Programming with Higher Inductive Types

Henning Basold, Herman Geuvers, Niels van der Weide

December 20, 2016

How to define Integers

```
\begin{array}{l} \operatorname{data} \operatorname{Pos} = \\ \operatorname{One} : \operatorname{Pos} \\ \mid \operatorname{S} : \operatorname{Pos} \to \operatorname{Pos} \\ \operatorname{data} \operatorname{\mathbb{Z}} = \\ \operatorname{Minus} : \operatorname{Pos} \to \operatorname{\mathbb{Z}} \\ \mid \operatorname{Zero} : \operatorname{\mathbb{Z}} \\ \mid \operatorname{Plus} : \operatorname{Pos} \to \operatorname{\mathbb{Z}} \end{array}
```

How to define Integers

A more logical definition of \mathbb{Z} would be

 $\mathtt{data} \; \mathbb{Z} =$ $Z: \mathbb{Z}$

and we require that S and P are inverses.

How to define Integers

A more logical definition of $\ensuremath{\mathbb{Z}}$ would be

```
 \begin{array}{l} \operatorname{\mathtt{data}} \, \mathbb{Z} = \\ & \operatorname{\mathtt{Z}} : \, \mathbb{Z} \\ & \mid \, \operatorname{\mathtt{S}} : \, \mathbb{Z} \to \mathbb{Z} \\ & \mid \, \operatorname{\mathtt{P}} : \, \mathbb{Z} \to \mathbb{Z} \end{array}
```

and we require that S and P are inverses.

However, inductive types should be 'freely generated'. We can't allow extra equations.

Our Goal: Higher Inductive Types

Higher inductive types allow the programmer to define data types with extra equations.

Topics

- ► What's 'equality'?
- ▶ What are Higher Inductive Types (HITs), and what can we do with them?
- ► In the end: how can we implement this in Coq? (Coq doesn't have HITs)

Equality by rewriting (**Definitional Equality**)

Functional languages rewrite terms.

```
\begin{array}{l} \text{data nat} = \\ \quad \text{Z: nat} \\ \mid \text{S: nat} \rightarrow \text{nat} \\ \\ \text{plus: nat} \rightarrow \text{nat} \rightarrow \text{nat} \\ \\ \text{plus Z m} = \text{m} \\ \\ \text{plus (S n) m} = \text{S (plus n m)} \\ \\ \text{We rewrite 'plus (S Z) (S Z)' to 'S (S Z)'.} \end{array}
```

Equality as a proposition (**Propositional Equality**)

Using Curry-Howard we can define equality as a type.

```
\begin{array}{l} \textbf{data} \; \textbf{Eq} \; (\textbf{A} : \; \textbf{Type}) : \; \textbf{A} \to \textbf{A} \to \textbf{Type} = \\ \textbf{refl} : \; (\textbf{a} : \; \textbf{A}) \to \textbf{Eq} \; \textbf{A} \; \textbf{a} \; \textbf{a} \end{array}
```

We denote the type 'Eq A a b' by 'a = b'.

Note: we can also talk about *equalities between equalities* via the type 'Eq (Eq A a b) p q'. These are called **higher equalities**.

Comparison

Definitional equality is stronger, but propositional is more flexible. We will *mostly* use **propositional** equality.

```
\label{eq:data_norm} \begin{array}{l} \text{data } \mathbb{N}/2\mathbb{N} = \\ \text{Z} : \mathbb{N}/2\mathbb{N} \\ \mid \text{S} : \mathbb{N}/2\mathbb{N} \to \mathbb{N}/2\mathbb{N} \\ \mid \text{mod} : \text{Z} = \text{S(S Z)} \end{array}
```

