Certified Programming with Dependent Types
 Inductive Predicates

Niels van der Weide

March 7, 2017

Last Time

We discussed inductive types
Print nat.
(* Inductive nat : Set :=
| 0 : nat
| S : nat \rightarrow nat*)
Recursion principle
Check nat_rect.

```
(* nat_rect
: forall P : nat }->\mathrm{ Type ,
P O }
(forall n : nat, P n ->P (S n))
forall n : nat, P n*)
```


Last Time

We discussed inductive types

```
Print nat.
(* Inductive nat : Set :=
| 0 : nat
| S : nat }->\mathrm{ nat*)
```

Induction principle
Check nat_ind.
(* nat_ind
: forall P : nat \rightarrow Prop ,
P O \rightarrow
(forall n : nat, $P n \rightarrow P(S n)$)
\rightarrow forall n : nat, $\mathrm{P} n *$)

Last Time

We discussed inductive types
Print nat.
(* Inductive nat : Set :=
| 0 : nat
| S : nat \rightarrow nat*)
Recursion principle
Check nat_rec.

```
(* nat_rec
: forall P : nat }->\mathrm{ Set,
P O }
(forall n : nat, P n ->P (S n))
forall n : nat, P n*)
```

This raises several questions:

- Induction is for proving, recursion for programming. What's the difference between Prop and Set ?
- Can we do logic in the language?
- Can we define more complicated propositions on types?

Prop vs Set

Let's look at some examples.

Inductive True : Prop :=
| I: True.
True is defined
True_rect is defined
True_ind is defined
True_rec is defined

Inductive unit : Set := | tt: unit.
unit is defined
unit_rect is defined
unit_ind is defined
unit_rec is defined

Prop vs Set

We can prove that these two are isomorphic
Definition $\mathrm{f}:=\mathrm{fun}(\mathrm{Z}$: unit) $\Rightarrow \mathrm{I}$.
Definition g := fun (_ : True) $\Rightarrow t t$.
Theorem eq1 : forall x : unit, $x=g(f x)$.
Proof.
intro x.
induction x .
(* compute. *) reflexivity.
Qed.
Theorem eq2 : forall x : True, $x=f(g x)$.
Proof.
intro x .
destruct x.
(* compute. *) reflexivity.
Qed.

Prop vs Set

But for the following example they are different!

Inductive boolP : Prop :=	Inductive bool : Set :=
\mid trueP: boolP	\mid true : bool
falseP : boolP.	\mid false : bool.
boolP is defined	bool is defined bool_rect is defined boolP_ind is defined
bool_ind is defined bool_rec is defined	

Prop vs Set

This means the following is not allowed
Definition h (x : boolP) : bool := match x with
trueP \Rightarrow true
falseP \Rightarrow false
end.

Definition h : boolP \rightarrow bool.
Proof.
intro x.
induction x .
Error: Cannot find the elimination combinator boolP_rec, the elimination of the inductive definition boolP on sort Set is probably not allowed.

Prop vs Set

Inhabitants of the type Prop are propositions. These are proof-irrelevant: all inhabitants are equal.

Prop vs Set

Inhabitants of the type Prop are propositions. These are proof-irrelevant: all inhabitants are equal.
Inhabitants of the type Set are sets. These are proof-relevant: inhabitants might be equal, but do not have to.

Prop vs Set

Inhabitants of the type Prop are propositions. These are proof-irrelevant: all inhabitants are equal.
Inhabitants of the type Set are sets. These are proof-relevant: inhabitants might be equal, but do not have to.
Also, Prop is ignored during code extraction.

Logic in Type Theory (or Coq)

If inhabitants of Prop pretend to be propositions, can we treat them as such?

Logic in Type Theory (or Coq)

If inhabitants of Prop pretend to be propositions, can we treat them as such?
Yes, we can! Inductive types come to the rescue.

Logic in Type Theory (or Coq)

Conjunctions.

Inductive and
(A: Prop) (B: Prop)
: Prop:=
conj $: A \rightarrow B \rightarrow$ and $A B$.
and is defined
and_rect is defined
and_ind is defined
and_rec is defined

Inductive prod
(A: Set) (B: Set)
: Set:=
pair : $A \rightarrow B \rightarrow$ prod A B.
prod is defined
prod_rect is defined
prod_ind is defined
prod_rec is defined

Logic in Type Theory (or Coq)

Disjunctions.

Inductive or

$$
\begin{aligned}
& \text { (A: Prop) (B: Prop) } \\
& : \text { Prop := } \\
& \text { orl : A or A B } \\
& \text { orr : B } \rightarrow \text { or A B. }
\end{aligned}
$$

or is defined
or_ind is defined

Inductive sum

$$
(A: S e t)(B: S e t)
$$

$$
\text { : Set }:=
$$

| inl: $A \rightarrow$ sum A B
inr: B \rightarrow sum A B.
sum is defined
sum_rect is defined
sum_ind is defined
sum_rec is defined

Proposition Logic in Coq

Coq got all these types natively. A nice table can be found on http://andrej.com/coq/cheatsheet.pdf

Proposition Logic in Coq

Short demonstration of these tactics
Theorem and_com : forall PQ: Prop, $P \wedge Q \rightarrow Q \wedge P$.
Proof.
intros.
destruct H .
split; assumption.
Qed.
We can also prove it by programming.
Definition and_com' (P Q: Prop) (x : and P Q) : and Q P := match x with
conj _ _ p q \Rightarrow conj Q P q p
end.

