
A5/3 make or break: A massively parallel FPGA architecture

for exhaustive key search

Konstantina Miteloudi, Lejla Batina, Nele Mentens

CHES, September 2025

1

Security in 2G (GSM) mobile networks

▶ A5 family of algorithms:

• A5/1 and A5/2 are already broken

• A5/3 is a stream cipher.

▶ It is based on KASUMI block cipher.

▶ KASUMI uses 128-bit key.

▶ A5/3 expands a 64-bit session key Kc to 128-bit KASUMI key by

concatenation, Kc ||Kc .

▶ This 264 effective key space makes A5/3 a good candidate for brute-force

attacks.

• A5/4 same with A5/3 but with 128-bit session key.

2

2G networks still in use

▶ 2G and 3G are phasing out, but:

• with long timetables (e.g. UK has set a deadline of 2033), and

• it is expected that 2G will remain a legacy network for a long time.a

• e.g. Malaysia shutdown 3G in 2021, but kept 2G alongside the 4G and 5G networks.

▶ 2G still in use for:

• coverage (rural areas), Machine to Machine communication (M2M) (Sensors),

Emergency calls services (eCall) and more.b

a
GSMA. The state of mobile internet connectivity, 2023 and GSMA. NG.121 - 2G-3G sunset guidelines version 2.0, 12 2024

b
Body of European Regulators for Electronic Communications (BEREC) : Report on practices and challenges of the phasing out of 2G and 3G, 2023

3

2G coverage in Kuala Lumpur

Only 2G coverage

4

Feasibility of Exhaustive Key Search on A5/3

▶ Is A5/3 practically breakable by exhaustive key search using contemporary

hardware?

• How long will it take?

• How much will it cost?

5

Computing power : then vs now!

1998: Deep Crack

(ASICs)

2006: COPACOBANA

(120 Spartan-3 FPGAs)

Cloud-FPGA Server

(8 Alveo U250)

6

GSM A5/3 encryption/decryption

A5/3
Stream Cipher

A5/3
Stream Cipher

1
1

4
-b

it
 K

ey
st

re
am

Plaintext Ciphertext

1
1

4
-b

it
 K

ey
st

re
am

Plaintext

Kc COUNT COUNT Kc

6
4

-b
it

2
2

-b
it

2
2

-b
it

6
4

-b
it

Input COUNT obtained from the Frame Number of the Time-Division Multiple Access (TDMA).

7

Attack Scenario

▶ Attack scenario : known plaintext-ciphertext and parameters of IV

• Feasible to obtain these data from the GSM network (Avoine et al. – CRYPTO

2024)

• therefore known keystream = p ⊕ c and the XOR step is omitted.

▶ Problem is reduced to:

• how fast can we generate the keystreams for all possible keys?

▶ NOTE: Attacks on KASUMI are not applicable on A5/3.

8

A5/3 specifications

CC || CB || CD || 00 || CA || CE
CC = 0000000000 || count

CB = 00000

CD = 0

CA = 00001111

CE = 0000000000000000

64

KASUMI
128

AA

BLKCNT = 0 BLKCNT = 1 BLKCNT = 2 BLKCNT = 3

A1 A2 A3

KASUMI KASUMI KASUMIKASUMI

CK

64

64 64 64 64

64 128

CK
128

CK
128

CK
128

CK

KM

CK = Key || Key

KM = 0x55555555555555555555555555555555

CO(0 to 63) CO(64 to 127) CO(128 to 191)

truncate

CO(192 to 227)

35

Block 1Block 1 Block 2Block 2

(64 to 113) (114 to 127)

114 114

64

2KAS Module

9

KASUMI block cipher

64
32 32

FOFL

KO1 KI1KL1

FOFL

KO1 KI1KL1

FOFL

KO3 KI3KL3

FOFL

KO3 KI3KL3

FOFL

KO5 KI5KL5

FOFL

KO5 KI5KL5

FOFL

KO7 KI7KL7

FOFL

KO7 KI7KL7

FO FL

KO2 KI2 KL2

FO FL

KO2 KI2 KL2

FO FL

KO4 KI4 KL4

FO FL

KO4 KI4 KL4

FO FL

KO6 KI6 KL6

FO FL

KO6 KI6 KL6

FO FL

KO8 KI8 KL8

FO FL

KO8 KI8 KL8

64

32
16 16

FI

KOi,1

KIi,1

FI

KOi,2

KIi,2

FI

KOi,3

KIi,3

32

16
9 7

S9 S7
KIi,j,1

KIi,j,2

S9 S7

16

32

32

a. KASUMI d. FL function

b. FO function c. FI function

16 16

<<<1AND

<<<1 OR

KLi,1

KLi,2

10

Hardware Architecture (Core)

