
Certified Programming with Dependent Types
Inductive Predicates

Niels van der Weide

March 7, 2017

1/30

Last Time

We discussed inductive types

Print nat.
(* Inductive nat : Set :=

| O : nat

| S : nat → nat*)

Recursion principle

Check nat_rect.
(* nat_rect

: forall P : nat → Type ,

P O →
(forall n : nat, P n → P (S n))

→ forall n : nat, P n*)

2/30

Last Time

We discussed inductive types

Print nat.
(* Inductive nat : Set :=

| O : nat

| S : nat → nat*)

Induction principle

Check nat_ind.
(* nat_ind

: forall P : nat → Prop ,

P O →
(forall n : nat, P n → P (S n))

→ forall n : nat, P n*)

3/30

Last Time

We discussed inductive types

Print nat.
(* Inductive nat : Set :=

| O : nat

| S : nat → nat*)

Recursion principle

Check nat_rec.
(* nat_rec

: forall P : nat → Set ,
P O →
(forall n : nat, P n → P (S n))

→ forall n : nat, P n*)

4/30

This raises several questions:

I Induction is for proving, recursion for programming. What’s
the difference between Prop and Set ?

I Can we do logic in the language?

I Can we define more complicated propositions on types?

5/30

Prop vs Set

Let’s look at some examples.

Inductive True : Prop :=
| I : True.

True is defined

True rect is defined

True ind is defined

True rec is defined

Inductive unit : Set :=
| tt : unit.

unit is defined

unit rect is defined

unit ind is defined

unit rec is defined

6/30

Prop vs Set
We can prove that these two are isomorphic

Definition f := fun (_ : unit) ⇒ I.

Definition g := fun (_ : True) ⇒ tt.

Theorem eq1 : forall x : unit, x = g (f x).
Proof.
intro x.
induction x.
(* compute. *) reflexivity.
Qed.

Theorem eq2 : forall x : True, x = f (g x).
Proof.
intro x.
destruct x.
(* compute. *) reflexivity.
Qed.

7/30

Prop vs Set

But for the following example they are different!

Inductive boolP : Prop :=
| trueP : boolP
| falseP : boolP.

boolP is defined

boolP ind is defined

Inductive bool : Set :=
| true : bool

| false : bool.

bool is defined

bool rect is defined

bool ind is defined

bool rec is defined

8/30

Prop vs Set

This means the following is not allowed

Definition h (x : boolP) : bool :=
match x with

| trueP ⇒ true

| falseP ⇒ false

end.

Definition h : boolP → bool.
Proof.
intro x.
induction x.

Error: Cannot find the elimination combinator boolP rec, the elimination
of the inductive definition boolP on sort Set is probably not allowed.

9/30

Prop vs Set

Inhabitants of the type Prop are propositions. These are
proof-irrelevant: all inhabitants are equal.

Inhabitants of the type Set are sets. These are proof-relevant:
inhabitants might be equal, but do not have to.
Also, Prop is ignored during code extraction.

10/30

Prop vs Set

Inhabitants of the type Prop are propositions. These are
proof-irrelevant: all inhabitants are equal.
Inhabitants of the type Set are sets. These are proof-relevant:
inhabitants might be equal, but do not have to.

Also, Prop is ignored during code extraction.

10/30

Prop vs Set

Inhabitants of the type Prop are propositions. These are
proof-irrelevant: all inhabitants are equal.
Inhabitants of the type Set are sets. These are proof-relevant:
inhabitants might be equal, but do not have to.
Also, Prop is ignored during code extraction.

10/30

Logic in Type Theory (or Coq)

If inhabitants of Prop pretend to be propositions, can we treat
them as such?

Yes, we can! Inductive types come to the rescue.

11/30

Logic in Type Theory (or Coq)

If inhabitants of Prop pretend to be propositions, can we treat
them as such?
Yes, we can! Inductive types come to the rescue.

11/30

Logic in Type Theory (or Coq)

Conjunctions.

Inductive and

(A : Prop) (B: Prop)
: Prop :=
| conj : A → B → and A B.

and is defined

and rect is defined

and ind is defined

and rec is defined

Inductive prod

(A : Set) (B : Set)
: Set :=
| pair : A → B → prod A B.

prod is defined

prod rect is defined

prod ind is defined

prod rec is defined

12/30

Logic in Type Theory (or Coq)

Disjunctions.

Inductive or

(A : Prop) (B: Prop)
: Prop :=
| orl : A → or A B

| orr : B → or A B.

or is defined

or ind is defined

Inductive sum

(A : Set) (B: Set)
: Set :=
| inl : A → sum A B

| inr : B → sum A B.

sum is defined

sum rect is defined

sum ind is defined

sum rec is defined

13/30

Proposition Logic in Coq

Coq got all these types natively. A nice table can be found on
http://andrej.com/coq/cheatsheet.pdf

14/30

http://andrej.com/coq/cheatsheet.pdf

Proposition Logic in Coq

Short demonstration of these tactics

Theorem and_com : forall P Q : Prop, P ∧ Q → Q ∧ P.
Proof.
intros.
destruct H.
split ; assumption.
Qed.

