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Introduction

▶ Context

• Quantum computing will threaten traditional Public Key Cryptography.

• Shift to Post-Quantum cryptography.

• NIST standarizes: CRYSTALS-Kyber (KEM) and CRYSTALS-Dilithium

(Digital Signatures).

▶ Challenges in implementation

• Resource-constrained devices:

▶ IoT, sensors, healthcare, automotive processors.

▶ Limited computational capabilities, energy resources, memory.
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Contributions - PQ.V.ALU.E

▶ Custom ALU

• Lightweight ALU for NTT computations in Dilithium and Kyber.

• Integrated into a 4-stage pipeline 32-bit RISC-V processor.

▶ ISA Extension

• Ten new instructions for modular arithmetic and NTT butterfly operations.

▶ Efficiency

• Over 80% reduction in cycle count compared to optimized assembly.

• No decrease in specific microprocessor’s operating frequencies.
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Hardware accelerators

▶ Custom Extensions

• Tailored instructions for specific applications.

▶ Need for Efficiency

• HW/SW co-design strategies for performance.

Integrated directly into the processor.(TCA) Added as peripherals to the processor.(LCA)
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Dilithium Profiling
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RISC-V assembly
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RISC-V assembly + Keccak co-processor

▶ Dominant factors

• Keccak is a significant portion of the runtime.

• Polynomial operations. 5



Number-Theoretic Transform (NTT) and butterfly operations

Tim Fritzmann, Georg Sigl and Johanna Sepúlveda 249
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â8

â9
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Figure 1: Example NTTCT
br←no with n = 16. In this case, two coefficients are stored in

a single word, eight coefficients can be loaded to the register file (l = 8), and two pairs
of coefficients can be executed in parallel. The red boxes indicate which coefficients are
stored together in one word and in which order the coefficients are processed by the two
butterfly units. The blue arrows show the coefficients which are swapped after the butterfly
operations. For l = 8, log2(l) − 1 = 2 layers were merged.

Table 1: Register content and input for the two butterfly units BF0 and BF1 for the
example n = 16, l = 8.

Register Step 0 Step 1 Step 2 Step 3 Store Coeffs./
Content Load coeffs. BF0 BF1 BF0 BF1 BF0 BF1 BF0 BF1 Load Coeffs. . . .
R0 a0, a8 a0, a8 a0, a4 a1, a9
R1 a4, a12 a4, a12 a8, a12 a5, a13
R2 a2, a10 a2, a10 a2, a6 a3, a11
R3 a6, a14 a6, a14 a10, a14 a7, a15
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Modular addition and subtraction
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Modular multiplication
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Barrett reduction for Dilithium

PQ.V.ALU.E: Post-Quantum RISC-V ALU Extensions 5
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Fig. 1: Butterflies blockdiagrams

Algorithm 1 Barrett Reduction in
Dilithium

Input: 0 ≤ x < 8 380 4172,
Output: z = x mod 8 380 417
1: t← (x≪ 23)+(x≪ 13)+(x≪ 3)−x
2: t← t≫ 46
3: t← (t≪ 23)− (t≪ 13) + t
4: z ← x− t
5: if z ≥ 8 380 417 then
6: z ← z − 8 380 417

7: return z

Algorithm 2 Barrett Reduction in
Kyber

Input: 0 ≤ x < 33292,
Output: z = x mod 3329
1: t← 5039 · x
2: t← t≫ 24
3: t← (t≪ 11) + (t≪ 10) + (t≪ 8) + t
4: z ← x− t
5: if z ≥ 3329 then
6: z ← z − 3329

7: return z

The idea behind Barrett reduction is inspired by a technique of emulating floating
point data types with fixed precision integers: namely, approximate m = ⌊c/q⌋
by

m1 =

⌊
c

22n
·
⌊
22n

q

⌋⌋
=

⌊c · µ
22n

⌋
,

where µ =
⌊
22n/q

⌋
is a pre-computed constant. Since m − 1 ≤ m1 ≤ m this

approximation is almost correct while only efficient integer divisions by powers
of two (i.e., right shifts) are required.
Barrett modular reduction for the prime moduli used in Dilithium and Kyber

is shown in Algorithm 2 and Algorithm 1, respectively. Using the special form
of the modulus was also used in [3]. The Barrett reduction for Kyber is shown
in Algorithm 2. One has q = 3329, 211 < q < 212 and µ =

⌊
224/q

⌋
= 5039. The

computation of
⌊
c · µ/224

⌋
is performed in Line 1 and 2. Line 3 and 4 compute

c′ = c −m1 · q where the multiplication by q = 3329 = 211 + 210 + 28 + 20 is
performed as a sequence of shifts and additions.
The Barrett reduction for Dilithium is shown in Algorithm 1. One has q =

