The Three-HITs Theorem

Andrej Bauer, Niels van der Weide

April 26, 2017

1/38

“A canonical type A is defined by prescribing how a canonical
object of type A is formed as well as how two equal canonical
objects of type A are formed. There is no limitation on this
prescription except that the relation of equality which it defines
between canonical objects of type A must be reflexive, symmetric
and transitive. If the rules for forming canonical objects as well as
equal canonical objects of a certain type are called the introduction
rules for that type, we may thus say with Gentzen(1934) that a
canonical type (proposition) is defined by its introduction rules."

2/38

“A canonical type A is defined by prescribing how a canonical
object of type A is formed as well as how two equal canonical
objects of type A are formed. There is no limitation on this
prescription except that the relation of equality which it defines
between canonical objects of type A must be reflexive, symmetric
and transitive. If the rules for forming canonical objects as well as
equal canonical objects of a certain type are called the introduction
rules for that type, we may thus say with Gentzen(1934) that a
canonical type (proposition) is defined by its introduction rules."
Martin-Lof, Per. " Constructive mathematics and computer
programming.” Studies in Logic and the Foundations of
Mathematics 104 (1982): 153-175.

2/38

“A canonical type A is defined by prescribing how a canonical
object of type A is formed as well as how two equal canonical
objects of type A are formed. There is no limitation on this
prescription except that the relation of equality which it defines
between canonical objects of type A must be reflexive, symmetric
and transitive. If the rules for forming canonical objects as well as
equal canonical objects of a certain type are called the introduction
rules for that type, we may thus say with Gentzen(1934) that a
canonical type (proposition) is defined by its introduction rules."
Martin-Lof, Per. " Constructive mathematics and computer
programming.” Studies in Logic and the Foundations of
Mathematics 104 (1982): 153-175.

2/38

Higher Inductive Types

Higher inductive type (HIT): generated by inductive point
constructors and path constructors.

Canonical types in Martin-L6f's sense corresponds with higher
inductive types in HoTT.

3/38

Higher Inductive Types

However, how can HITs be constructed?

4/38

Constructing Inductive Types

An inductive type T with a constructor c: F T — T is
constructed as a colimit.

0—>FO0— F(FO)— ...

Idea: same for higher inductive types, but make identifications on
the way.

5/38

The Three-HITs Theorem

Theorem: all higher inductive types can be constructed from three
specific HITs.
These HITs represent the colimit and making identifications.

6/38

This is work in progress. More details and the Coq formalization
can be found on.
https://github.com/nmvdw/Three-HITs

7/38

https://github.com/nmvdw/Three-HITs

Approach

For a higher inductive type, we want to add equations like

Hx:A,t:r

With t and r ‘canonical terms’.

8/38

Approach

For a higher inductive type, we want to add equations like

Hx:A,t:r

With t and r ‘canonical terms’.
This means the scheme looks something like

Inductive T (B;: TYPE)...(By: TYPE) :=
| C Hl[TBlBe] —TB;---By

| CkZHk[TBl~-~Bg]—>TBl---Bg
| plIH(X:Al[TBl"'Bg]),tlzrl

| oo TI(x: AalT Br---Be]), th =1y

8/38

Constructor Terms

We start with:
> We have context I;
» We have ¢; : H;(T) — T (given by inductive type);

» We have a parameter x : A[T] with A polynomial functor.

9/38

Building Constructor Terms

lN-t:B _ :TAd“(_)ei noéc occur in B YA X A

10/38

Building Constructor Terms

lN-t:B _ :TAd“(_)ei noéc occur in B YA X A

Jje{1,2} x:AlF r:G x G
x: Al mjir: G
Jj=1{1,2} x:AlF rj: G
x:AlF (n,n): G x Gy

10/38

Building Constructor Terms

lN-t:B _ :TAd“(_)ei noéc occur in B YA X A

Jje{1,2} x:AlF r:G x G
x: Al mjir: G
Jj=1{1,2} x:AlF rj: G
x:AlF (n,n): G x Gy
Jje{1,2} x:AlF r:G;
x Al injr: G+ Gy