Proposition Logic in Coq

But it is much better!
Theorem complicatedProp:
forall P Q : Prop, $\neg(\mathrm{P} \wedge \mathrm{Q}) \leftrightarrow \neg \neg(\neg \mathrm{Q} \vee \neg \mathrm{P})$.
Proof.
tauto. (* also possible: intuition. *)
Qed.
Note this also works for types:

```
Theorem complicatedType :
forall P Q: Type,
(P*Q) }->\mathrm{ False
\leftrightarrow
(((Q ) False) + (P }->\mathrm{ False ) ) }->\mathrm{ False ) }->\mathrm{ False.
Proof.
tauto. (* also possible: intuition *)
Qed.
```


Proposition Logic in Coq

The logic is constructive.
Theorem unprovable : forall P : Prop, $\mathrm{P} \vee \neg \mathrm{P}$.
Proof.
intuition.
(*
Hypothesis: P : Prop
Remaining goal: $\mathrm{P} \vee(\mathrm{P} \rightarrow$ False $)$
*)

First-order Logic in Coq

Existential quantifier:

```
Inductive ex
    (A : Type) (P : A }->\mathrm{ Prop)
    : Prop:=
    ex_intro : forall (x:A),
    P x mexP
```

Inductive sig
(A: Type) (P : A \rightarrow Type)
: Type :=
sig_intro : forall (x:A),
P $\mathrm{x} \rightarrow$ sig P

First-order Logic in Coq

Example with \exists :
Definition smaller : $\{\mathrm{n}:$ nat $\& 0<=\mathrm{n}\}$.
Proof.
exists 3.
auto.
Defined.

Theorem muchSmaller : exists n : nat, $0<=\mathrm{n}$.
Proof.
exists 37.

```
auto. (* does not automatically solve 0 <= 37.
    Searches to some fixed depth *)
auto 38. (* this solves the goal.
    We do le_S 37 times and le_n 1 time.
    So, we need depth 38*)
```

Qed.

Short intermezzo: Defined vs Qed

Qed makes an opaque definition (no unfolding).
Eval compute in muchSmaller.

```
(* = muchSmaller
    : exists n : nat, 0 <= n
*)
```

Defined makes a transparent definition (with unfolding).

```
Eval compute in smaller.
```

(* $=$ existT
(fun n : nat $\Rightarrow 0<=\mathrm{n}$)
3
(le_S 02
(le_S 0 1
(le_S 0 O (le_n 0)
)
)
)
: \{n : nat \& $0<=n\}$
*)

Now we can finally do the real work: make recursive predicates. How to do this? The constructors tell how to prove the predicate.

Getting started: equality

How can we prove $x=y$? We can use reflexivity.
Print eq.
(* Inductive eq (A : Type) (x : A) : A \rightarrow Prop := eq_refl : $\mathrm{x}=\mathrm{x} *$)

Another Simple Predicate

We can define $n<2$ as follows.
Inductive lessThanTwo : nat \rightarrow Prop :=
| zero: lessThanTwo 0
one: lessThanTwo 1.
Then we can easily prove:
Theorem zeroOrOne : forall n : nat, lessThanTwo $\mathrm{n} \leftrightarrow \mathrm{n}=0 \vee \mathrm{n}=1$. Proof.
intron.
split.
induction 1 ; auto.
intro H .
destruct H ; rewrite H ; constructor.
Qed.

Another Simple Predicate

We can define $n<2$ as follows.
Inductive lessThanTwo : nat \rightarrow Prop :=
zero: lessThanTwo 0
one: lessThanTwo 1.
Then we can easily prove:
Theorem twoNotLessThanTwo: lessThanTwo $2 \rightarrow$ False.
Proof.
intro H.
inversion H .
Qed.

A More Complicated Predicate: Even Numbers

We define a predicate for the even numbers.
Inductive even : nat \rightarrow Prop $:=$
| evenZ : even 0
| evenSS : forall n : nat, even $n \rightarrow \operatorname{even}(S(S n))$.

Hint Constructors even.
We need to give a hint, so that the auto tactic also considers the constructors of even.

A More Complicated Predicate: Even Numbers

Adding two even numbers: an automated proof.
Theorem evenAdd:
forall (n m : nat),
even $\mathrm{n} \rightarrow$
even $m \rightarrow$
even ($n+m$).
Proof.
induction 1 ; induction 1 ; simpl ; auto.
Qed.
(In the book he is screwing around with inversion)

A More Complicated Predicate: Even Numbers

Without automation.

```
Theorem evenAdd' : forall (n m : nat),
    even n }
    even m }
    even (n + m).
Proof.
induction 1
; induction 1
; simpl
; constructor
; apply IHeven
; constructor
; apply HO.
Qed.
```


A More Complicated Predicate: Even Numbers

Theorem oddSuccessor :
forall (n : nat),
even n
\rightarrow even (Sn)
\rightarrow False.
Proof.
intro n .
induction 1 ; intro HO.

- inversion HO.
- apply IHeven.
inversion HO.
apply H 2 .
Qed.

A More Complicated Predicate: Even Numbers

Theorem evenTwice : forall (n : nat), even (n + n).
Proof.
induction n ; simpl.

- auto.
- rewrite \leftarrow plus_n_Sm.
constructor.
apply IHn.
Qed.

A More Complicated Predicate: Even Numbers

Theorem evenContra:
forall (n: nat),
even $(S(n+n))$
\rightarrow False.
Proof.
intron.
apply oddSuccessor.
apply evenTwice.
Qed.