8380 417, 222 < q < 223 and µ =
⌊
246/q

⌋
= 8396 807 = 223 + 213 + 23 − 1. The

computation of
⌊
c · µ/246

⌋
is performed in Line 1 and 2 (where the multiplication

by µ makes use of the special form). Line 3 and 4 compute c′ = c−m1 · q where
the multiplication by q = 8380 417 = 223 − 213 + 1 is done as a series of shifts
and additions.
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Barrett reduction for Kyber

PQ.V.ALU.E: Post-Quantum RISC-V ALU Extensions 5
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Fig. 1: Butterflies blockdiagrams

Algorithm 1 Barrett Reduction in
Dilithium

Input: 0 ≤ x < 8 380 4172,
Output: z = x mod 8 380 417
1: t← (x≪ 23)+(x≪ 13)+(x≪ 3)−x
2: t← t≫ 46
3: t← (t≪ 23)− (t≪ 13) + t
4: z ← x− t
5: if z ≥ 8 380 417 then
6: z ← z − 8 380 417

7: return z

Algorithm 2 Barrett Reduction in
Kyber

Input: 0 ≤ x < 33292,
Output: z = x mod 3329
1: t← 5039 · x
2: t← t≫ 24
3: t← (t≪ 11) + (t≪ 10) + (t≪ 8) + t
4: z ← x− t
5: if z ≥ 3329 then
6: z ← z − 3329

7: return z

The idea behind Barrett reduction is inspired by a technique of emulating floating
point data types with fixed precision integers: namely, approximate m = ⌊c/q⌋
by

m1 =

⌊
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·
⌊
22n
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=

⌊c · µ
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⌋
,

where µ =
⌊
22n/q

⌋
is a pre-computed constant. Since m − 1 ≤ m1 ≤ m this

approximation is almost correct while only efficient integer divisions by powers
of two (i.e., right shifts) are required.
Barrett modular reduction for the prime moduli used in Dilithium and Kyber

is shown in Algorithm 2 and Algorithm 1, respectively. Using the special form
of the modulus was also used in [3]. The Barrett reduction for Kyber is shown
in Algorithm 2. One has q = 3329, 211 < q < 212 and µ =

⌊
224/q

⌋
= 5039. The

computation of
⌊
c · µ/224

⌋
is performed in Line 1 and 2. Line 3 and 4 compute

c′ = c −m1 · q where the multiplication by q = 3329 = 211 + 210 + 28 + 20 is
performed as a sequence of shifts and additions.
The Barrett reduction for Dilithium is shown in Algorithm 1. One has q =

8380 417, 222 < q < 223 and µ =
⌊
246/q

⌋
= 8396 807 = 223 + 213 + 23 − 1. The

computation of
⌊
c · µ/246

⌋
is performed in Line 1 and 2 (where the multiplication

by µ makes use of the special form). Line 3 and 4 compute c′ = c−m1 · q where
the multiplication by q = 8380 417 = 223 − 213 + 1 is done as a series of shifts
and additions.
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PQ.V.ALU.E
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Custom instructions

funct7 rs2  rs1    funct3 rd  opcode

31 25 24 20 19 15 14 12 11 7 6 0

12 Miteloudi, Bos, Bronchain, Fay, Renes

Table 1: Custom arithmetic instructions for RISC-V ISA

opcode funct3 funct7 operation name

1110111 001 0000000 pq.mod_add_dil
1110111 010 0000000 pq.mod_sub_dil
1110111 011 0000000 pq.mod_mul_dil
1110111 100 0000000 pq.ct_btrfly_dil
1110111 101 0000000 pq.gs_btrfly_dil

1110111 001 0000001 pq.mod_add_kyb
1110111 010 0000001 pq.mod_sub_kyb
1110111 011 0000001 pq.mod_mul_kyb
1110111 100 0000001 pq.ct_btrfly_kyb
1110111 101 0000001 pq.gs_btrfly_kyb

instructions to improve the performance of polynomial arithmetic. The instruc-
tions detailed in Section 3.3 can be used to build the butterflies as detailed in
Figure 8c and Figure 8e. We consider the case where no single-cycle butterfly
is available (2 read and 1 write ports) and where it is available (3 read and 2
write ports), respectively. We refer to the first design as PQVALUE1, and the
latter as PQVALUE2. For reference, we also include optimized RISC-V software
butterflies in Figure 8a for comparison.