10/38

Building Constructor Terms

lN-t:B _ :TAd“c_>ei noéc occur in B YA X A

Jje{1,2} x:AlF r:G x G
x: Al mjir: G
Jj=1{1,2} x:AlF rj: G
x:AlF (n,n): G x Gy
Jje{1,2} x:AlF r:G;
x Al injr: G+ Gy
x:Alk r:H[T]
x:Alk¢r: T

10/38

The Scheme

Inductive T (By: TYPE)...(By: TYPE) :=
| C Hl[TBlBg]%Tngz

| Ck Hk[TBlBg]—> TBl---Bg
| pP1 H(X : Al[T Bl-”Bg]), th =n
| pn: [I(x: AQlT By By]) ta =1y
Here we have
» H; and A; are polynomials;
> t;j and r; are constructor terms over ci,. ..,k with
x:Ajl- t,r: T,
Note: all HITs in this talk are finitary.

11/38

Introduction Rules

E B; : TYPE Nt By: TYPE
=TBy---By: TYPE

FI Crx
rl—C,'ZH,'[T]—>T

FI Crx
I'I—pj:Aj[T]—>tJ-:rj

12/38

Lifting Constructor Terms

To lift a constructor term x : A[T] I+ r: G[T], we need:
» Constructors ¢;: Hi[X] — X;
> A type family U: T — TYPE;
» Terms T+ f; : (x : Hi[T]) = H;(U)x = U(c; x).

13/38

Lifting Constructor Terms

To lift a constructor term x : A[T] I+ r: G[T], we need:
» Constructors ¢;: Hi[X] — X;
> A type family U: T — TYPE;
» Terms T+ f; : (x : Hi[T]) = H;(U)x = U(c; x).

Then we define

Fox: A[T) by : A(U) x =7: G(U) r

13/38

Lifting Constructor Terms

To lift a constructor term x : A[T] I+ r: G[T], we need:
» Constructors ¢;: Hi[X] — X;
> A type family U: T — TYPE;
» Terms T+ f; : (x : Hi[T]) = H;(U)x = U(c; x).

Then we define

Fox: A[T) by : A(U) x =7: G(U) r

by induction as follows

ti=t %= hy Gri=fir?
—_ T ~ ~ ./\ -~
=T (rn,n):=(A,R) injri=r

13/38

Elimination Rule

Y: T — TYPE
£ TIxc: H[T, Hi(Y) x — Y (ci x)

FE g [10x: ALTD(hs s Aj(Y) x), 8 :e:ajx) 7j

Mt Trec(f,. . f,q1y---yqn) [I(x: T), Y x

Note that ?J and 7; depend on all the f;.

14/38

Elimination Rule

Y: T — TYPE
£ TIxc: H[T, Hi(Y) x — Y (ci x)

FE g [10x: ALTD(hs : Aj(Y) x), 8 :e:ajx) 7j

Mt Trec(f,. . f,q1y---yqn) [I(x: T), Y x

Note that ?J and 7; depend on all the f;.

14/38

Computation Rules

Trec(cit)=fit (Hi(T rec) t),
a(A

apD T recpj a = gj a (Aj(T rec) a).

15/38

Which HITs do we need?

Remember: we will construct HITs in a similar way as inductive
types, but with identifications along the way.
We need HITs for

» Making identifications

» Colimits

16/38

Which HITs do we need?

Points are identified via the coequalizer.

Inductive coeq (A, B : TYPE) (f,g: A— B) :=
| inC:B—coeqABfg
| glueC:J](a: A),inC(fa)=inC(ga)

17/38

Which HITs do we need?

Points are identified via the coequalizer.

Inductive coeq (A,B: TYPE) (f,g: A— B) =
| inC:B—coeqABfg
| glueC:J](a: A),inC(fa)=inC(ga)

Elimination rule.
FY:coeqABfg— TYPE
Fiy:J[(b: B),Y (inCb)
- gy :[1(a: A),glueC,(iy (f a)) = iv (g a)
 coeqind(iy,gy) : [[(x : coeq ABf g),Y x

17/38

Which HITs do we need?

Colimits.

