

A5/3 make or break: A massively parallel FPGA architecture for exhaustive key search

Konstantina Miteloudi, Lejla Batina, Nele Mentens CHES, September 2025

Security in 2G (GSM) mobile networks

- ► A5 family of algorithms:
 - A5/1 and A5/2 are already broken
 - A5/3 is a stream cipher.
 - ► It is based on KASUMI block cipher.
 - ► KASUMI uses 128-bit key.
 - ▶ A5/3 expands a 64-bit session key K_c to 128-bit KASUMI key by concatenation, $K_c||K_c$.
 - ► This 2⁶⁴ effective key space makes A5/3 a good candidate for brute-force attacks.
 - A5/4 same with A5/3 but with 128-bit session key.

2G networks still in use

- ▶ 2G and 3G are phasing out, but:
 - with long timetables (e.g. UK has set a deadline of 2033), and
 - it is expected that 2G will remain a legacy network for a long time.^a
 - e.g. Malaysia shutdown 3G in 2021, but kept 2G alongside the 4G and 5G networks.
- ▶ 2G still in use for:
 - coverage (rural areas), Machine to Machine communication (M2M) (Sensors), Emergency calls services (eCall) and more.^b

^aGSMA. The state of mobile internet connectivity, 2023 and GSMA. NG.121 - 2G-3G sunset guidelines version 2.0, 12 2024

^bBody of European Regulators for Electronic Communications (BEREC): Report on practices and challenges of the phasing out of 2G and 3G, 2023

2G coverage in Kuala Lumpur

Feasibility of Exhaustive Key Search on A5/3

- ► Is A5/3 practically breakable by exhaustive key search using contemporary hardware?
 - How long will it take?
 - How much will it cost?

Computing power: then vs now!

1998: Deep Crack (ASICs)

2006: COPACOBANA (120 Spartan-3 FPGAs)

Cloud-FPGA Server (8 Alveo U250)

GSM A5/3 encryption/decryption

Input COUNT obtained from the Frame Number of the Time-Division Multiple Access (TDMA).

Attack Scenario

- ▶ Attack scenario : known plaintext-ciphertext and parameters of IV
 - Feasible to obtain these data from the GSM network (Avoine et al. CRYPTO 2024)
 - therefore known $keystream = p \oplus c$ and the XOR step is omitted.
- ▶ Problem is reduced to:
 - how fast can we generate the keystreams for all possible keys?
- ▶ **NOTE:** Attacks on KASUMI are not applicable on A5/3.

A5/3 specifications

KASUMI block cipher

Hardware Architecture (Core)

c. Basic computation core

Hardware Architecture (FPGA Alveo U250 and Kernels)

Implementation Results

▶ Utilization

Alve	o U250	KASUMI	1-Core	104-Core
Resources	Available	Used (%)	Used (%)	Used (%)
LUT	1726216	4781 (0.28)	10 074 (0.58)	1 193 426 (69.14)
LUTRAM	790 200	960 (0.12)	2 206 (0.28)	192 647 (24.38)
FF	3 456 000	2 928 (0.08)	6415 (0.19)	969 246 (28.05)
BRAM	2 688	N/A	1 (0.04)	606 (22.54)
DSP	12 288	N/A	N/A	13 (0.11)

- ▶ Timing
 - 104 cores at clock frequency of 496.7 MHz (2.013 ns)
 - 2^{35.59} keys/second (51.72 billion keys/second) per Alveo U250 board

Scalable system overview (Level 1 and 0)

Scalable system overview (Level 2)

Execution & Expected Time

▶ The execution time of exhaustive key search is:

Execution Time
$$\approx (K * t)/(c * b)$$

- with $K = 2^{64}$ the number of possible keys,
- t = 2.013 ns the time for 1 key evaluation,
- c = 104 the number of cores and b the number of boards.
- ► The expected time of the attack:

Expected Time \approx Execution Time/2

• On average we expect to recover the key in half way of the search.

Time and Cost Analysis

▶ Unit price \$8311 17

Conclusions

- ▶ Whole key space 2⁶⁴ in 1 day with cost of hardware \$34 million.
 - A5/3 should not be considered secure anymore.
- ▶ Mounting the attack from the cloud:
 - Microsoft Azure instances (NP series): the cost per attack is \$81 823.
- ▶ All legacy systems using 2G mobile communication must be evaluated:
 - particularly in critical industrial infrastructures (sensors and actuators).
- ► This work can be used as a framework for accelerating more complicated cryptanalytic attacks.

Protect your own phone

- Many phones still allow 2G fallback by default.
- Some phones allow users to disable 2G service manually in network settings.
- ▶ Simple but effective mitigation step for end users.

Terima Kasih :)

FPGA vs ASIC

FPGA (U250)

- Implementation
- ▶ 104 cores @ 496.7 MHz
- ▶ Throughput: $2^{35.59} \approx 51.7$ B keys/s
- ► Cost: \$8,311
- ▶ Efficiency: 1.61×10^{-7} \$/key/s

ASIC (16mm², GF 22FDX)

- Synthesis
- ▶ 240 cores @ 1.1 GHz
- ▶ Throughput: $2^{37.94} \approx 263.7$ B keys/s
- ► Cost: \$252,160 (excl. NRE)
- ▶ Efficiency: 9.56×10^{-7} \$/key/s

ASIC is \sim 5× faster, but FPGA is \sim 6× more cost-efficient.

ASIC cost is for a Multi-Project Wafer (MPW) run, fabrication only. Excludes NRE, packaging, and testing — real project cost would be much higher.

FPGA vs GPU

FPGA (U250, our work)

▶ 104 cores @ 496.7 MHz

▶ Throughput: $2^{35.59} \approx 51.7$ B keys/s

▶ Unit price: \$8,311

GPU (RTX 4090, Tez24, KLEIN-64)

ightharpoonup Throughput: $2^{35.40} \approx 45 B \text{ keys/s}$

▶ Unit price: \$1,929

GPU (RTX 3090, ACC+24, TMTO)

▶ Throughput: $2^{31.47} \approx 2.9$ B keys/s

▶ Unit price: \$1,000

- ► FPGA results are for A5/3 directly (2 KASUMI blocks).
- ▶ RTX 4090 result is for **KLEIN-64**, a \sim 10× lighter cipher, straight comparison is misleading.
- ▶ RTX 3090 result is **17**× **slower** than FPGA.
- ► TMTO approach: faster exploitation, but massive precomputation.
- For similar (total) cost (≈\$4.4M), our FPGA approach can search the full 2⁶⁴ keyspace in 8 days.

[Tez24] targets a lighter algorithm, and [ACC+24] focuses on KASUMI with costly TMTO. Our FPGA work evaluates A5/3 directly, and can reduce precomputation time if combined with [ACC+24].