As can be seen from Section 2.1, NTTs and inverse NTTs can be implemented
in place with 8 separate layers, each containing 128 independent butterflies. A
straightforward implementation could process the layers of butterflies one by
one, in which case for each butterfly the input coefficients are read, the butterfly
is computed, and the results are stored back in memory. Hence, the polyno-
mial is read and stored at every layer: this leads to signification number of
memory access that can become a bottleneck. Hence, a common technique in
software implementations is to merge multiple layers in order to reduce these
overheads [11,10]. More specifically, multiple coefficients are loaded into the reg-
ister file such that multiple layers can be (partially) computed without need for
loading/storing for every butterfly. To merge ℓ layers one would load and store
2ℓ (in-place) inputs/outputs and apply all ℓ · 2ℓ−1 butterflies before loading the
next batch of coefficients. As this is repeated 256/2ℓ = 28−ℓ times, the total
cost of the ℓ merged layers is 28−ℓ · (2 · 2ℓ IO + ℓ · 2ℓ−1 BFLY), where IO is the
cost of a read/write to memory and BFLY is the cost of a single butterfly. For
example, with single-cycle read/writes and using a single-cycle butterfly the cost
of 4 merged NTT layers is (at least) 24 · (32 + 4 · 8) = 1024 cycles. Since our
hardware designs affect BFLY but not IO, it is worthwhile merging layers even
with our extensions as it reduces the overheads of memory accesses. Finally, the
twiddle factors need to be loaded once at a cost of 256 IO. Note that an actual
implementation will have some additional overhead for stack and control flow
operations: we give more precise results in Section 4.

14



Butterfly with custom assembly (1/2)

PQ.V.ALU.E: Post-Quantum RISC-V ALU Extensions 13

As the register file on RISC-V has 32 general purpose registers, we can merge
at most 4 layers. Although we have 16 inputs/outputs, some registers are re-
served for other values such as twiddle factors. The Dilithium forward NTT can
be constructed by merging 4 layers twice and loading the twiddle factors once
throughout the layers. The Kyber forward NTT has an early-abort strategy
that achieves a cheaper NTT at the cost of a more expensive base multiplica-
tion. It can be constructed by merging 4 layers, then merging 3 layers, loading
the twiddle factors once throughout the layers. The inverse NTT functions in
the same way using Gentleman-Sande butterflies, and with the addition of a
final poly_mul to remove the constant factor n. Note that this can also help to
remove any factors of the Montgomery domain that might remain. For exam-
ple, the values in the matrix A are sampled into the Montgomery domain for
Kyber, which remains as we only use Barrett reduction in our implementation.
The additional inversion/multiplication makes the inverse NTT more expensive
than the forward NTT, but as it is used less frequently than the forward NTT,
the overall impact on Kyber or Dilithium is minimal. In that case, the final di-
vision by 256 can include the Montgomery constant as well. Finally, the base
multiplication is a direct application of mod_mul on each of the coefficients.

.macro montgomery al , ah, qi, q
mul \al, \a, \qi
mulh \al, \al , \q
sub \al, \ah , \al

.endm

.macro ct_butterfly a, b, qi, q, zeta ,
tmp

mul \tmp , \zeta , \b
mulh \b, \zeta , \b
montgomery \tmp , \b, \qi, \q
sub \b, \a, \tmp
add \a, \a, \tmp

.endm

(a) Cooley-Tukey, RV32

.macro montgomery al , ah, qi , q
mul \al, \a, \qi
mulh \al, \al , \q
sub \al, \ah , \al

.endm

.macro gs_butterfly a, b, qi , q, zeta ,
tmp

sub \tmp , \a, \b
add \a, \a, \right
mul \b, \zeta , \tmp
mulh \tmp , \zeta , \tmp
montgomery \b, \tmp , \qi, \q

.endm

(b) Gentleman-Sande, RV32

.macro ct_butterfly a, b, z, tmp
pq.mod_mul \tmp , \z, \b
pq.mod_sub \b, \a, \tmp
pq.mod_add \a, \a, \tmp

.endm

(c) Cooley-Tukey, PQVALUE1

.macro gs_butterfly a, b, zeta , tmp
pq.mod_sub \tmp , \a, \b
pq.mod_add \a, \a, \b
pq.mod_mul \b, \zeta , \tmp

.endm

(d) Gentleman-Sande, PQVALUE1

.macro ct_butterfly a, b, zeta
pq.ct_btrfly \a, \b, \zeta

.endm

(e) Cooley-Tukey, PQVALUE2

.macro gs_butterfly a, b, zeta , tmp
pq.gs_btrfly \a, \b, \zeta

.endm

(f) Gentleman-Sande, PQVALUE2

Fig. 8: Butterfly with custom assembly and two read, one write ports.

