Higher Inductive Types in Programming

Henning Basold, Herman Geuvers, Niels van der Weide

May 10, 2017

1/35

“A canonical type A is defined by prescribing how a canonical
object of type A is formed as well as how two equal canonical
objects of type A are formed. There is no limitation on this
prescription except that the relation of equality which it defines
between canonical objects of type A must be reflexive, symmetric
and transitive. If the rules for forming canonical objects as well as
equal canonical objects of a certain type are called the introduction
rules for that type, we may thus say with Gentzen(1934) that a
canonical type (proposition) is defined by its introduction rules."

2/35

“A canonical type A is defined by prescribing how a canonical
object of type A is formed as well as how two equal canonical
objects of type A are formed. There is no limitation on this
prescription except that the relation of equality which it defines
between canonical objects of type A must be reflexive, symmetric
and transitive. If the rules for forming canonical objects as well as
equal canonical objects of a certain type are called the introduction
rules for that type, we may thus say with Gentzen(1934) that a
canonical type (proposition) is defined by its introduction rules."
Martin-Lof, Per. " Constructive mathematics and computer
programming.” Studies in Logic and the Foundations of
Mathematics 104 (1982): 153-175.

2/35

“A canonical type A is defined by prescribing how a canonical
object of type A is formed as well as how two equal canonical
objects of type A are formed. There is no limitation on this
prescription except that the relation of equality which it defines
between canonical objects of type A must be reflexive, symmetric
and transitive. If the rules for forming canonical objects as well as
equal canonical objects of a certain type are called the introduction
rules for that type, we may thus say with Gentzen(1934) that a
canonical type (proposition) is defined by its introduction rules."
Martin-Lof, Per. " Constructive mathematics and computer
programming.” Studies in Logic and the Foundations of
Mathematics 104 (1982): 153-175.

2/35

Higher Inductive Types

Higher inductive type (HIT): generated by inductive point
constructors and path constructors.

Canonical types in Martin-L6f's sense corresponds with higher
inductive types in HoTT.

3/35

Goal

Define HITs formally and illustrate the definition with examples.

4/35

Related Work

» Running Circles Around (In) Your Proof Assistant; or,
Quotients that Compute (Licata)

» Higher Inductive Types in Programming (Basold, Geuvers,
Van der Weide)

» Type Theory in Type Theory with Quotient Inductive Types
(Altenkirch, Kaposi)

» Higher Inductive Types in the Groupoid Model (Dybjer,
Moeneclaey)

» The HoTT Library: A Formalization of Homotopy Type
Theory in Coq (Bauer, Gross, Lumsdaine, Shulman, Sozeau,
Spitters)

5/35

Syntax of HITs

For a higher inductive type, we want to add equations like

Hx:A,t:r

With t and r ‘canonical terms’.

6/35

Syntax of HITs

For a higher inductive type, we want to add equations like

Hx:A,t:r

With t and r ‘canonical terms’.
This means the scheme looks something like

Inductive T (B;: TYPE)...(By: TYPE) :=
| C Hl[TBlBe] —TB;---By

| CkZHk[TBl~-~Bg]—>TBl---Bg
| plIH(X:Al[TBl"'Bg]),tlzrl

| oo TI(x: AalT Br---Be]), th =1y

6/35

Constructor Terms

We start with:
> We have context I;
» We have ¢; : H;(T) — T (given by inductive type);

» We have a parameter x : A[T] with A polynomial functor.

7/35

Building Constructor Terms

lN-t:B _ :TAd“(_)ei noéc occur in B YA X A

8/35

Building Constructor Terms

lN-t:B _ :TAd“(_)ei noéc occur in B YA X A

Jje{1,2} x:AlF r:G x G
x: Al mjir: G
Jj=1{1,2} x:AlF rj: G
x:AlF (n,n): G x Gy

8/35

Building Constructor Terms

lN-t:B _ :TAd“(_)ei noéc occur in B YA X A

Jje{1,2} x:AlF r:G x G
x: Al mjir: G
Jj=1{1,2} x:AlF rj: G
x:AlF (n,n): G x Gy
Jje{1,2} x:AlF r:G;
x Al injr: G+ Gy

8/35

Building Constructor Terms

lN-t:B _ :TAd“c_>ei noéc occur in B YA X A

Jje{1,2} x:AlF r:G x G
x: Al mjir: G
Jj=1{1,2} x:AlF rj: G
x:AlF (n,n): G x Gy
Jje{1,2} x:AlF r:G;
x Al injr: G+ Gy
x:Alk r:H[T]
x:Alk¢r: T

8/35

The Scheme

Inductive T (By: TYPE)...(By: TYPE) :=
| C Hl[TBlBg]%Tngz

| Ck Hk[TBlBg]—> TBl---Bg
| pP1 H(X : Al[T Bl-”Bg]), th =n
| pn: [I(x: AQlT By By]) ta =1y
Here we have
» H; and A; are polynomials;
> t;j and r; are constructor terms over ci,. ..,k with
x:Ajl- t,r: T,
Note: all HITs in this talk are finitary. Also, only 1-HITs.

