

Exercises Coalgebra for Lecture 4

The exercises labeled with (*) are optional and more advanced.

1. We would like to define a category \mathbf{Pred} of “predicates”. An object of \mathbf{Pred} is a pair (P, X) of sets with $P \subseteq X$, and an arrow from an object (P, X) to an object (Q, Y) is a map $f: X \rightarrow Y$ such that for all $x \in P$: $f(x) \in Q$.
 - (a) Show that \mathbf{Pred} is a category, by defining suitable identity arrows and composition, and checking that the required laws are satisfied.
 - (b) Are there any functors from \mathbf{Pred} to \mathbf{Set} ? If so, choose your favorite and show it is a functor indeed.
2. Describe products and coproducts in the following categories, if they exist:
 - (a) The category \mathbf{Cat} of categories and functors.¹
 - (b) A preorder (P, \sqsubseteq) seen as a category (objects are elements of P , and there is an arrow $x \rightarrow y$ if and only if $x \sqsubseteq y$).
3. What are initial/final objects in the following categories (if they exist)?
 - (a) $\mathbf{SetsRel}$ (recall: objects are sets, arrows are relations);
 - (b) the *discrete category* for a given set X ; objects are elements of X , and the only arrows are the identity arrows;
 - (c) the category \mathbf{Cat} from Exercise 2a;
 - (d) a preorder (P, \sqsubseteq) seen as a category (Exercise 2b);
 - (e) (*) the category \mathbf{Mon} whose objects are monoids (see 7) and whose arrows are monoid homomorphisms; a homomorphism from $(M, \cdot_M, 1_M)$ to $(N, \cdot_N, 1_N)$ is a function $h: M \rightarrow N$ such that for all $m, n \in M$: $h(m \cdot_M n) = h(m) \cdot_N h(n)$ and $h(1_M) = 1_N$.
4. Recall that two objects X, Y in a category \mathcal{C} are *isomorphic*, written $X \cong Y$, if there is an isomorphism $f: X \rightarrow Y$, that is, an arrow $f: X \rightarrow Y$ with another arrow $g: Y \rightarrow X$ such that $g \circ f = \text{id}_X$ and $f \circ g = \text{id}_Y$.
 - (a) Show that any functor $F: \mathcal{C} \rightarrow \mathcal{D}$ preserves isomorphisms: if $X \cong Y$ then $F(X) \cong F(Y)$.
 - (b) Show that \cong is an equivalence relation.
5. Let \mathcal{C} be a category which has products (that is, the product $X \times Y$ exists for all $X, Y \in \mathbf{Ob}(\mathcal{C})$ and a final object 1).
 - (a) Prove that $X \times 1 \cong X$.
 - (b) (*) Suppose \mathcal{C} also has an initial object 0 . Do we have $X \times 0 \cong 0$? Give either a proof or a counterexample.

¹The categories being “small”, meaning they have only a set (not a proper class) of objects: feel free to ignore this if that makes no sense to you.

6. Let \mathcal{C} be a category. We define the *opposite category* \mathcal{C}^{op} as the category which has the same objects as \mathcal{C} , but where all arrows are reversed: thus, $f: X \rightarrow Y$ is an arrow in \mathcal{C}^{op} iff $f: Y \rightarrow X$ is an arrow in \mathcal{C} .

- (a) How should composition in \mathcal{C}^{op} be defined? And identity arrows? Show, in detail, that \mathcal{C}^{op} is a category.
- (b) Show that an object 0 is initial in \mathcal{C} iff it is final in \mathcal{C}^{op} .
- (c) (*) Show that $\text{SetsRel} \cong \text{SetsRel}^{\text{op}}$.

7. (*) A *monoid* is a triple $(M, \cdot, 1)$ where M is a set, \cdot is a binary operation and $1 \in M$ an element, such that for all $m, n, p \in M$: $(m \cdot n) \cdot p = m \cdot (n \cdot p)$ and $m \cdot 1 = m = 1 \cdot m$.

- (a) Show that a monoid corresponds to a one-object category.
- (b) Let $(M, \cdot, 1)$ be a monoid, represented as a category M as in the previous exercise. Show that a functor $F: M \rightarrow \text{Set}$ corresponds to a *monoid action*: a set X together with a function $\mu: M \rightarrow X^X$ (where X^X is the set of functions from X to X) such that for all $x \in X$: $\mu(1)(x) = x$ and for all $m, n \in M$: $\mu(m \cdot n)(x) = \mu(m)(\mu(n)(x))$.