data $\mathbb{N}/2\mathbb{N} =$

```
Z: \mathbb{N}/2\mathbb{N}

\mid S: \mathbb{N}/2\mathbb{N} \to \mathbb{N}/2\mathbb{N}

\mid mod: Z = S(S Z)

Note: if we have f: A \to B and p: x = y (with x, y: A), then we have ap(f, p): fx = fy.
```

```
data \mathbb{N}/2\mathbb{N} =
      Z: \mathbb{N}/2\mathbb{N}
  \begin{array}{ccc} \mid \ \mathtt{S} \ : \ \mathbb{N}/2\mathbb{N} \to \mathbb{N}/2\mathbb{N} \\ \mid \ \mathtt{mod} \ : \ \mathtt{Z} \ = \ \mathtt{S}(\mathtt{S} \ \mathtt{Z}) \end{array}
Note: if we have f: A \to B and p: x = y (with x, y: A), then we
have ap(f, p) : f x = f y. This gives
                                ap(S, mod) : SZ = S(S(SZ)),
                    ap(S, ap(S, mod) : S(SZ) = S(S(S(SZ))))
and so on.
```

```
\begin{tabular}{lll} \textbf{data} & \mathbb{Z} = \\ & Z: & \mathbb{Z} \\ & \mid S: & \mathbb{Z} \rightarrow \mathbb{Z} \\ & \mid P: & \mathbb{Z} \rightarrow \mathbb{Z} \\ & \mid & \texttt{inv1}: (\texttt{x}: & \mathbb{Z}) \rightarrow \texttt{P(S x)} = \texttt{x} \\ & \mid & \texttt{inv2}: (\texttt{x}: & \mathbb{Z}) \rightarrow \texttt{S(P x)} = \texttt{x} \\ \end{tabular}
```

What about higher equalities?

We have $P: \mathbb{Z} \to \mathbb{Z}$ and

$$\mathsf{inv}\,2(S(PZ)):S(P\,Z)=S(P(S(P\,Z))),$$

What about higher equalities?

We have $P: \mathbb{Z} \to \mathbb{Z}$ and

inv
$$2(S(PZ)) : S(PZ) = S(P(S(PZ))),$$

so we get

$$\mathsf{ap}(P,\mathsf{inv}\,2(S(PZ))):P(S(P\,Z))=P(S(P(S(P\,Z))))$$

What about higher equalities?

We have $P: \mathbb{Z} \to \mathbb{Z}$ and

inv
$$2(S(PZ)) : S(PZ) = S(P(S(PZ))),$$

so we get

$$\operatorname{\mathsf{ap}}(P,\operatorname{\mathsf{inv}} 2(S(PZ))):P(S(PZ))=P(S(P(S(PZ))))$$

We also have

inv
$$1(P(S(PZ))) : P(S(PZ)) = P(S(P(S(PZ)))).$$

Are these equal?

Short Intermezzo: Hedberg's Theorem

Theorem

If we give an inhabitant of $A + (A \rightarrow \bot)$ for a type A, then all inhabitants of x = y for x, y : A are equal.

Short Intermezzo: Hedberg's Theorem

Theorem

If we give an inhabitant of $A + (A \rightarrow \bot)$ for a type A, then all inhabitants of x = y for x, y : A are equal.

Briefly, if A has decidable equality, then all proofs of equality in A are equal.

Short Intermezzo: Hedberg's Theorem

Theorem

If we give an inhabitant of $A + (A \rightarrow \bot)$ for a type A, then all inhabitants of x = y for x, y : A are equal.

Briefly, if A has decidable equality, then all proofs of equality in A are equal.

Equivalently, if two equalities in a type are unequal, then that type does not have decidable equality.

How to Program with HITs?

How to map $\mathbb{N}/2\mathbb{N}$ to some type A? What about \mathbb{Z} ?

Programming with $\mathbb{N}/2\mathbb{N}$

To make $\mathbb{N}/2\mathbb{N} \to A$, we need to give

- z : A which is the image of Z;
- ▶ $s: A \rightarrow A$ which is the image of S;

Programming with $\mathbb{N}/2\mathbb{N}$

To make $\mathbb{N}/2\mathbb{N} \to A$, we need to give

- z : A which is the image of Z;
- ▶ $s: A \rightarrow A$ which is the image of S;
- an equality (a proof obligation)

$$m: z = s(sz).$$

Programming with $\mathbb{N}/2\mathbb{N}$

Seeing $\mathbb{N}/2\mathbb{N}$ as booleans, we can negate it.