9/35

Introduction Rules

E B; : TYPE Nt By: TYPE
=TBy---By: TYPE

FI Crx
rl—C,'ZH,'[T]—>T

FI Ctx
CEp [T AT = =1

10/35

Lifting Constructor Terms

To lift a constructor term x : A[T] I+ r: G[T], we need:
» Constructors ¢;: Hi[X] — X;
> A type family Y: T — TYPE;
» Terms T+ £ : [](x : Hi[T]), Hi(Y) x = Y(ci x).

11/35

Lifting Constructor Terms

To lift a constructor term x : A[T] I+ r: G[T], we need:
» Constructors ¢;: Hi[X] — X;
> A type family Y: T — TYPE;
» Terms T+ £ : [](x : Hi[T]), Hi(Y) x = Y(ci x).

Then we define

Cox AT b : AY)xE7:G(Y)r

11/35

Lifting Constructor Terms

To lift a constructor term x : A[T] I+ r: G[T], we need:
» Constructors ¢;: Hi[X] — X;
> A type family Y: T — TYPE;
» Terms T+ £ : [](x : Hi[T]), Hi(Y) x = Y(ci x).
Then we define

Cox AT b : AY)xE7:G(Y)r

by induction as follows

ti=t %= hy Gri=fir?
—_ T ~ ~ ./\ -~
=T (rn,n):=(A,R) injri=r

11/35

Elimination Rule

Y: T — TYPE
£ TIxc: H[T, Hi(Y) x — Y (ci x)

FE g [10x: ALTD(hs s Aj(Y) x), 8 :e:ajx) 7j

FETind(A, .. f Gy o qn) s [I(x: T), Y x

Note that ?J and 7; depend on all the f;.

12/35

Elimination Rule

Y: T — TYPE
£ TIxc: H[T, Hi(Y) x — Y (ci x)

FE g [10x: ALTD(hs : Aj(Y) x), 8 :e:ajx) 7j

FETind(A, .. f Gy o qn) s [I(x: T), Y x

Note that ?J and 7; depend on all the f;.

12/35

Computation Rules

Tind (¢j t) = f; t (H;(Tind) t),
apD Tind pj a = g; a (A;(Tind) a).

13/35

HITs in Proof Assistants

How to program HITs in Coq/Agda?
Idea: add paths as axioms/postulates.

14/35

The Interval (Naively)

For the interval

Inductive /1 =
| z: 11

| o: 1!

| s:z=o0

we add the code

data I : Set where
z: I
o I
postulate
seg: z==o0

15/35

The Interval (Naively)

Problem: we can do too much.

f: I — Nat
fz=0
fo=1

Then we have ap fseg:0=1.
This should not be possible.

16/35

The Interval (Correctly)

Solution: restrict access.

private
data I' : Set where
Zero : I’
One : I’
I: Set
I=T
z: I
z = Zero
o: I
o = One

17/35

HITs in Proof Assistants: Elimination Rule

How to get the right elimination rule?

18/35

Elimination Rule (Naively)

We can try to postulate it.

postulate
I-rec:{C:Set} > (ab:C)— (p:a==0D)
—+I—=C

19/35

Elimination Rule (Naively)

We can try to postulate it.
I-rec:{C:Set} > (ab:C)— (p:a==0D)
—-I->C¢C

Problem: computation rules for points hold propositionally.

19/35

Elimination Rule (Better)

Define it as a function.

I-rec:{C:8et} »(ab:C)— (p:a==0D>)
—I—=>C

I—recab _Zero=a

I—-recab_0One=b>»

Now computation rules for points are definitional.
This is how Licata did it.

20/35

HITs in Proof Assistants: Elimination Rule (Better)

Problem: define

Inductive C : Set :=

| N:C

| S: C

| E:N=S
| W:N=S
Define

f=1Iind NSE
g=Ilind NSW

21/35

HITs in Proof Assistants: Elimination Rule (Better)

Problem: define

Inductive C : Set :=

| N:C
| S: C
| E:N=S
| W:N=S
Define
f=Ilind NSE

g=Ilind NSW

Then
f=g

by refl!