Host

PCIe

P
aram

eters

K
ey

ca

n
d

id
at

es

AXI Lite

Kernel #18

SLR #3

Kernel #25

⋮

startstart_point count

Key Generator

2KAS Module

Check
partial keystream

key

16464

64

22 64

64

64

key check

1

end

Core

Core #0

Core #1

Core #2

AXI4

Core #3

ap_clk2(Kernel)

ap_clk(AXI)

ap_start, ap_idle, ap_done
control logic

m
0

0
_axi

Global Memory

Alveo U250 board

Mem
Bank 3

Kernel #11

SLR #2

Kernel #17

⋮

Mem
Bank 2

Kernel #7

SLR #1

Kernel #10

⋮

Mem
Bank 1

Kernel #0

SLR #0

Kernel #6

⋮

Mem
Bank 0

⋯⋯⋯⋯

a. Overall Architecture

c. Basic computation core

64

b. RTL Kernel block

=

check_64

1

key

A
X

I4
 W

 M
aster

BRAM

end_point

w_e

d_in

64

known keystream

M
U

X Stream

11

Hardware Architecture (FPGA Alveo U250 and Kernels)

Host

PCIe

P
aram

eters

K
ey

ca

n
d

id
at

es

AXI Lite

Kernel #18

SLR #3

Kernel #25

⋮

startstart_point count

Key Generator

2KAS Module

Check
partial keystream

key

16464

64

22 64

64

64

key check

1

end

Core

Core #0

Core #1

Core #2

AXI4

Core #3

ap_clk2(Kernel)

ap_clk(AXI)

ap_start, ap_idle, ap_done
control logic

m
0

0
_axi

Global Memory

Alveo U250 board

Mem
Bank 3

Kernel #11

SLR #2

Kernel #17

⋮

Mem
Bank 2

Kernel #7

SLR #1

Kernel #10

⋮

Mem
Bank 1

Kernel #0

SLR #0

Kernel #6

⋮

Mem
Bank 0

⋯⋯⋯⋯

a. Overall Architecture

c. Basic computation core

64

b. RTL Kernel block

=

check_64

1

key

A
X

I4
 W

 M
aster

BRAM

end_point

w_e

d_in

64

known keystream

M
U

X Stream

12

Implementation Results

▶ Utilization

Alveo U250 KASUMI 1-Core 104-Core

Resources Available Used (%) Used (%) Used (%)

LUT 1 726 216 4 781 (0.28) 10 074 (0.58) 1 193 426 (69.14)

LUTRAM 790 200 960 (0.12) 2 206 (0.28) 192 647 (24.38)

FF 3 456 000 2 928 (0.08) 6 415 (0.19) 969 246 (28.05)

BRAM 2 688 N/A 1 (0.04) 606 (22.54)

DSP 12 288 N/A N/A 13 (0.11)

▶ Timing

• 104 cores at clock frequency of 496.7 MHz (2.013 ns)

• 235.59 keys/second (51.72 billion keys/second) per Alveo U250 board

13

Scalable system overview (Level 1 and 0)

Bitstream

Host 0 Host 1 Host N-2 Host N-1

K#
FPGAs

L#
FPGAs

I#
FPGAs

J#
FPGAs

Level 2

Level 1

Level 0

Core
0

Core
1

Core
2

Core
G-3

Core
G-2

Core
G-1

⋯

FPGA 0

G#
Cores

FPGA 1

B#
Cores

FPGA 1

B#
Cores

FPGA K-2

C#
Cores

FPGA K-2

C#
Cores

FPGA K-1

D#
Cores

FPGA K-1

D#
Cores

⋯

⋯

Overall M number of cores

Send pairs ∀m

User

Key Space
M cores

Key Space
M cores

Receive Candidate Keys

Network

PCIe

AXI4

14

Scalable system overview (Level 2)

