Programming with Higher Inductive Types

Henning Basold, Herman Geuvers, Niels van der Weide

December 20, 2016

How to define Integers

```
data Pos \(=\)
    One : Pos
    S : Pos \(\rightarrow\) Pos
\(\operatorname{data} \mathbb{Z}=\)
    Minus: Pos \(\rightarrow \mathbb{Z}\)
    Zero: \(\mathbb{Z}\)
    Plus: Pos \(\rightarrow \mathbb{Z}\)
```


How to define Integers

A more logical definition of \mathbb{Z} would be

$$
\begin{aligned}
& \text { data } \mathbb{Z}= \\
& \quad \mathrm{Z}: \mathbb{Z} \\
& \mathrm{S}: \mathbb{Z} \rightarrow \mathbb{Z} \\
& \mid \mathrm{P}: \mathbb{Z} \rightarrow \mathbb{Z}
\end{aligned} \text { and we require that } \mathrm{S} \text { and } \mathrm{P} \text { are inverses. }
$$

How to define Integers

A more logical definition of \mathbb{Z} would be

$$
\begin{aligned}
& \text { data } \mathbb{Z}= \\
& Z: \mathbb{Z} \\
& \mid S: \mathbb{Z} \rightarrow \mathbb{Z} \\
& \mid \mathrm{P}: \mathbb{Z} \rightarrow \mathbb{Z}
\end{aligned}
$$

and we require that S and P are inverses.
However, inductive types should be 'freely generated'. We can't allow extra equations.

Our Goal: Higher Inductive Types

Higher inductive types allow the programmer to define data types with extra equations.

Topics

- What's 'equality'?
- What are Higher Inductive Types (HITs), and what can we do with them?
- In the end: how can we implement this in Coq? (Coq doesn't have HITs)

Equality by rewriting (Definitional Equality)

Functional languages rewrite terms.

$$
\begin{aligned}
& \text { data nat }= \\
& \quad \mathrm{Z}: \text { nat } \\
& \mathrm{S}: \text { nat } \rightarrow \text { nat } \\
& \text { plus : nat } \rightarrow \text { nat } \rightarrow \text { nat } \\
& \text { plus } \mathrm{Z} \mathrm{~m}=\mathrm{m} \\
& \text { plus (} \mathrm{Sn} \text {) } \mathrm{m}=\mathrm{S} \text { (plus } \mathrm{n} \mathrm{~m} \text {) } \\
& \text { We rewrite 'plus }(\mathrm{S} \mathrm{Z})(\mathrm{S} \mathrm{Z}) \text { ' to ' } \mathrm{S}(\mathrm{~S} \mathrm{Z}) \text { '. }
\end{aligned}
$$

Equality as a proposition (Propositional Equality)

Using Curry-Howard we can define equality as a type.
data Eq (A: Type) : A $\rightarrow \mathrm{A} \rightarrow$ Type $=$ refl: (a:A) \rightarrow EqA a a

We denote the type 'Eq A a b' by 'a = b'.
Note: we can also talk about equalities between equalities via the type ' $E q(E q A a b) p q$ '. These are called higher equalities.

Comparison

Definitional equality is stronger, but propositional is more flexible. We will mostly use propositional equality.

Examples of Higher Inductive Types

```
data }\mathbb{N}/2\mathbb{N}
    Z: N}/2\mathbb{N
    S: N/2N}->\mathbb{N}/2\mathbb{N
    mod: Z = S(S Z)
```


Examples of Higher Inductive Types

```
data }\mathbb{N}/2\mathbb{N}
    Z: N}/2\mathbb{N
    S: N/ }2\mathbb{N}->\mathbb{N}/2\mathbb{N
    mod : Z = S(S Z)
```

Note: if we have $f: A \rightarrow B$ and $p: x=y$ (with $x, y: A$), then we have $\operatorname{ap}(f, p): f x=f y$.

Examples of Higher Inductive Types

```
data }\mathbb{N}/2\mathbb{N}
    Z: N/2N
    S: N/ 2N }->\mathbb{N}/2\mathbb{N
    mod: Z = S(S Z)
```

Note: if we have $f: A \rightarrow B$ and $p: x=y$ (with $x, y: A$), then we have $\operatorname{ap}(f, p): f x=f y$. This gives

$$
\begin{gathered}
\operatorname{ap}(S, \bmod): S Z=S(S(S Z)) \\
\operatorname{ap}(S, \operatorname{ap}(S, \bmod): S(S Z)=S(S(S(S Z))))
\end{gathered}
$$

and so on.