Inductive colim (F: N — TYPE) (f : [[(n:N,Fn— F(n+1))) =
| inc:[[(n:N),Fn— colim F f

| com: [](n:N)(x:Fn),incnx=inc(n+1)(f nx)
Elimination rule:
F Y :colimFf— TYPE
Fiy : [I(n:N)(x: Fn),Y (incnx)
Fey :[[(n:N)(x: Fn),comi(iy nx) =iy (n+1) (f nx)
I colimind(iy, cy) : [J(x : colim F), Y x

18/38

Which HITs do we need?

We also need to identify paths.
Start with a type B, and suppose we have a family of paths with
the same endpoinst

p:A—Y by by:B,(by=bp) x (b = by).

Write p; for the ith coordinate of p. We want to identify p3 a and
ps afor ac A

19/38

Which HITs do we need?

We also need to identify paths.

Start with a type B, and suppose we have a family of paths with
the same endpoinst

p:A—Y by by:B,(by=bp) x (b = by).
Write p; for the ith coordinate of p. We want to identify p3 a and

ps afor ac A

Inductive pcoeq
(A, B : TYPE)

(p: A= S(bi,ba: B), (b = by) x (bi = b)) =
| inP:B— pcoeqABfg

| glueP : [](a: A), apinP (ps3 a) = apinP (ps a)))

Note: we need ap in the path expressions.

19/38

Which HITs do we need?

We also need to identify paths.

Start with a type B, and suppose we have a family of paths with
the same endpoinst

p:A—Y by by:B,(by=bp) x (b = by).
Write p; for the ith coordinate of p. We want to identify p3 a and

ps afor ac A

Inductive pcoeq
(A, B : TYPE)

(p: A= S(bi,ba: B), (b = by) x (bi = b)) =
| inP:B— pcoeqABfg

| glueP : [](a: A), apinP (psa) = apinP (ps a)))

Note: we need ap in the path expressions.

19/38

Elimination Rule of pcoeq (Naive Attempt)

Replacing ap by apD does not work.

FY:pcoeqABfg— TYPE
Fiy : [I(b: B),Y (inP b)

gy : [I(a: A),apD iy (p3 a) = apD iy (pa a)
F pcoeqind(iy, gy) : [[(x : pcoeq ABf g),Y x

Note that this is not well-typed.
apD iy (p3 a) . (p3)*(iy bl) = iy bz,

apD iy (p4 a) : (pa)«(iy b1) = iy ba.

20/38

Elimination Rule of pcoeq (Correct Attempt)

But we can relate them.

Lemma

Given is Y : pcoeq — TYPE and iy : [[(b: B), Y(inP b). Then we
have a term

coh : [J(a: A), (ps a)u(iy b1) = (pa a)+(iy br)

21/38

Elimination Rule of pcoeq (Correct Attempt)

But we can relate them.

Lemma
Given is Y : pcoeq — TYPE and iy : [[(b: B), Y(inP b). Then we
have a term

coh : [J(a: A), (ps a)u(iy b1) = (pa a)+(iy br)

Not difficult, but we need a term of type

H(P : B — Type) H(f :A— B) H(p X =y) H(z . P(f x)),
PPz = (ap f p)P 2

This follows by path induction.

21/38

Elimination Rule of pcoeq (Correct Attempt)

With the coherency we can give the right elimination rule.

FY:pcoeqABfg— TYPE
Fiy :[I(b: B),Y (inP b)
gy : [[(a: A),(coh a)~t eapD iy (p3 a) = apD iy (ps a)

F pcoeqind(iy, gy) : [[(x : pcoeq ABf g), Y x

22/38

Elimination Rule of pcoeq (Correct Attempt)

With the coherency we can give the right elimination rule.

FY:pcoeqABfg— TYPE
Fiy :[I(b: B),Y (inP b)
gy : [[(a: A),(coh a)~t eapD iy (p3 a) = apD iy (ps a)

F pcoeqind(iy, gy) : [[(x : pcoeq ABf g), Y x
Note:

p3)«(iy b1) = iy by
p3 a)«(iv b1) = (pa a):(iy b1)

apD iy (p3 a) : (p3)«(i
: (p3 @)«

(coh a)™* : (pa a)«(iy b1) = (p3 a)«(iv b1)
(Pa)«(i
(Pa)«(i

coh a

(COh a)_l e apD iy () p4)>,< Iy bl) iy by
apD iy (ps a) : (pa)«(iy b1) =iy ba

22/38

The Three-HITs Theorem

Theorem (Three-HITs Theorem)

In Martin-Lof type theory extended with a coequalizers, path
coequalizers and homotopy colimits, we can interpret each higher
inductive type. This means that for each HIT we can define a type
with the same introduction, elimination and computation rules.