Bitstream

Host 0 Host 1 Host N-2 Host N-1

K#
FPGAs

L#
FPGAs

I#
FPGAs

J#
FPGAs

Level 2

Level 1

Level 0

Core
0

Core
1

Core
2

Core
G-3

Core
G-2

Core
G-1

⋯

FPGA 0

G#
Cores

FPGA 1

B#
Cores

FPGA 1

B#
Cores

FPGA K-2

C#
Cores

FPGA K-2

C#
Cores

FPGA K-1

D#
Cores

FPGA K-1

D#
Cores

⋯

⋯

Overall M number of cores

Send pairs ∀m

User

Key Space
M cores

Key Space
M cores

Receive Candidate Keys

Network

PCIe

AXI4

15

Execution & Expected Time

▶ The execution time of exhaustive key search is:

Execution Time ≈ (K ∗ t)/(c ∗ b)

• with K = 264 the number of possible keys,

• t = 2.013 ns the time for 1 key evaluation,

• c = 104 the number of cores and b the number of boards.

▶ The expected time of the attack:

Expected Time ≈ Execution Time/2

• On average we expect to recover the key in half way of the search.

16

Time and Cost Analysis

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Number of FPGA boards (U250)

2066.25

1033.13

516.56

258.28

129.14

64.57

32.29

16.14

8.13

4.04

2.02

1.01

0.50

0.25

T
im

e
(d

ay
s)

Over 8 months

Under 2 weeks

Time (days) Cost ($)

0.0083

0.0166

0.0332

0.0665

0.1330

0.2660

0.5319

1.0638

2.1110

4.2552

8.5105

17.0209

34.0419

68.0837

C
os

t
(m

il
li
on

$)

66K $

2 millions $

Time and Cost for different setups

▶ Unit price $8311 17

Conclusions

▶ Whole key space 264 in 1 day with cost of hardware $34 million.

• A5/3 should not be considered secure anymore.

▶ Mounting the attack from the cloud:

• Microsoft Azure instances (NP series) : the cost per attack is $81 823.

▶ All legacy systems using 2G mobile communication must be evaluated:

• particularly in critical industrial infrastructures (sensors and actuators).

▶ This work can be used as a framework for accelerating more complicated

cryptanalytic attacks.

18

Protect your own phone

▶ Many phones still allow 2G fallback by

default.

▶ Some phones allow users to disable 2G

service manually in network settings.

▶ Simple but effective mitigation step for

end users.

19

Terima Kasih :)

19

FPGA vs ASIC

FPGA (U250)

▶ Implementation

▶ 104 cores @ 496.7 MHz

▶ Throughput: 235.59 ≈ 51.7B keys/s

▶ Cost: $8,311
▶ Efficiency: 1.61× 10−7 $/key/s

ASIC (16mm2, GF 22FDX)

▶ Synthesis

▶ 240 cores @ 1.1 GHz

▶ Throughput: 237.94 ≈ 263.7B keys/s

▶ Cost: $252,160 (excl. NRE)

▶ Efficiency: 9.56× 10−7 $/key/s

ASIC is ∼5× faster, but FPGA is ∼6× more cost-efficient.

ASIC cost is for a Multi-Project Wafer (MPW) run, fabrication only.

Excludes NRE, packaging, and testing — real project cost would be much higher.

19

FPGA vs GPU

FPGA (U250, our work)
▶ 104 cores @ 496.7 MHz

▶ Throughput: 235.59 ≈ 51.7B keys/s

▶ Unit price: $8,311

GPU (RTX 4090, Tez24, KLEIN-64)
▶ Throughput: 235.40 ≈ 45B keys/s

▶ Unit price: $1,929

GPU (RTX 3090, ACC+24, TMTO)
▶ Throughput: 231.47 ≈ 2.9B keys/s

▶ Unit price: $1,000

▶ FPGA results are for A5/3 directly (2

KASUMI blocks).

▶ RTX 4090 result is for KLEIN-64, a ∼10×
lighter cipher, straight comparison is

misleading.

▶ RTX 3090 result is 17× slower than FPGA.

▶ TMTO approach: faster exploitation, but

massive precomputation.

▶ For similar (total) cost (≈$4.4M), our

FPGA approach can search the full 264

keyspace in 8 days.

[Tez24] targets a lighter algorithm, and [ACC+24] focuses on KASUMI with costly TMTO. Our FPGA

work evaluates A5/3 directly, and can reduce precomputation time if combined with [ACC+24].

19

