Higher Inductive Types

Niels van der Weide, Henning Basold, Herman Geuvers

June 25, 2016

Our goal

- A syntax of higher inductive types.
- Definitional computation rules for points and paths.
- Semantical justification (restricted to nonrecursive HITs).

Related Work

- Lumsdaine and Shulman discuss semantics.
- Awodey and Sojakova give propositional computation rules.
- Van Doorn and Kraus describe how to obtain recursive higher inductive types from nonrecursive higher inductive types.
- Altenkirch, Capriotti, Dijkstra and Forsberg give a syntax, but no rules.

Intuition

- In HITs we additionally allow path constructors.
- For example, the circle is defined as

```
Inductive S }\mp@subsup{}{}{1}:
| base: S }\mp@subsup{}{}{1
loop : base = base
```

- Paths in X correspond with maps $I^{1} \rightarrow X$.
- So, adding paths is adding images of maps $I^{1} \rightarrow X$.
- For higher constructors: replace I^{1} by I^{n}.

More concrete

- Suppose, we have a type X with points x and y.
- To add $p: x=y$, we want to do a pushout

- Note: UMP of pushout gives an elimination rule. The maps p and ι give the introduction rules.

Elimination Rule

For the elimination rule we get

Given a path $q: I^{1} \rightarrow Y$ and $f: X \rightarrow Y$ such that $q \circ[0,1]=f \circ[x, y]$, we get $X^{\prime} \rightarrow Y$.

For S^{1}

We take $X=I^{0}$, and then $X^{\prime}=S^{1}$.
Then a map $S^{1} \rightarrow Y$ corresponds with a point $y: Y$ and a path $p: y=y$.

For S^{1}

So, for S^{1} we get introduction rules:

$$
\vdash \text { base : } S^{1}, \quad \vdash \text { loop }: \text { base }=\text { base }
$$

Furthermore, the elimination rule is

$$
\frac{\vdash y: Y(\text { base }) \quad \vdash p: y==_{\text {loop }}^{Y} y}{\vdash \operatorname{Srec}(y, p): \prod x: S^{1} . Y(x)}
$$

And we have computation rules

$$
\operatorname{Srec}(y, p) \text { base } \equiv y, \quad \operatorname{apd}(\operatorname{Srec}(y, p), \text { loop }) \equiv p
$$

Higher constructors

We can add higher paths in the same way
Inductive $I^{n+1}:=$
| top: $I^{n} \rightarrow I^{n+1}$
bottom : $I^{n} \rightarrow I^{n+1}$
\mid middle: $\prod x: I^{n}$. top $x=$ bottom x
For n-constructors of X we add images of maps $I^{n} \rightarrow X$.

Towards a General Definition

We first need some notation. Let T be a type and let $x_{1}: A_{1}, \ldots, x_{n}: A_{n}$ be variables. We define $T\left(x_{1}, \ldots, x_{n}\right)$ to be the collection of terms t for which we can prove the judgment

$$
x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: T .
$$

General Definition

$$
\begin{aligned}
& \text { Inductive } T\left(B_{1}: \text { TYPE }\right) \ldots\left(B_{\ell}: \text { TYPE }\right):= \\
& \mid c_{1}: H_{1}(T) \rightarrow T \\
& \ldots \\
& \mid c_{k}: H_{k}(T) \rightarrow T \\
& \mid p_{1}: \prod x: A_{1} \cdot \overline{F_{1}}=\overline{G_{1}} \\
& \ldots \\
& \mid p_{n}: \prod x: A_{n} \cdot \overline{F_{n}}=\overline{G_{n}} \\
& \text { where }
\end{aligned}
$$

- Every H_{i} is polynomial
- A_{i} is any type depending on $B_{1}, \ldots B_{\ell}$
- $\overline{F_{i}}$ and $\overline{G_{i}}$ are terms in $\left(I^{d_{i}} \rightarrow T\right)\left(x, c_{1}, \ldots, c_{k}, p_{1}, \ldots, p_{i-1}\right)$ with variables $x: A_{i}, c_{j}: H_{j}(T) \rightarrow T$ and $p_{j}: \overline{F_{j}}=\overline{G_{j}}$

Introduction Rules

We get introduction rules for the points

$$
\frac{\vdash t: H_{i}(T)}{\vdash c_{i} t: T}
$$

and the paths

$$
\vdash p_{i}: \prod x: A_{i} \cdot \overline{F_{i}}=\overline{G_{i}} .
$$

Elimination Rule (nondependent)

Nondependent goes well.

$$
\begin{gathered}
\vdash z_{i}: H_{i}(Y) \rightarrow Y \text { for } i=1, \ldots, k \\
\vdash q_{i}: \prod x: A_{i} . F_{i}^{\prime}=G_{i}^{\prime} \text { for } i=1, \ldots, n \\
\vdash T-\operatorname{elim}\left(z_{1}, \ldots, z_{k}, q_{1}, \ldots, q_{n}\right): T \rightarrow Y
\end{gathered}
$$

where

$$
\begin{aligned}
F_{i}^{\prime} & =F_{i}\left[x, z_{1}, \ldots, z_{k}, q_{1}, \ldots, q_{i-1}\right] \\
G_{i}^{\prime} & =G_{i}\left[x, z_{1}, \ldots, z_{k}, q_{1}, \ldots, q_{i-1}\right]
\end{aligned}
$$

