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“A canonical type A is defined by prescribing how a canonical
object of type A is formed as well as how two equal canonical
objects of type A are formed. There is no limitation on this
prescription except that the relation of equality which it defines
between canonical objects of type A must be reflexive, symmetric
and transitive. If the rules for forming canonical objects as well as
equal canonical objects of a certain type are called the introduction
rules for that type, we may thus say with Gentzen(1934) that a
canonical type (proposition) is defined by its introduction rules.”

Martin-Löf, Per. ”Constructive mathematics and computer
programming.” Studies in Logic and the Foundations of
Mathematics 104 (1982): 153-175.
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Martin-Löf, Per. ”Constructive mathematics and computer
programming.” Studies in Logic and the Foundations of
Mathematics 104 (1982): 153-175.

2/38



Higher Inductive Types

Higher inductive type (HIT): generated by inductive point
constructors and path constructors.
Canonical types in Martin-Löf’s sense corresponds with higher
inductive types in HoTT.
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Higher Inductive Types

However, how can HITs be constructed?
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Constructing Inductive Types

An inductive type T with a constructor c : F T → T is
constructed as a colimit.

0→ F 0→ F (F 0)→ . . .

Idea: same for higher inductive types, but make identifications on
the way.
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The Three-HITs Theorem

Theorem: all higher inductive types can be constructed from three
specific HITs.
These HITs represent the colimit and making identifications.
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This is work in progress. More details and the Coq formalization
can be found on.
https://github.com/nmvdw/Three-HITs
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Approach

For a higher inductive type, we want to add equations like∏
x : A, t = r

With t and r ‘canonical terms’.

This means the scheme looks something like

Inductive T (B1 : Type) . . . (B` : Type) :=
| c1 : H1[T B1 · · ·B`]→ T B1 · · ·B`

. . .
| ck : Hk [T B1 · · ·B`]→ T B1 · · ·B`

| p1 :
∏

(x : A1[T B1 · · ·B`]), t1 = r1
. . .
| pn :

∏
(x : An[T B1 · · ·B`]), tn = rn
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Constructor Terms

We start with:

I We have context Γ;

I We have ci : Hi (T )→ T (given by inductive type);

I We have a parameter x : A[T ] with A polynomial functor.
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Building Constructor Terms

Γ ` t : B T does not occur in B
x : A  t : B x : A  x : A

j ∈ {1, 2} x : A  r : G1 × G2

x : A  πj r : Gj

j = {1, 2} x : A  rj : Gj

x : A  (r1, r2) : G1 × G2

j ∈ {1, 2} x : A  r : Gj

x : A  inj r : G1 + G2

x : A  r : Hi [T ]

x : A  ci r : T
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The Scheme

Inductive T (B1 : Type) . . . (B` : Type) :=
| c1 : H1[T B1 · · ·B`]→ T B1 · · ·B`

. . .
| ck : Hk [T B1 · · ·B`]→ T B1 · · ·B`

| p1 :
∏

(x : A1[T B1 · · ·B`]), t1 = r1
. . .
| pn :

∏
(x : An[T B1 · · ·B`]), tn = rn

Here we have

I Hi and Aj are polynomials;

I tj and rj are constructor terms over c1, . . . , ck with
x : Aj  tj , rj : T .

Note: all HITs in this talk are finitary.
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Introduction Rules

Γ ` B1 : Type · · · Γ ` B` : Type

Γ ` T B1 · · ·B` : Type

` Γ Ctx
Γ ` ci : Hi [T ]→ T

` Γ Ctx
Γ ` pj : Aj [T ]→ tj = rj
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Lifting Constructor Terms

To lift a constructor term x : A[T ]  r : G [T ], we need:

I Constructors ci : Hi [X ]→ X ;

I A type family U : T → Type;

I Terms Γ ` fi : (x : Hi [T ])→ H i (U) x → U(ci x).