21/35

HITs in Proof Assistants: Elimination Rule (Even Better)

In Coq (workaround in Agda is more annoying).
Definition I—rec (C: Type) (a,b:C)(p: a=Db): I = C:=
= fun x =
(match x return _ — C with
| zero = fun _ = a
| one = fun _ =b

) p.
This is solution in the HoTT library in Coq.

22/35

HITs in Proof Assistants: Computation Rules for Paths

Postulating them works fine.

postulate
Pseg: {C:Set} - (ab:C)— (p:a==1")
— ap (I—rec abp) seg==1p

Now computation rules for points are definitional.

23/35

Some Examples of HITs

> Integers modulo n

> Finite Sets (free lattice)

» Lists (free monoid)

> Integers

» Expressions with 4+ and natural numbers
» Combinatory logic (K and S)

> Type Theory

24/35

Integers as a HIT

Let's define the integers.

Inductive Z7 =
| 0: Z7

| S:Z? =77

| P:Z?— 177

| i :J[(x:2Z?7),5(Px)=x
| i J[(x:2Z?7),P(Sx)=x

25/35

Integers as a HIT

Let's define the integers.

Inductive Z7 =
| 0: Z7

| S:Z? =77

| P:Z?— 177

| i :J[(x:2Z?7),5(Px)=x
| i J[(x:2Z?7),P(Sx)=x

Is this right?

25/35

Integers as a HIT

Let's define the integers.

Inductive Z7 =

| 0: Z7

| S:Z? =77

| P:Z?— 177

| i :J[(x:2Z?7),5(Px)=x
| i J[(x:2Z?7),P(Sx)=x

Is this right? No!

25/35

Integers as a HIT

Theorem
Equality of Z7? is not decidable.

Sketch of proof:
» Hedberg: if equality of a type T is decidable, then T is a set.

» Sufficient: Z7 is not a set.

26/35

77 is not a set

Consider:
h0:S(PZ)=0,

ap P(h0): P(S(PZ))= PO,

27/35

77 is not a set

Consider:
h0:S(PZ)=0,

ap P (i,0): P(S(P Z)) = PO,
(P Z): P(S(PZ))=PO.

Claim: ap P (20): P(S(P Z)) = PO and
ii(PZ): P(S(P Z)) = P 0 are not equal (assuming univalence).

27/35

Brief Intermezzo: the Circle

Recall the circle.

Inductive S! :=
| b:St
| I:b=b

Then with univalence: / and refl are unequal.

28/35

77 is not a set

Define Z — S! as follows
» 0 goes to b.
» P and S go to identity.
> 1 x goes to /.
> > x goes to refl.
Then i1(P Z) is mapped to /, but ap P (i 0) to refl.

29/35

Rule of Thumb

Truncate if you don't need higher structure.

Inductive Z =
| 0: Z

| S:Z—-7Z
| P:Z—2Z
|

|

|

~

i [I(x:7Z),S(Px)=x
i TI(x:Z),P(S x) = x
t:[I(xy:Z)(p,qg:x=y)p=q

30/35

Integers Modulo 2

Example in similar spirit.

Inductive N/2N :=

| 0: N/2N

| S:N/2N — N/2N

| m:[[(n:N/2N),5(5Sn)=n

| t: H(Xuy:N/2N)(p7q:XZY)7p:q

Finite sets as free lattice, lists as free monoid.
Interesting: can we generalize this definition to arbitrary n?

31/35

Expressions with + and N as a HIT

Let's define the expressions.

Inductive Exp:=

| val : N — Exp

| plus: Exp — Exp — Exp

| eval : [](n, m:N),plus(val n)(val m) = val(n+ m)

Examples in a similar spirit: type theory in type theory,
combinatory logic.

32/35

Normalization of Expressions

With this definition we can define

norm : H(e : Exp) Z(n :N),||e = val n|
where

Inductive [|A]| ==
| v A=A
|t IOy 1Al x =y

33/35

Semantics of Expressions

With this definition we can define
semg1 : Exp - b=0b

sending val n to /" and plus to path concatenation.

34/35

Questions

» Can we make a good library for integers modulo 27 And
integers?

» Can we define Scott’s graph model, and show it is a model of
combinatory logic using HITs?

» Simple imperative languages as a HIT?

35/35