Elimination Rule (dependent, work in progress)

Note: p_{i} gives an equality $p_{i}^{\prime}: \overline{F_{i}} y=\overline{G_{i}} y$ for $y: I^{d_{i}}$. The elimination rule is

$$
\begin{aligned}
& \vdash z_{i}: \prod x: H_{i}(T) \cdot \overline{H_{i}}(Y)(x) \rightarrow Y\left(c_{i} x\right) \text { for } i=1, \ldots, k \\
& \vdash q_{i}: \prod x: A_{i} \cdot \prod y: I^{d_{i}} \cdot F_{i}^{\prime} y={ }_{p_{i}^{\prime} x}^{Y} G_{i}^{\prime} y \text { for } i=1, \ldots, n \\
& \vdash T-\operatorname{elim}\left(z_{1}, \ldots, z_{k}, q_{1}, \ldots, q_{n}\right): \prod x: T . Y(x)
\end{aligned}
$$

where

$$
\begin{aligned}
F_{i}^{\prime} & =F_{i}\left[x, z_{1}, \ldots, z_{k}, q_{1}, \ldots, q_{i-1}\right] \\
G_{i}^{\prime} & =G_{i}\left[x, z_{1}, \ldots, z_{k}, q_{1}, \ldots, q_{i-1}\right]
\end{aligned}
$$

Computation Rules (points)

We write T-elim ${ }^{\prime}=T$-elim $\left(z_{1}, \ldots, z_{k}, q_{1}, \ldots, q_{n}\right)$. We get a computation rule for the points

$$
T \text {-elim }{ }^{\prime}\left(c_{i} t\right) \equiv\left(z_{i} t\right)\left(H_{i}\left(T \text {-elim }{ }^{\prime}\right) t\right)
$$

Computation Rules (paths), work in progress

For $f: \prod x: A . Y(x)$ and $p: I^{n} \rightarrow A$, We define $\operatorname{apd}(f, p)$ as
$f \circ p: \Pi x: I^{n} . Y(f(p x))$. So:

$$
\operatorname{apd}\left(T \text {-elim' }, p_{i} t\right): \prod x: I^{d_{i}+1} . Y\left(T \text {-elim' }\left(p_{i} t x\right)\right)
$$

Note: $q_{i} t$ gives a path

$$
\left(q_{i} t\right)^{*}: \prod x: I^{d_{i}+1} \cdot Y\left(T \text {-elim' }\left(p_{i} t x\right)\right)
$$

Then for all we say $t: A_{i}$

$$
\operatorname{apd}\left(T-\operatorname{elim}^{\prime}, p_{i} t\right) \equiv\left(q_{i} t\right)^{*} .
$$

Examples

- Integers modulo m where m is fixed.

$$
\begin{aligned}
& \text { Inductive } \mathbb{N} / m \mathbb{N}:= \\
& \left\lvert\, \begin{array}{l}
0: \mathbb{N} / m \mathbb{N} \\
S: \mathbb{N} / m \mathbb{N} \rightarrow \mathbb{N} / m \mathbb{N} \\
\bmod : S^{m} 0=0
\end{array}\right.
\end{aligned}
$$

- Rational numbers. Here \mathbb{Z} is the integers and $\mathbb{Z}_{\neq 0}$ is the nonzero integers.

```
Inductive \mathbb{Q :=}
| }:\mathbb{Z}\times\mp@subsup{\mathbb{Z}}{\not=0}{}->\mathbb{Q
simplify: }\Pix:\mathbb{Z}\prody:\mp@subsup{\mathbb{Z}}{\not=0}{}\cdot\frac{x}{y}=\frac{x\operatorname{div}gcd(x,y)}{y\operatorname{div}\operatorname{gcd}(x,y)
```


Introduction Rules for $\mathbb{N} / m \mathbb{N}$

We have three introduction rules:

$$
\begin{gathered}
\vdash 0: \mathbb{N} / m \mathbb{N} \\
\vdash S: \mathbb{N} / m \mathbb{N} \rightarrow \mathbb{N} / m \mathbb{N} \\
\vdash \bmod : S^{m} 0=0
\end{gathered}
$$

Elimination Rule for $\mathbb{N} / m \mathbb{N}$

The elimination rule is

$$
\begin{gathered}
\qquad z: Y(0) \\
\vdash s: \prod n: \mathbb{N} / m \mathbb{N} . Y(n) \rightarrow Y(S n) \quad \vdash q: z={ }_{\text {mod }}^{Y} s^{n} z \\
\vdash \mathbb{N} / m \mathbb{N}-\operatorname{elim}(z, s, q): \prod x: \mathbb{N} / m \mathbb{N} . Y(x)
\end{gathered}
$$

Computation Rules for $\mathbb{N} / m \mathbb{N}$

The computation rules are

$$
\mathbb{N} / m \mathbb{N}-\operatorname{elim}(z, s, q) 0 \equiv z
$$

$\mathbb{N} / m \mathbb{N}$-elim $(z, s, q)(S n) \equiv s(\mathbb{N} / m \mathbb{N}$-elim $(z, s, q) n)$, $\operatorname{apd}(\mathbb{N} / m \mathbb{N}-\operatorname{elim}(z, s, q), \bmod) \equiv q$.