Then we define

Γ, x : A[T ], hx : A(U) x ` r̂ : G (U) r

by induction as follows

t̂ := t x̂ := hx ĉi r := fi r r̂

π̂j r := πj r̂ (̂r1, r2) := (r̂1, r̂2) înj r := r̂
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Elimination Rule

Y : T → Type

Γ ` fi :
∏

(x : Hi [T ]),H i (Y ) x → Y (ci x)

Γ ` qj :
∏

(x : Aj [T ])(hx : Aj(Y ) x), t̂j =Y
(pj x)

r̂j

Γ ` T rec(f1, . . . , fk , q1, . . . , qn) :
∏

(x : T ),Y x

Note that t̂j and r̂j depend on all the fi .
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Computation Rules

T rec (ci t) = fi t (H i (T rec) t),

apDT recpj a = qj a (Aj(T rec) a).
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Which HITs do we need?

Remember: we will construct HITs in a similar way as inductive
types, but with identifications along the way.
We need HITs for

I Making identifications

I Colimits
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Which HITs do we need?

Points are identified via the coequalizer.

Inductive coeq (A,B : Type) (f , g : A→ B) :=
| inC : B → coeq A B f g
| glueC :

∏
(a : A), inC (f a) = inC (g a)

Elimination rule.

` Y : coeq A B f g → Type

` iY :
∏

(b : B),Y (inC b)

` gY :
∏

(a : A), glueC∗(iY (f a)) = iY (g a)

` coeqind(iY , gY ) :
∏

(x : coeq A B f g),Y x
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Which HITs do we need?

Colimits.

Inductive colim (F : N→ Type) (f :
∏

(n : N,F n→ F (n + 1))) :=
| inc :

∏
(n : N),F n→ colim F f

| com :
∏

(n : N)(x : F n), inc n x = inc (n + 1) (f n x)

Elimination rule:

` Y : colim F f → Type
` iY :

∏
(n : N)(x : F n),Y (inc n x)

` cY :
∏

(n : N)(x : F n), com∗(iY n x) = iY (n + 1) (f n x)

` colimind(iY , cY ) :
∏

(x : colim F f ),Y x
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Which HITs do we need?

We also need to identify paths.
Start with a type B, and suppose we have a family of paths with
the same endpoinst

p : A→
∑

b1, b2 : B, (b1 = b2)× (b1 = b2).

Write pi for the ith coordinate of p. We want to identify p3 a and
p4 a for a ∈ A.

Inductive pcoeq
(A,B : Type)
(p : A→

∑
(b1, b2 : B), (b1 = b2)× (b1 = b2)) :=

| inP : B → pcoeq A B f g
| glueP :

∏
(a : A), ap inP (p3 a) = ap inP (p4 a)))

Note: we need ap in the path expressions.
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Elimination Rule of pcoeq (Naive Attempt)

Replacing ap by apD does not work.

` Y : pcoeq A B f g → Type

` iY :
∏

(b : B),Y (inP b)

` gY :
∏

(a : A), apD iY (p3 a) = apD iY (p4 a)

` pcoeqind(iY , gY ) :
∏

(x : pcoeq A B f g),Y x

Note that this is not well-typed.

apD iY (p3 a) : (p3)∗(iY b1) = iY b2,

apD iY (p4 a) : (p4)∗(iY b1) = iY b2.
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Elimination Rule of pcoeq (Correct Attempt)

But we can relate them.

Lemma
Given is Y : pcoeq→ Type and iY :

∏
(b : B),Y (inP b). Then we

have a term

coh :
∏

(a : A), (p3 a)∗(iY b1) = (p4 a)∗(iY b1)

Not difficult, but we need a term of type∏
(P : B → Type)

∏
(f : A→ B)

∏
(p : x = y)

∏
(z : P(f x)),

p
λa,P(f a)
∗ z = (ap f p)P∗ z

This follows by path induction.
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Elimination Rule of pcoeq (Correct Attempt)

With the coherency we can give the right elimination rule.