Examples of Higher Inductive Types

$$
\begin{aligned}
& \text { data } \mathbb{Z}= \\
& \quad \mathrm{Z}: \mathbb{Z} \\
& \mid \mathrm{S}: \mathbb{Z} \rightarrow \mathbb{Z} \\
& \mid \mathrm{P}: \mathbb{Z} \rightarrow \mathbb{Z} \\
& \mid \operatorname{inv1}:(\mathrm{x}: \mathbb{Z}) \rightarrow \mathrm{P}(\mathrm{~S} \mathrm{x})=\mathrm{x} \\
& \\
& \mid \operatorname{inv2}:(\mathrm{x}: \mathbb{Z}) \rightarrow \mathrm{S}(\mathrm{P} \mathrm{x})=\mathrm{x}
\end{aligned}
$$

What about higher equalities?

We have $P: \mathbb{Z} \rightarrow \mathbb{Z}$ and

$$
\operatorname{inv} 2(S(P Z)): S(P Z)=S(P(S(P Z)))
$$

What about higher equalities?

We have $P: \mathbb{Z} \rightarrow \mathbb{Z}$ and

$$
\operatorname{inv} 2(S(P Z)): S(P Z)=S(P(S(P Z)))
$$

so we get

$$
\operatorname{ap}(P, \operatorname{inv} 2(S(P Z))): P(S(P Z))=P(S(P(S(P Z))))
$$

What about higher equalities?

We have $P: \mathbb{Z} \rightarrow \mathbb{Z}$ and

$$
\text { inv } 2(S(P Z)): S(P Z)=S(P(S(P Z)))
$$

so we get

$$
\operatorname{ap}(P, \operatorname{inv} 2(S(P Z))): P(S(P Z))=P(S(P(S(P Z))))
$$

We also have

$$
\operatorname{inv} 1(P(S(P Z))): P(S(P Z))=P(S(P(S(P Z))))
$$

Are these equal?

Short Intermezzo: Hedberg's Theorem

Theorem
If we give an inhabitant of $A+(A \rightarrow \perp)$ for a type A, then all inhabitants of $x=y$ for $x, y: A$ are equal.

Short Intermezzo: Hedberg's Theorem

Theorem
If we give an inhabitant of $A+(A \rightarrow \perp)$ for a type A, then all inhabitants of $x=y$ for $x, y: A$ are equal.
Briefly, if A has decidable equality, then all proofs of equality in A are equal.

Short Intermezzo: Hedberg's Theorem

Theorem
If we give an inhabitant of $A+(A \rightarrow \perp)$ for a type A, then all
inhabitants of $x=y$ for $x, y: A$ are equal.
Briefly, if A has decidable equality, then all proofs of equality in A are equal.
Equivalently, if two equalities in a type are unequal, then that type does not have decidable equality.

How to Program with HITs?

How to map $\mathbb{N} / 2 \mathbb{N}$ to some type A ? What about \mathbb{Z} ?

Programming with $\mathbb{N} / 2 \mathbb{N}$

To make $\mathbb{N} / 2 \mathbb{N} \rightarrow A$, we need to give

- z : A which is the image of Z;
- $s: A \rightarrow A$ which is the image of S;

Programming with $\mathbb{N} / 2 \mathbb{N}$

To make $\mathbb{N} / 2 \mathbb{N} \rightarrow A$, we need to give

- z : A which is the image of Z;
- $s: A \rightarrow A$ which is the image of S;
- an equality (a proof obligation)

$$
m: z=s(s z)
$$

Programming with $\mathbb{N} / 2 \mathbb{N}$

Seeing $\mathbb{N} / 2 \mathbb{N}$ as booleans, we can negate it.

