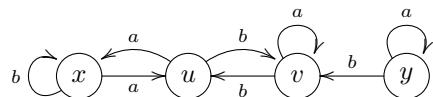


Coalgebra: homework assignment 2

December 6, 2018

If you have any questions, send me an email: jrot@cs.ru.nl. The deadline is December 21, 2018. You can hand it in by email, in my mailbox (first floor Mercator) or at an earlier class.

1. Give a bisimulation up to equivalence on the following automaton, which relates (x, y) and contains at most three pairs.



2. Show, using bisimulations up to congruence, that for all languages $L, K \in 2^{A^*}$, we have:
 - (a) If $L \subseteq K$ then $LK^* \subseteq K^*$ (hint: use that $L \subseteq K$ iff $L + K = K$).
 - (b) $(L^*K^*)^* = (L + K)^*$

In both exercises, you may use basic algebraic properties such as idempotence ($L + L = L$), distributivity ($L(K + M) = LK + LM$) and so on.

3. Let A be a set. As usual, A^ω is the set of (infinite) streams, and A^* the set of (finite) lists over A . Given $\sigma \in A^\omega \cup A^*$, we let $|\sigma|$ be the number of elements of σ if σ is a list, and $|\sigma| = \infty$ if σ is a stream. Further, we denote by $\sigma(i)$ the i -th element of σ (if it exists), and for $|\sigma| > 0$ we denote by σ' the tail/derivative of σ .

Consider the following inference rules for a predicate P on streams and lists:

$$\frac{|\sigma| < 2}{P(\sigma)} \quad \frac{|\sigma| \geq 2 \quad \sigma(0) \neq \sigma(1)}{P(\sigma)} \quad \frac{P(\sigma)}{P(\sigma')}$$

- (a) Rephrase these inference rules as a monotone function on the complete lattice $L = \mathcal{P}(A^\omega \cup A^*)$ of sets of streams and lists, ordered by inclusion as usual. Don't forget to show that your function is indeed monotone.
- (b) What is a pre-fixed point of b ? What is the least fixed point $\text{lfp}(b)$? In both cases, give a concrete description in terms of lists and/or streams.
- (c) What is a post-fixed point of b ? What is the greatest fixed point $\text{gfp}(b)$? In both cases, give a concrete description in terms of lists and/or streams.
- (d) Take $A = 2$, so $L = \mathcal{P}(2^\omega \cup 2^*)$ is the set of binary streams and lists. Show that if $\sigma \in \text{lfp}(b)$, then σ is of the form $(01)^i$, $(01)^i 0$, $(10)^i$ or $(10)^i 1$.
- (e) With $A = 2$ as in the previous exercise, show that $(01)^\omega = (0, 1, 0, 1, 0, 1, \dots) \in \text{gfp}(b)$.

4. In the lecture, we talked quite a bit about algebra and coalgebra. Excited about the combination, Jurriaan puts his favorite functors together with a natural transformation, defined as follows:

- $B: \text{Set} \rightarrow \text{Set}$, $B(X) = \mathbb{N} \times X$,
- $\mathcal{P}_f: \text{Set} \rightarrow \text{Set}$ the finite powerset functor (defined on functions by direct image),
- a natural transformation $\lambda: \mathcal{P}_f B \Rightarrow B \mathcal{P}_f$, given on a component X by

$$\begin{aligned}\lambda_X: \mathcal{P}_f(\mathbb{N} \times X) &\rightarrow \mathbb{N} \times \mathcal{P}_f(X) \\ S &\mapsto \left(\sum_{(n,x) \in S} n, \{x \mid (n,x) \in S\} \right)\end{aligned}$$

He proudly shows this to Joshua. But Joshua frowns, and asks: is λ really a natural transformation? It's up to you to find out whether Joshua's worries are justified. Give either a proof or a counterexample for naturality of λ .

5. We define a functor $\mathcal{M}: \text{Set} \rightarrow \text{Set}$ by

$$\mathcal{M}(X) = \left\{ m: X \rightarrow \mathbb{N} \mid |\{x \in X \mid m(x) \neq 0\}| \text{ is finite} \right\}$$

on sets, and on functions by

$$\begin{aligned}\mathcal{M}(f: X \rightarrow Y) &: \mathcal{M}(X) \rightarrow \mathcal{M}(Y) \\ \mathcal{M}(f)(m)(y) &= \sum_{x \in f^{-1}(y)} m(x).\end{aligned}$$

- (a) Explain, in words, the difference between $\text{List}(Y)$ and $\mathcal{M}(Y)$.
- (b) Define a non-trivial function from $\text{List}(Y)$ to $\mathcal{M}(Y)$, using initiality of $\text{List}(Y)$ with respect to $F_Y(X) := 1 + Y \times X$.
- (c) Define a monad structure on \mathcal{M} . You don't have to prove the equations or naturality (though doing so could result in bonus points!).

6. Let $f: X \rightarrow \mathcal{P}(A \times X)$ be a labelled transition system over a set of labels A . As usual, we let $\text{Rel}_X = \mathcal{P}(X \times X)$ be the lattice of relations on X ordered by inclusion.

- (a) Define $b: \text{Rel}_X \rightarrow \text{Rel}_X$ such that R is a bisimulation iff $R \subseteq b(R)$.
- (b) Show that if $R \subseteq X \times X$ is an equivalence relation, then $b(R)$ is an equivalence relation as well.
- (c) Use the final sequence $X \times X \supseteq b(X \times X) \supseteq \dots$ to compute the greatest bisimulation on the following transition system. Present the relations at each step in terms of partitions.