- ▶ Choose $A = \mathbb{N}/2\mathbb{N}$;
- ► For z we pick S Z;
- ► For *s* we pick *S*;
- ▶ The proof obligation is: SZ = S(S(SZ)). We give

ap(S, mod)

Programming with $\ensuremath{\mathbb{Z}}$

To make $\mathbb{Z} \to A$, we need to give

- z : A which is the image of Z;
- ▶ $s: A \rightarrow A$ and $p: A \rightarrow A$ for S and P respectively;

Programming with $\ensuremath{\mathbb{Z}}$

To make $\mathbb{Z} \to A$, we need to give

- \triangleright z : A which is the image of Z;
- ▶ $s: A \rightarrow A$ and $p: A \rightarrow A$ for S and P respectively;
- equalities (proof obligations)

$$i_1:(a:A)\to a=p(sa),$$

$$i_2:(a:A)\rightarrow a=s(pa).$$

\mathbb{Z} does not have decidable equality!

In Homotopy Type Theory $\ensuremath{\mathbb{Z}}$ does not have decidable equality. For the proof we assume we have

- ► A type *C*;
- ▶ A point *b* : *C*;
- An equality *I* : *b* = *b* such that there is no equality between *I* and refl *b*.

(We can prove that there is such a type assuming Voevodsky's Univalence Axiom)

The proof

We make $f: \mathbb{Z} \to C$.

- ▶ We send *Z* to *b*.
- ▶ We send *S* and *P* to the identity map;
- ▶ For inv1 we need to prove b = b for which we take l;
- For inv2 we also need to prove b = b which we prove by refl b.

The proof

We make $f: \mathbb{Z} \to C$.

- ▶ We send Z to b.
- ▶ We send *S* and *P* to the identity map;
- ▶ For inv1 we need to prove b = b for which we take l;
- For inv2 we also need to prove b = b which we prove by refl b.

Now we have

$$ap(f, ap(P, inv 2(S(PZ)))) = refl b,$$

 $ap(f, inv 1(P(S(PZ)))) = I.$

So, these paths are unequal, and thus $\ensuremath{\mathbb{Z}}$ does not have decidable equality.

How to do this in Coq?

Coq does not have HITs, but you can add axioms.

Module Export Ints.

```
\begin{array}{ll} \mbox{Private Inductive Z}: \mbox{Type} := \\ | \mbox{nul}: \mbox{Z} \\ | \mbox{succ}: \mbox{Z} \rightarrow \mbox{Z} \\ | \mbox{pred}: \mbox{Z} \rightarrow \mbox{Z}. \\ \\ \mbox{Axiom inv1}: \mbox{forall } \mbox{n}: \mbox{Z}, \mbox{n} = \mbox{pred(succ n)}. \\ \\ \mbox{Axiom inv2}: \mbox{forall } \mbox{n}: \mbox{Z}, \mbox{n} = \mbox{succ(pred n)}. \end{array}
```

How to do this in Coq?

The recursion principle is more complicated.

```
Fixpoint Z_rec
  (P: Type)
  (a: P)
  (s: P \rightarrow P)
  (p: P \rightarrow P)
  (i1: forall (m:P), m = p(sm))
  (i2: forall (m:P), m = s(pm))
  (x:Z)
  {struct x}
(match x return \_ \rightarrow \_ \rightarrow P with
  nul \Rightarrow fun \_ \Rightarrow fun \_ \Rightarrow a
  succ n \Rightarrow fun = fun = s ((Z_rec P a s p i1 i2) n)
  pred n \Rightarrow fun \_ \Rightarrow fun \_ \Rightarrow p ((Z_rec P a s p i1 i2) n)
end) i1 i2.
```

How to do this in Coq?

Computation rules for the equalities go as expected.

```
Axiom Z_rec_beta_inv1 :
forall
 (P: Type)
 (a : P)
 (s: P \rightarrow P)
 (p: P \rightarrow P)
  (i1: forall (m:P), m = p(sm))
  (i2: forall (m:P), m = s(pm))
  (n:Z)
, ap (Z_{rec} P a s p i1 i2) (inv1 n) = i1 (Z_{rec} P a s p i1 i2 n).
end Ints.
```