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How to define Integers

data Pos =
One : Pos

| S : Pos → Pos

data Z =
Minus : Pos → Z

| Zero : Z
| Plus : Pos → Z
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How to define Integers

A more logical definition of Z would be

data Z =
Z : Z

| S : Z → Z
| P : Z → Z

and we require that S and P are inverses.

However, inductive types should be ’freely generated’. We can’t
allow extra equations.
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Our Goal: Higher Inductive Types

Higher inductive types allow the programmer to define data types
with extra equations.
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Topics

I What’s ‘equality’?

I What are Higher Inductive Types (HITs), and what can we do
with them?

I In the end: how can we implement this in Coq? (Coq doesn’t
have HITs)
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Equality by rewriting (Definitional Equality)

Functional languages rewrite terms.

data nat =
Z : nat

| S : nat → nat

plus : nat → nat → nat

plus Z m = m

plus (S n) m = S (plus n m)

We rewrite ‘plus (S Z) (S Z)’ to ‘S (S Z)’.
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Equality as a proposition (Propositional Equality)

Using Curry-Howard we can define equality as a type.

data Eq (A : Type) : A → A → Type =
refl : (a : A) → Eq A a a

We denote the type ‘Eq A a b’ by ‘a = b’.
Note: we can also talk about equalities between equalities via the
type ‘Eq (Eq A a b) p q’. These are called higher equalities.
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Comparison

Definitional equality is stronger, but propositional is more flexible.
We will mostly use propositional equality.
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Examples of Higher Inductive Types

data N/2N =
Z : N/2N

| S : N/2N → N/2N
| mod : Z = S(S Z)

Note: if we have f : A → B and p : x = y (with x , y : A), then we
have ap(f , p) : f x = f y . This gives

ap(S,mod) : S Z = S(S(S Z )),

ap(S, ap(S,mod) : S(S Z ) = S(S(S(S Z )))),

and so on.
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Examples of Higher Inductive Types

data Z =
Z : Z

| S : Z → Z
| P : Z → Z
| inv1 : (x : Z) → P(S x) = x

| inv2 : (x : Z) → S(P x) = x
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What about higher equalities?

We have P : Z → Z and

inv 2(S(PZ )) : S(P Z ) = S(P(S(P Z ))),

so we get

ap(P, inv 2(S(PZ ))) : P(S(P Z )) = P(S(P(S(P Z ))))

We also have

inv 1(P(S(P Z ))) : P(S(P Z )) = P(S(P(S(P Z )))).

Are these equal?
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Short Intermezzo: Hedberg’s Theorem

Theorem
If we give an inhabitant of A + (A → ⊥) for a type A, then all
inhabitants of x = y for x , y : A are equal.

Briefly, if A has decidable equality, then all proofs of equality in A
are equal.
Equivalently, if two equalities in a type are unequal, then that type
does not have decidable equality.
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How to Program with HITs?

How to map N/2N to some type A? What about Z?
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Programming with N/2N

To make N/2N → A, we need to give

I z : A which is the image of Z ;

I s : A → A which is the image of S ;

I an equality (a proof obligation)

m : z = s(s z).
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Programming with N/2N

Seeing N/2N as booleans, we can negate it.

I Choose A = N/2N;

I For z we pick S Z ;

I For s we pick S ;

I The proof obligation is: S Z = S(S(S Z )). We give

ap(S ,mod)
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Programming with Z

To make Z → A, we need to give

I z : A which is the image of Z ;

I s : A → A and p : A → A for S and P respectively;

I equalities (proof obligations)

i1 : (a : A) → a = p(s a),

i2 : (a : A) → a = s(p a).
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Z does not have decidable equality!

In Homotopy Type Theory Z does not have decidable equality.
For the proof we assume we have

I A type C ;

I A point b : C ;

I An equality l : b = b such that there is no equality between l
and refl b.

(We can prove that there is such a type assuming Voevodsky’s
Univalence Axiom)
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The proof

We make f : Z → C .

I We send Z to b.

I We send S and P to the identity map;

I For inv1 we need to prove b = b for which we take l ;

I For inv2 we also need to prove b = b which we prove by refl b.

Now we have

ap(f , ap(P, inv 2(S(PZ )))) = refl b,

ap(f , inv 1(P(S(P Z )))) = l .

So, these paths are unequal, and thus Z does not have decidable
equality.
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How to do this in Coq?

Coq does not have HITs, but you can add axioms.

Module Export Ints.

Private Inductive Z : Type :=
| nul : Z

| succ : Z → Z

| pred : Z → Z.

Axiom inv1 : forall n : Z, n = pred(succ n).
Axiom inv2 : forall n : Z, n = succ(pred n).
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How to do this in Coq?

The recursion principle is more complicated.

Fixpoint Z_rec

(P : Type)
(a : P)
(s : P → P)
(p : P → P)
(i1 : forall (m : P), m = p(s m))
(i2 : forall (m : P), m = s(p m))
(x : Z)
{struct x}

: P

:=
(match x return _ → _ → P with

| nul ⇒ fun _ ⇒ fun _ ⇒ a

| succ n ⇒ fun _ ⇒ fun _ ⇒ s ((Z_rec P a s p i1 i2) n)
| pred n ⇒ fun _ ⇒ fun _ ⇒ p ((Z_rec P a s p i1 i2) n)
end) i1 i2.
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How to do this in Coq?

Computation rules for the equalities go as expected.

Axiom Z_rec_beta_inv1 :
forall

(P : Type)
(a : P)
(s : P → P)
(p : P → P)
(i1 : forall (m : P), m = p(s m))
(i2 : forall (m : P), m = s(p m))
(n : Z)

, ap (Z_rec P a s p i1 i2) (inv1 n) = i1 (Z_rec P a s p i1 i2 n).

end Ints.
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