PQ.V.ALU.E: Post-Quantum RISC-V Custom ALU

 Extensions on Dilithium and KyberKonstantina Miteloudi, Joppe Bos, Olivier Bronchain, Björn Fay, Joost Renes
CARDIS - November 16, 2023

Introduction

- Context
- Quantum computing will threaten traditional Public Key Cryptography.
- Shift to Post-Quantum cryptography.
- NIST standarizes: CRYSTALS-Kyber (KEM) and CRYSTALS-Dilithium (Digital Signatures).
- Challenges in implementation
- Resource-constrained devices:
- loT, sensors, healthcare, automotive processors.
- Limited computational capabilities, energy resources, memory.
- Custom ALU
- Lightweight ALU for NTT computations in Dilithium and Kyber.
- Integrated into a 4-stage pipeline 32-bit RISC-V processor.
- ISA Extension
- Ten new instructions for modular arithmetic and NTT butterfly operations.
- Efficiency
- Over 80% reduction in cycle count compared to optimized assembly.
- No decrease in specific microprocessor's operating frequencies.

Hardware accelerators

- Custom Extensions
- Tailored instructions for specific applications.
- Need for Efficiency
- HW/SW co-design strategies for performance.

Integrated directly into the processor.(TCA)

Added as peripherals to the processor.(LCA)

Dilithium Profiling

Minimum cycle count for Dilithum-3

RISC-V assembly

- Dominant factors
- Keccak is a significant portion of the runtime.
- Polynomial operations.

Number-Theoretic Transform (NTT) and butterfly operations

Cooley-Tukey butterlfy

twiddle
Gentleman-Sande butterlfy

Modular Addition

Modular Substraction


```
Algorithm 1 Barrett Reduction in
Dilithium
Input: \(0 \leq x<8380417^{2}\),
Output: \(z=x \bmod 8380417\)
    \(1: t \leftarrow(x \ll 23)+(x \ll 13)+(x \ll 3)-x\)
    2: \(t \leftarrow t \gg 46\)
    \(3: t \leftarrow(t \ll 23)-(t \ll 13)+t\)
    4: \(z \leftarrow x-t\)
    5: if \(z \geq 8380417\) then
    6: \(\quad z \leftarrow z-8380417\)
    7: return \(z\)
```


Barrett reduction for Kyber

Algorithm 2 Barrett Reduction in Kyber

```
Input: \(0 \leq x<3329^{2}\),
Output: \(z=x \bmod 3329\)
    1: \(t \leftarrow 5039 \cdot x\)
    2: \(t \leftarrow t \gg 24\)
    \(3: t \leftarrow(t \ll 11)+(t \ll 10)+(t \ll 8)+t\)
    4: \(z \leftarrow x-t\)
    5: if \(z \geq 3329\) then
    6: \(\quad z \leftarrow z-3329\)
    7: return \(z\)
```


Custom instructions

31	25	24	20	19	15	14	12

opcode	funct3	funct7	operation name
1110111	001	0000000	pq.mod_add_dil
1110111	010	0000000	pq.mod_sub_dil
1110111	011	0000000	pq.mod_mul_dil
1110111	100	0000000	pq.ct_btrfly_dil
1110111	101	0000000	pq.gs_btrfly_dil
1110111	001	0000001	pq.mod_add_kyb
1110111	010	0000001	pq.mod_sub_kyb
1110111	011	0000001	pq.mod_mul_kyb
1110111	100	0000001	pq.ct_btrfl__kyb
1110111	101	0000001	pq.gs_btrfly_kyb