Another Example

- Consider

```
Inductive Cyl :=
    a : Cyl
    b: Cyl
    l: \(a=a\)
    \(r: b=b\)
    \(s: \operatorname{Irec}(a, a, I)=\operatorname{Irec}(b, b, r)\)
```

Note: we cannot give s with the type $I=r$. This shows the advantage of working with maps $I^{n} \rightarrow \mathrm{Cyl}$.

How to do the semantics?

- The paths are added via pushouts.
- We need interpretations of interval types I^{n}.
- Note: we also need to add paths like

$$
\operatorname{ap}(S, \bmod): S 0=S\left(S^{m} 0\right)
$$

- But we need to guarantee that $\mathrm{ap}(S$, refl $)=$ refl.

What about recursive HITs?

For recursive higher inductive types we do not have a justification of a syntax, but a proposal for a possible syntax.
Inductive $T\left(B_{1}:\right.$ Type $) \ldots\left(B_{\ell}:\right.$ Type $):=$
$c_{1}: H_{1}(T) \rightarrow T$
$c_{k}: H_{k}(T) \rightarrow T$
$p_{1}: \Pi x: A_{1}(T) \cdot \overline{F_{1}}=\overline{G_{1}}$
$p_{n}: \Pi x: A_{n}(T) \cdot \overline{F_{n}}=\overline{G_{n}}$

- H_{i} is polynomial.
- $\overline{F_{i}}$ and $\overline{G_{i}}$ are terms in $\left(I^{d_{i}} \rightarrow T\right)\left(x, c_{1}, \ldots, c_{k}, p_{1}, \ldots, p_{i-1}\right)$ with variables $x: A_{i}(T), c_{j}: H_{j}(T) \rightarrow T$ and $p_{j}: \overline{F_{j}}=\overline{G_{j}}$.
- $A_{i}(T)$ is any type depending on $B_{1}, \ldots B_{\ell}, T$, which is polynomial in T

Introduction Rules

The introduction rules for the points are

$$
\frac{\vdash t: H_{i}(T)}{\vdash c_{i} t: T}
$$

and the introduction rules for the paths are

$$
\vdash p_{i}: \prod x: A_{i}(T) \cdot \overline{F_{i}}=\overline{G_{i}}
$$

Elimination Rule

The elimination rule is

$$
\begin{gathered}
\vdash z_{i}: H_{i}(Y) \rightarrow Y \text { for } i=1, \ldots, k \\
\qquad q_{i}: \prod x: A_{i}(Y) \cdot F_{i}^{\prime}=G_{i}^{\prime} \text { for } i=1, \ldots, n \\
\vdash T-\operatorname{elim}\left(z_{1}, \ldots, z_{k}, q_{1}, \ldots, q_{n}\right): T \rightarrow Y
\end{gathered}
$$

where

$$
\begin{aligned}
F_{i}^{\prime} & =F_{i}\left[x, z_{1}, \ldots, z_{k}, q_{1}, \ldots, q_{i-1}\right] \\
G_{i}^{\prime} & =G_{i}\left[x, z_{1}, \ldots, z_{k}, q_{1}, \ldots, q_{i-1}\right] .
\end{aligned}
$$

Computation Rules

We write T-elim ${ }^{\prime}=T$-elim $\left(z_{1}, \ldots, z_{k}, q_{1}, \ldots, q_{n}\right)$. The computation rules are for $t: H_{i}(T)$

$$
T \text {-elim }{ }^{\prime}\left(c_{i} t\right)=z_{i}\left(H_{i}(T \text {-elim }) t\right)
$$

and for all $t: A_{i}(T)$

$$
\operatorname{apd}\left(T \text {-elim }{ }^{\prime}, p_{i} t\right)=q_{i}\left(A_{i}(T \text {-elim }) t\right)
$$

Examples

- Integers.

```
Inductive \(\mathbb{Z}:=\)
    \(0: \mathbb{Z}\)
    \(S: \mathbb{Z} \rightarrow \mathbb{Z}\)
    \(P: \mathbb{Z} \rightarrow \mathbb{Z}\)
    \(\operatorname{inv}_{1}: \prod x: \mathbb{Z} . S(P x)=x\)
    \(\operatorname{inv}_{2}: \Pi x: \mathbb{Z} \cdot P(S x)=x\)
```

Something interesting: there are two different paths in $P(S(P 0))=P 0$, so by Hedberg \mathbb{Z} does not have decidable equality!

- Finite sets with elements from A as the free join-semilattice on A.

Conclusion

- Syntax for higher inductive types.
- Elimination rule and definitional computation rules.
- Semantics for nonrecursive HITs.

Further Work

- Extend semantics to recursive higher inductive types.
- Confluence and strong normalization of computation rules.
- Dependent HITs.
- Version in Cubical Type Theory.