15



Butterfly with custom assembly (2/2)

PQ.V.ALU.E: Post-Quantum RISC-V ALU Extensions 13

As the register file on RISC-V has 32 general purpose registers, we can merge
at most 4 layers. Although we have 16 inputs/outputs, some registers are re-
served for other values such as twiddle factors. The Dilithium forward NTT can
be constructed by merging 4 layers twice and loading the twiddle factors once
throughout the layers. The Kyber forward NTT has an early-abort strategy
that achieves a cheaper NTT at the cost of a more expensive base multiplica-
tion. It can be constructed by merging 4 layers, then merging 3 layers, loading
the twiddle factors once throughout the layers. The inverse NTT functions in
the same way using Gentleman-Sande butterflies, and with the addition of a
final poly_mul to remove the constant factor n. Note that this can also help to
remove any factors of the Montgomery domain that might remain. For exam-
ple, the values in the matrix A are sampled into the Montgomery domain for
Kyber, which remains as we only use Barrett reduction in our implementation.
The additional inversion/multiplication makes the inverse NTT more expensive
than the forward NTT, but as it is used less frequently than the forward NTT,
the overall impact on Kyber or Dilithium is minimal. In that case, the final di-
vision by 256 can include the Montgomery constant as well. Finally, the base
multiplication is a direct application of mod_mul on each of the coefficients.

.macro montgomery al , ah, qi, q
mul \al, \a, \qi
mulh \al, \al , \q
sub \al, \ah , \al

.endm

.macro ct_butterfly a, b, qi, q, zeta ,
tmp

mul \tmp , \zeta , \b
mulh \b, \zeta , \b
montgomery \tmp , \b, \qi, \q
sub \b, \a, \tmp
add \a, \a, \tmp

.endm

(a) Cooley-Tukey, RV32

.macro montgomery al , ah, qi , q
mul \al, \a, \qi
mulh \al, \al , \q
sub \al, \ah , \al

.endm

.macro gs_butterfly a, b, qi , q, zeta ,
tmp

sub \tmp , \a, \b
add \a, \a, \right
mul \b, \zeta , \tmp
mulh \tmp , \zeta , \tmp
montgomery \b, \tmp , \qi, \q

.endm

(b) Gentleman-Sande, RV32

.macro ct_butterfly a, b, z, tmp
pq.mod_mul \tmp , \z, \b
pq.mod_sub \b, \a, \tmp
pq.mod_add \a, \a, \tmp

.endm

(c) Cooley-Tukey, PQVALUE1

.macro gs_butterfly a, b, zeta , tmp
pq.mod_sub \tmp , \a, \b
pq.mod_add \a, \a, \b
pq.mod_mul \b, \zeta , \tmp

.endm

(d) Gentleman-Sande, PQVALUE1

.macro ct_butterfly a, b, zeta
pq.ct_btrfly \a, \b, \zeta

.endm

(e) Cooley-Tukey, PQVALUE2

.macro gs_butterfly a, b, zeta , tmp
pq.gs_btrfly \a, \b, \zeta

.endm

(f) Gentleman-Sande, PQVALUE2

Fig. 8: Butterfly with custom assembly and two read, one write ports.
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Cycles for polynomial operations
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Cycles for Dilithium per phase
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Cycles for Dilithium with Keccak co-processor
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FPGA Resources
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ASIC resourses
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Size and efficiency comparison of post-quantum ALUs

Resources Kyber perf.

LUT Reg. DSP BRAM Core NTT NTT−1

PQR-ALU [8] 2 908 170 9 0 RI5CY 1 935 1 930

PQ ALU [17] 555 0 15 1 CVA6 18 448 18 448

PQVALUE2 459 0 2 0 RI5CY 2 577 3 851

[8] Fritzmann, T., Sigl, G., & Sepúlveda, J. (2020). RISQ-V: Tightly Coupled RISC-V Accelerators for

Post-Quantum Cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(4),

239–280.

[17] P. Nannipieri, S. Di Matteo, L. Zulberti, F. Albicocchi, S. Saponara and L. Fanucci (2021), ”A RISC-V Post

Quantum Cryptography Instruction Set Extension for Number Theoretic Transform to Speed-Up CRYSTALS

Algorithms,” in IEEE Access, vol. 9, pp. 150798-150808.
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Contributions - PQ.V.ALU.E

▶ Custom ALU

• Lightweight ALU for NTT computations in Dilithium and Kyber.

• Integrated into a 4-stage pipeline 32-bit RISC-V processor.

▶ ISA Extension

• Ten new instructions for modular arithmetic and NTT butterfly operations.

▶ Efficiency

• Over 80% reduction in cycle count compared to optimized assembly.

• No decrease in specific microprocessor’s operating frequencies.
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Thank you :)
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