Butterfly with custom assembly (1/2)

```
macro montgomery al, ah, qi, q
    mul \al, \a, \qi
    mulh \al, \al, \q
    sub \al, \ah, \al
endm
macro ct_butterfly a, b, qi, q, zeta,
            tmp
    mul \tmp, \zeta, \b
    mulh \b, \zeta, \b
    montgomery \tmp, \b, \qi, \q
    sub \b, \a, \tmp
    add \a, \a, \tmp
endm
```

```
macro montgomery al, ah, qi, q
```

macro montgomery al, ah, qi, q
mul \al, \a, \qi
mul \al, \a, \qi
mulh \al, \al, \q
mulh \al, \al, \q
sub \al, \ah, \al
sub \al, \ah, \al
. endm
. endm
.macro gs_butterfly a, b, qi, q, zeta,
.macro gs_butterfly a, b, qi, q, zeta,
tmp
tmp
sub \tmp,\a, \b
sub \tmp,\a, \b
add \a, \a, \right
add \a, \a, \right
mul \b, \zeta, \tmp
mul \b, \zeta, \tmp
mulh \tmp, \zeta, \tmp
mulh \tmp, \zeta, \tmp
montgomery \b, \tmp, \qi, \q
montgomery \b, \tmp, \qi, \q
.endm

```
.endm
```

(b) Gentleman-Sande, RV32

Butterfly with custom assembly (2/2)

```
macro ct_butterfly a, b, z, tmp
    pq.mod_mul \tmp, \z, \b
    pq.mod_sub \b, \a, \tmp
    pq.mod_add \a, \a, \tmp
endm
```

(c) Cooley-Tukey, PQVALUE ${ }^{1}$

```
.macro ct_butterfly a, b, zeta
    pq.ct_btrfly \a, \b, \zeta
endm
```

(e) Cooley-Tukey, PQVALUE ${ }^{2}$

```
macro gs_butterfly a, b, zeta, tmp
    pq.mod_sub \tmp, \a, \b
    pq.mod_add \a, \a, \b
    pq.mod_mul \b, \zeta, \tmp
. endm
```

(d) Gentleman-Sande, PQVALUE ${ }^{1}$

```
macro gs_butterfly a, b, zeta, tmp
    pq.gs_btrfly \a, \b, \zeta
endm
```

(f) Gentleman-Sande, PQVALUE ${ }^{2}$

Cycles for polynomial operations

Cycle counts of polynomial operations in Dilithium

Cycles for Dilithium per phase

Minimum cycle count for Dilithum-3

Cycles for Dilithium with Keccak co-processor

Minimum cycle count for Dilithum-3 (Available Keccak co-processor)

Resources Comparison in FPGA
\square RI5CY \square RI5CY + PQVALUE

ASIC resourses

Size and efficiency comparison of post-quantum ALUs

	Resources					Kyber perf.		
	LUT	Reg.	DSP	BRAM		Core	NTT	NTT $^{-1}$
PQR-ALU [8]	2908	170	9	0	RI5CY	1935	1930	
PQ ALU [17]	555	0	15	1	CVA6	18448	18448	
PQVALUE 2	459	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	RI5CY	$\mathbf{2 5 7 7}$	$\mathbf{3 8 5 1}$	

[8] Fritzmann, T., Sigl, G., \& Sepúlveda, J. (2020). RISQ-V: Tightly Coupled RISC-V Accelerators for Post-Quantum Cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(4), 239-280.
[17] P. Nannipieri, S. Di Matteo, L. Zulberti, F. Albicocchi, S. Saponara and L. Fanucci (2021), "A RISC-V Post Quantum Cryptography Instruction Set Extension for Number Theoretic Transform to Speed-Up CRYSTALS Algorithms," in IEEE Access, vol. 9, pp. 150798-150808.

- Custom ALU
- Lightweight ALU for NTT computations in Dilithium and Kyber.
- Integrated into a 4-stage pipeline 32-bit RISC-V processor.
- ISA Extension
- Ten new instructions for modular arithmetic and NTT butterfly operations.
- Efficiency
- Over 80% reduction in cycle count compared to optimized assembly.
- No decrease in specific microprocessor's operating frequencies.

Thank you :)

