{ is finite}\}$$

is also a functor (prove all the necessary properties).

(b) (*) Consider the functor F given on sets as the powerset: $F(X) = \mathcal{P}(X)$ but on a function $f: X \rightarrow Y$ by

$$\begin{aligned} F(f): \mathcal{P}(X) &\rightarrow \mathcal{P}(Y) \\ U &\mapsto \{y \in Y \mid y \notin \{f(x) \mid x \in X \setminus U\}\} \end{aligned}$$

Is this a functor? Justify your answer (give a proof or a counterexample).

2. Let $F, G: \text{Set} \rightarrow \text{Set}$ be functors. Prove that $F + G$, given on a set X by $(F + G)(X) = F(X) + G(X)$ is again a functor (how is it defined on functions?). Prove that the composition $F \circ G$, given on a set X by $(F \circ G)(X) = F(G(X))$ is a functor.

3. Let $f: X \rightarrow Y$ be a function. Show that

- f is surjective if and only if there is a function $s: Y \rightarrow X$ such that $f \circ s = \text{id}$.
- Let $F: \text{Set} \rightarrow \text{Set}$ be a functor. Show that, if f is surjective, then $F(f)$ is surjective as well.
- How about injective functions? Can you prove something similar?

4. Let A, B, C be sets, and consider the (exponent) polynomial functor given on sets by $F(X) = A + (B \times X)^C$. How is F defined on functions, according to the definition of polynomial functors given in the lecture/section 2.2 of the book?

5. We have seen that stream systems over A are coalgebras for the functor F given by $F(X) = A \times X$.

- What are coalgebras for the functor G given by $G(X) = (A \times X) + 1$ (defined on a function f as $G(f) = (\text{id}_A \times f) + \text{id}_1$), where $1 = \{*\}$ is a one-element set?
- What is a homomorphism between such G -coalgebras? (Instantiate the general definition of coalgebra homomorphisms to the functor G , and spell out the details)

6. In the lecture, we saw that *pairing* $\langle f, g \rangle: Z \rightarrow X \times Y$ of functions $f: Z \rightarrow X$, $g: Z \rightarrow Y$ is the unique function making the following diagram commute:

$$\begin{array}{ccccc}
 & & Z & & \\
 & f \swarrow & \downarrow \langle f, g \rangle & \searrow g & \\
 X & \xleftarrow{\pi_1} & X \times Y & \xrightarrow{\pi_2} & Y
 \end{array}$$

where π_1, π_2 are the projections; that is, $\pi_1 \circ \langle f, g \rangle = f$ and $\pi_2 \circ \langle f, g \rangle = g$.

Give a similar picture for coproduct, using the *copairing* $[h, k]: X + Y \rightarrow Z$ of functions $h: X \rightarrow Z$, $k: Y \rightarrow Z$, using the injections $\kappa_1: X \rightarrow X + Y$ and $\kappa_2: Y \rightarrow X + Y$.

7. (*) A *labelled transition system* over a set of labels A consists of a set X and a relation $\rightarrow \subseteq X \times A \times X$. We write $x \xrightarrow{a} y$ if $(x, a, y) \in \rightarrow$.

- (a) Show that labelled transition systems are coalgebras for the functor F given by $F(X) = \mathcal{P}(A \times X)$.
- (b) What is a homomorphism from one labelled transition system to another? Instantiate the definition of coalgebra homomorphism for the above functor F , and spell out the details (in terms of transitions $x \xrightarrow{a} y$).
- (c) A labelled transition system (X, \rightarrow) is *finitely branching* if, for each $x \in X$, the set $\{(a, y) \mid (x, a, y) \in \rightarrow\}$ is finite. Can you capture finitely branching labelled transition systems as coalgebras?
- (d) A labelled transition system (X, \rightarrow) is *image-finite* if, for each $x \in X$ and $a \in A$, the set $\{y \mid (x, a, y) \in \rightarrow\}$ is finite. Can you capture image-finite labelled transition systems as coalgebras?