` Y : pcoeq A B f g → Type

` iY :
∏

(b : B),Y (inP b)

` gY :
∏

(a : A), (coh a)−1 • apD iY (p3 a) = apD iY (p4 a)

` pcoeqind(iY , gY ) :
∏

(x : pcoeq A B f g),Y x

Note:

apD iY (p3 a) : (p3)∗(iY b1) = iY b2

coh a : (p3 a)∗(iY b1) = (p4 a)∗(iY b1)

(coh a)−1 : (p4 a)∗(iY b1) = (p3 a)∗(iY b1)

(coh a)−1 • apD iY (p3 a) : (p4)∗(iY b1) = iY b2

apD iY (p4 a) : (p4)∗(iY b1) = iY b2
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The Three-HITs Theorem

Theorem (Three-HITs Theorem)

In Martin-Löf type theory extended with a coequalizers, path
coequalizers and homotopy colimits, we can interpret each higher
inductive type. This means that for each HIT we can define a type
with the same introduction, elimination and computation rules.
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The Three-HITs Theorem

In Coq:

I Extend the language with coequalizers, colimits and path
coequalizers (using axioms).

I Define signatures of HITs. This represents the given syntax of
HITs.

I A HIT on a signature is a type with interpretations of the
introduction, elimination and computation rules.

I Then the Three-HITs says: each signature has a HIT.
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Idea of the Proof

The constructions in the proof are complicated. We will
demonstrate it in an example.

For general H it works as follows.

I Sequence of approximations F : N→ Type.

I Add point constructors at every step. For c : A H → H we
look at F n + A(F n).

I Make identifications for path constructors whenever possible.

I Identify duplicate points or paths.

I The map F n→ F (n + 1) is composition of inclusions and
quotient maps.
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Idea of the Proof: Obstacles

Main obstacles: recursion.

I A constructor c : T → T and a path p : t = r also gives
paths ap c p.

I For the truncation

Inductive || ∗ || :=
| a : 1→ || ∗ ||
| p :

∏
(x , y : || ∗ ||)), x = y

We have p (a ∗) (a ∗) : a ∗ = a ∗, and a path
s : p (a ∗) (a ∗) = refl.
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Simple Example

No recursion.

Inductive I 1 :=
| c : A I 1 → I 1

| s : c 0 = c 1

Define A X = 2.
Construct F 0 as follows.

I Start with A 0 = 2.

I We can make the identifications. This gives the interval.
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We continue to F 1.

I Start with I 1 + 2.

I We can make the identification: we identify z and o in the
second component.

I We have I 1 + I 1 now.

I Two copies of z and o; identify them with coequalizer.

I Two copies of s: identify them with path coequalizer.

I This results in I 1.
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Idea of the Proof: Recursive Points

Now N1: natural numbers modulo 1.

Inductive N1 :=
| 0 : N1

| S : N1 → N1

| m : 0 = S 0.

We also need the paths ap S m.
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Idea of the Proof: Recursive Points

Start with F 0.

I We add a point 0.

I No identifications can be made.
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Idea of the Proof: Recursive Points

For F 1:

I Add points 0′ and S 0.

I Identify 0 and S 0 (path constructor).

I Identify 0 and 0′ (duplicates).
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Idea of the Proof: Recursive Points

In F 2 we want to find ap S m.

I We start with F 1 + A(F 1) = F 1 + (1 + F 1).

I Successor of x : F 1 is in3 x in f 2.

I Then ap S m is ap in3 m in F 2.
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Idea of the Proof: Recursive Paths

Truncation of the point.

Inductive || ∗ || :=
| a : 1→ || ∗ ||
| p :

∏
(x , y : || ∗ ||)), x = y
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Idea of the Proof: Recursive Paths

Start with F 0.

I We add a point a.

I Add a path p a a : a = a.

I No duplicates.

This gives S1.
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Idea of the Proof: Recursive Paths

The interesting thing happens at F 1.

I We add a point a′.

I Add a path p a′ a′ : a′ = a′.

I We identify a and a′ and p a a and p a′ a′.

I But more happens.
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Idea of the Proof: Recursive Paths

I Let’s focus on the first S1.

I For x , y : S1 we add a path p x y : x = y .

I This is not S1.
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Idea of the Proof: Recursive Paths

Basically, the following construction happens.

Inductive |A| (A : Type) :=
| a : A→ |A|
| p :

∏
(x , y : A), a x = a y

|A|, | |A| |, . . .
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Conclusion

I Finitary HITs can be constructed from three simple HITs.

I The construction is done in type theory.

I Disadvantage: the acquired computation rules are
propositional equalities.

I More details and Coq code can be found on:
https://github.com/nmvdw/Three-HITs
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