We can also prove it by programming.

Definition and_com’ (P Q : Prop) (x : and P Q) : and Q P :=
match x with

| conj _ _ p q ⇒ conj Q P q p

end.

15/30

Proposition Logic in Coq

But it is much better!

Theorem complicatedProp :
forall P Q : Prop, ¬ (P ∧ Q) ↔ ¬¬(¬Q ∨ ¬P).

Proof.
tauto. (* also possible: intuition. *)

Qed.

Note this also works for types:

Theorem complicatedType :
forall P Q : Type,
(P ∗ Q) → False

↔
(((Q → False) + (P → False)) → False) → False.
Proof.
tauto. (* also possible: intuition *)

Qed.

16/30

Proposition Logic in Coq

The logic is constructive.

Theorem unprovable : forall P : Prop, P ∨ ¬ P.
Proof.
intuition.
(*

Hypothesis: P : Prop
Remaining goal: P ∨ (P → False)

*)

17/30

First-order Logic in Coq

Existential quantifier:

Inductive ex

(A : Type) (P : A → Prop)
: Prop :=
| ex_intro : forall (x : A),
P x → ex P

Inductive sig

(A : Type) (P : A → Type)
: Type :=
| sig_intro : forall (x : A),
P x → sig P

18/30

First-order Logic in Coq

Example with ∃:

Definition smaller : { n : nat & 0 <= n }.
Proof.
exists 3.
auto.
Defined.

Theorem muchSmaller : exists n : nat, 0 <= n.
Proof.
exists 37.
auto. (* does not automatically solve 0 <= 37.

Searches to some fixed depth *)

auto 38. (* this solves the goal.

We do le_S 37 times and le_n 1 time.

So, we need depth 38 *)

Qed.

19/30

Short intermezzo: Defined vs Qed
Qed makes an opaque definition (no unfolding).

Eval compute in muchSmaller.
(* = muchSmaller

: exists n : nat, 0 <= n

*)

Defined makes a transparent definition (with unfolding).

Eval compute in smaller.
(* = existT

(fun n : nat ⇒ 0 <= n)

3

(le_S 0 2

(le_S 0 1

(le_S 0 0 (le_n 0)

)

)

)

: {n : nat & 0 <= n}

*)

20/30

Now we can finally do the real work: make recursive predicates.
How to do this? The constructors tell how to prove the predicate.

21/30

Getting started: equality

How can we prove x = y? We can use reflexivity.

Print eq.
(* Inductive eq (A : Type) (x : A) : A → Prop :=

eq_refl : x = x *)

22/30

Another Simple Predicate

We can define n < 2 as follows.

Inductive lessThanTwo : nat → Prop :=
| zero : lessThanTwo 0
| one : lessThanTwo 1.

Then we can easily prove:

Theorem zeroOrOne : forall n : nat, lessThanTwo n ↔ n = 0 ∨ n = 1.
Proof.
intro n.
split.
induction 1 ; auto.
intro H.
destruct H ; rewrite H ; constructor.
Qed.

23/30

Another Simple Predicate

We can define n < 2 as follows.

Inductive lessThanTwo : nat → Prop :=
| zero : lessThanTwo 0
| one : lessThanTwo 1.

Then we can easily prove:

Theorem twoNotLessThanTwo : lessThanTwo 2 → False.
Proof.
intro H.
inversion H.
Qed.

24/30

A More Complicated Predicate: Even Numbers

We define a predicate for the even numbers.

Inductive even : nat → Prop :=
| evenZ : even 0
| evenSS : forall n : nat, even n → even (S (S n)).

Hint Constructors even.

We need to give a hint, so that the auto tactic also considers the
constructors of even.

25/30

A More Complicated Predicate: Even Numbers

Adding two even numbers: an automated proof.

Theorem evenAdd :
forall (n m : nat),
even n →
even m →
even (n + m).

Proof.
induction 1 ; induction 1 ; simpl ; auto.
Qed.

(In the book he is screwing around with inversion)

26/30

A More Complicated Predicate: Even Numbers

Without automation.

Theorem evenAdd’ : forall (n m : nat),
even n →
even m →
even (n + m).

Proof.
induction 1
; induction 1
; simpl

; constructor

; apply IHeven

; constructor

; apply H0.
Qed.

27/30

A More Complicated Predicate: Even Numbers

Theorem oddSuccessor :
forall (n : nat),
even n

→ even (S n)
→ False.

Proof.
intro n.
induction 1 ; intro H0.
− inversion H0.
− apply IHeven.

inversion H0.
apply H2.

Qed.

28/30

A More Complicated Predicate: Even Numbers

Theorem evenTwice : forall (n : nat), even (n + n).
Proof.
induction n ; simpl.
− auto.
− rewrite ← plus_n_Sm.

constructor.
apply IHn.

Qed.

29/30

A More Complicated Predicate: Even Numbers

Theorem evenContra :
forall (n : nat),
even (S (n + n))
→ False.

Proof.
intro n.
apply oddSuccessor.
apply evenTwice.
Qed.

30/30