23/38

The Three-HITs Theorem

In Coq:
> Extend the language with coequalizers, colimits and path
coequalizers (using axioms).

» Define signatures of HITs. This represents the given syntax of
HITs.

» A HIT on a signature is a type with interpretations of the
introduction, elimination and computation rules.

> Then the Three-HITs says: each signature has a HIT.

24/38

Idea of the Proof

The constructions in the proof are complicated. We will
demonstrate it in an example.

25/38

Idea of the Proof

The constructions in the proof are complicated. We will
demonstrate it in an example.
For general H it works as follows.

>

>

Sequence of approximations F : N — TYPE.

Add point constructors at every step. For c: AH — H we
look at F n+ A(F n).

Make identifications for path constructors whenever possible.

Identify duplicate points or paths.

The map F n — F(n+ 1) is composition of inclusions and
quotient maps.

25/38

Idea of the Proof: Obstacles

Main obstacles: recursion.

» A constructor c: T — T and a path p: t = r also gives
paths ap c p.

» For the truncation

Inductive || x || :=
| a:1— =]

| P TIOGy [+ 1D) x =y

We have p (ax) (a*):a* = ax, and a path
s:p(ax)(ax)=refl.

26/38

Simple Example

No recursion.

Inductive /! :=

| c: At =

| s:cO0=cl

Define A X = 2.

Construct F 0 as follows.
» Start with A0 = 2.

» We can make the identifications. This gives the interval.

27/38

We continue to F 1.
» Start with /1 4 2.

» We can make the identification: we identify z and o in the
second component.

» We have /1 + /1 now.
» Two copies of z and o; identify them with coequalizer.
» Two copies of s: identify them with path coequalizer.

» This results in /1.

28/38

Idea of the Proof: Recursive Points

Now Nj: natural numbers modulo 1.

Inductive Ny :=
| 0: Nl

| S N; - Ny

| m:0=S50.

We also need the paths ap S m.

29/38

Idea of the Proof: Recursive Points

Start with F 0.
» We add a point 0.

» No identifications can be made.

30/38

Idea of the Proof: Recursive Points

For F 1:
» Add points 0’ and S 0.
» ldentify 0 and S 0 (path constructor).
» Identify 0 and 0’ (duplicates).

31/38

Idea of the Proof: Recursive Points

In F 2 we want to find ap S m.
» We start with F14+ A(F1)=F1+(1+ F1).
» Successor of x : F1ising x in f 2.

> Then ap Smisap ingmin F 2.

32/38

Idea of the Proof: Recursive Paths

Truncation of the point.

Inductive || x || :=
| a:1— x|

| PTGy =1+ 1)x =y

33/38

Idea of the Proof: Recursive Paths

Start with F 0.
» We add a point a.
» Add a path paa:a=a.
» No duplicates.

This gives S?.

34/38

Idea of the Proof: Recursive Paths

The interesting thing happens at F 1.
» We add a point a’.
» Add apath pa’d :d = 4.
» We identify a and &’ and paaand pa' 4.

35/38

Idea of the Proof: Recursive Paths

The interesting thing happens at F 1.
» We add a point a’.
» Add apath pa’d :d = 4.
» We identify a and &’ and paaand pa' 4.

» But more happens.

35/38

Idea of the Proof: Recursive Paths

» Let's focus on the first S1.
» For x,y : S we add apath pxy : x =y.
» This is not S*.

36/38

Idea of the Proof: Recursive Paths

Basically, the following construction happens.

Inductive |A| (A: TYPE) :=
| a: A— A
| p:[I(xy:A)ax=ay

AL AL -

37/38

Conclusion

v

Finitary HITs can be constructed from three simple HITs.

v

The construction is done in type theory.

v

Disadvantage: the acquired computation rules are
propositional equalities.

v

More details and Coq code can be found on:
https://github.com/nmvdw/Three-HITs

38/38

https://github.com/nmvdw/Three-HITs