- Choose $A=\mathbb{N} / 2 \mathbb{N}$;
- For z we pick $S Z$;
- For s we pick S;
- The proof obligation is: $S Z=S(S(S Z))$. We give

$$
\operatorname{ap}(S, \bmod)
$$

Programming with \mathbb{Z}

To make $\mathbb{Z} \rightarrow A$, we need to give

- $z: A$ which is the image of Z;
- $s: A \rightarrow A$ and $p: A \rightarrow A$ for S and P respectively;

Programming with \mathbb{Z}

To make $\mathbb{Z} \rightarrow A$, we need to give

- $z: A$ which is the image of Z;
- $s: A \rightarrow A$ and $p: A \rightarrow A$ for S and P respectively;
- equalities (proof obligations)

$$
\begin{aligned}
& i_{1}:(a: A) \rightarrow a=p(s a), \\
& i_{2}:(a: A) \rightarrow a=s(p a) .
\end{aligned}
$$

\mathbb{Z} does not have decidable equality!

In Homotopy Type Theory \mathbb{Z} does not have decidable equality.
For the proof we assume we have

- A type C;
- A point $b: C$;
- An equality $l: b=b$ such that there is no equality between $/$ and refl b.
(We can prove that there is such a type assuming Voevodsky's Univalence Axiom)

The proof

We make $f: \mathbb{Z} \rightarrow C$.

- We send Z to b.
- We send S and P to the identity map;
- For inv1 we need to prove $b=b$ for which we take l;
- For inv2 we also need to prove $b=b$ which we prove by refl b.

The proof

We make $f: \mathbb{Z} \rightarrow C$.

- We send Z to b.
- We send S and P to the identity map;
- For inv1 we need to prove $b=b$ for which we take l;
- For inv2 we also need to prove $b=b$ which we prove by refl b.

Now we have

$$
\begin{gathered}
\operatorname{ap}(f, \operatorname{ap}(P, \operatorname{inv} 2(S(P Z))))=\operatorname{refl} b, \\
\operatorname{ap}(f, \operatorname{inv} 1(P(S(P Z))))=l
\end{gathered}
$$

So, these paths are unequal, and thus \mathbb{Z} does not have decidable equality.

How to do this in Coq?

Coq does not have HITs, but you can add axioms.
Module Export Ints.
Private Inductive Z: Type :=
nul: Z
succ: $\mathrm{Z} \rightarrow \mathrm{Z}$
pred: $\mathrm{Z} \rightarrow \mathrm{Z}$.
Axiom inv1: forall $n: Z, n=\operatorname{pred}(\operatorname{succ} n)$.
Axiom inv2: forall $n: Z, n=\operatorname{succ}(\operatorname{pred} n)$.

How to do this in Coq?

The recursion principle is more complicated.

```
Fixpoint Z_rec
    (P: Type)
    (a: P)
    \((\mathrm{s}: \mathrm{P} \rightarrow \mathrm{P})\)
    \((p: P \rightarrow P)\)
    (i1: forall (m: P ), \(\mathrm{m}=\mathrm{p}(\mathrm{sm})\) )
    (i2: forall (m:P), m=s(pm))
    (x: Z)
    \{struct x \}
: P
:=
(match x return _ \(\rightarrow_{-} \rightarrow \mathrm{P}\) with
    nul \(\Rightarrow\) fun _ \(\Rightarrow\) fun \(_{-} \Rightarrow a\)
    succ \(n \Rightarrow\) fun _ \(\Rightarrow\) fun_ \(\Rightarrow\) s ((Z_rec \(P\) a s pi1i2) n)
    pred \(n \Rightarrow\) fun _ \(\Rightarrow\) fun_ \(\Rightarrow\) p ((Z_rec \(P\) a s pi1i2) \(n)\)
end) i1 i2.
```


How to do this in Coq?

Computation rules for the equalities go as expected.

```
Axiom Z_rec_beta_inv1:
forall
    ( P : Type)
    (a: P)
    \((\mathrm{s}: \mathrm{P} \rightarrow \mathrm{P})\)
    \((\mathrm{p}: \mathrm{P} \rightarrow \mathrm{P})\)
    (i1: forall (m: \(P\) ), \(m=p(s m)\) )
    (i2: forall (m:P), m=s(pm))
    ( \(\mathrm{n}: \mathrm{Z}\) )
, ap (Z_rec Paspi1i2) (inv1n) \(=\) i1 (Z_rec Paspi1 i2n).
end Ints.
```

