Bicategories in Univalent Foundations

Benedikt Ahrens Dan Frumin Marco Maggesi **Niels van der Weide**

June 26, 2019

This Talk in Under A Minute

- ▶ We studied bicategories in UF
- We defined the notion of univalent bicategory
- We defined the notion of displayed bicategory
- We used displayed bicategories to construct univalent bicategories
- This way, we constructed univalent bicategories of pseudofunctors, CwFs, and algebraic structures
- ▶ We formalized this in UniMath

Getting higher and higher, but why?

- ► Categories are useful for reasoning about structures like sets, groups, rings, ...
- But less so for categories (category of categories).
- Bicategories come into play!

Briefly: bicategories are a tool to study structures like categories.

Even the types!?

We work in univalent foundations:

- Equality is proof relevant (goodbye UIP)
- Interpretation in simplicial sets (types are spaces, terms are points, equalities are paths, equalities between equalities are homotopies, ...)
- Univalence Axiom (equality of types is isomorphism)

Let's put them together!

We are interested in numerous examples:

- ▶ 1-types and groupoids (to study HITs)
- comprehension categories and CwFs (for the semantics of TT)

These have the structure of **bicategories**.

For these two applications: we need a formalization of bicategories.

The Basics: Categories

Definition

A category C consists of

- ▶ A type C_0 of *objects*
- ▶ For $X, Y : C_0$ a set $C_1(X, Y)$ of morphisms
- ▶ *Identities* $id_X : C_1(X, X)$
- ▶ A composition function \circ : $C_1(Y, Z) \times C_1(X, Y) \rightarrow C_1(X, Y)$
- ▶ An equality $id_Y \circ f = f$ (left unitality)
- ▶ An equality $f \circ id_X = f$ (right unitality)
- ▶ An equality $h \circ (g \circ f) = (h \circ g) \circ f$ (associativity)

The Basics: Categories

Definition

A category C consists of

- ▶ A type C_0 of *objects*
- ▶ For $X, Y : C_0$ a set $C_1(X, Y)$ of morphisms
- ▶ *Identities* $id_X : C_1(X, X)$
- ▶ A composition function \circ : $C_1(Y, Z) \times C_1(X, Y) \rightarrow C_1(X, Y)$
- ▶ An equality $id_Y \circ f = f$ (left unitality)
- ▶ An equality $f \circ id_X = f$ (right unitality)
- ▶ An equality $h \circ (g \circ f) = (h \circ g) \circ f$ (associativity)

What's that set doing there?

In UF: a **set** is a type for which all proofs of equality are equal.

Recall: we work in a setting with proof relevant equality.

Examples of sets: \mathbb{N} , unit type.

These are not: the type of types, functors between categories.

We need it, because equality on arrows give higher structure.

From Categories to Bicategories

Definition

A category C consists of

- ▶ A type C_0 of objects
- ▶ For $X, Y : C_0$ a **set** $C_1(X, Y)$ of morphisms
- ▶ Identities $id_X : C_1(X, X)$
- ▶ A composition function \circ : $C_1(Y, Z) \times C_1(X, Y) \rightarrow C_1(X, Y)$
- ▶ An **equality** $id_Y \circ f = f$ (left unitality)
- ▶ An **equality** $f \circ id_X = f$ (right unitality)
- ▶ An **equality** $h \circ (g \circ f) = (h \circ g) \circ f$ (associativity)

From Categories to Bicategories

Definition

A **bicategory** C consists of

- ▶ A type C_0 of objects
- ▶ For $X, Y : C_0$ a **category** $C_1(X, Y)$ of morphisms
- ▶ Identities $id_X : C_1(X, X)$
- ▶ A composition **functor** \circ : $C_1(Y, Z) \times C_1(X, Y) \rightarrow C_1(X, Y)$
- ▶ A **natural iso** $id_Y \circ f \Rightarrow f$ (left unitalit**or**)
- ▶ A **natural iso** $f \circ id_X \Rightarrow f$ (right unitalit**or**)
- ▶ A **natural iso** $h \circ (g \circ f) \Rightarrow (h \circ g) \circ f$ (associator) such that (big scary coherencies)

Now let's implement it

Note: for the implementation, use an unfolded definition. This separates data and properties, so

Definition

A bicategory $\mathcal C$ consists of

- ▶ A type C_0 of 0-cells
- ▶ For $X, Y : C_0$ a type $C_1(X, Y)$ of 1-cells
- ▶ For $f, g : C_1(X, Y)$, a **set** $C_2(f, g)$ of 2-cells
- ▶ Identities $id_2(f) : C_2(f, f)$ for $f : C_1(X, Y)$
- ▶ Compositions $\beta \circ \alpha$ for $\beta : C_2(g, h)$ and $\alpha : C_2(f, g)$
- (and more)

Our Favorite Bicategories

Some examples of bicategories:

- Categories
- Groupoids
- ► 1-types
- Comprehension Categories
- Categories with Families (CwFs)

All seems good, but...

This might look good, but

- UF has a model in simplicial sets
- ▶ We want "our bicategories" to be interpreted as actual set-theoretic bicategories in this interpretation
- But for that, we need an extra condition

They need to be univalent!

Univalent category: equality of objects = isomorphisms Now for bicategories:

- ▶ Note: equivalence for 0-cells is *adjoint equivalence*
- ▶ Note: equivalence for 1-cells is *invertible 2-cells*

A bicategory is univalent if

- equality on 0-cells = adjoint equivalence
- equality on 1-cells = invertible 2-cells

And they are

Examples of univalent bicategories

- univalent categories
- ▶ 1-types
- univalent groupoids

But what about CwFs?

And they are

Examples of univalent bicategories

- univalent categories
- ► 1-types
- univalent groupoids

But what about CwFs? Difficult to show directly!

Build Them with Displayed Bicategories!

Build bicategories from small simple parts

We need new machinery

- ► Tool: **displayed bicategories** (see: displayed categories)
- ► Then: define bicategories by adding layers of structure

Main point: each displayed bicategory $\mathcal D$ over $\mathcal B$ gives rise to a total one.

This is \mathcal{B} with the additional structure described by \mathcal{D} .

Let's put them into action: categories with an operation

- Our wish: categories with a binary operation
- Build it from the bicategory of categories

Define a displayed bicategory D over categories

- ▶ Displayed 0-cells over C: functors $m_C: C \times C \to C$
- ▶ Displayed 1-cells $F: C \to D$ from m_C to m_D : natural transformations

$$F \circ m_C \Rightarrow m_D \circ (F, F)$$

Displayed 2-cells: (longer formula)

This gives a total bicategory E. It is the bicategory of category with an operation.

16/20

But we also wanted commutativity

▶ But now I want (C, m_C) with a natural transformation

$$m_C \Rightarrow m_C \circ \sigma$$

(σ switches the arguments)

Build them from categories with an operation!

Define a displayed bicategory D' over E (from last slide)

- ▶ Displayed 0-cells over (C, m_C) : natural transformations $m_C \Rightarrow m_C \circ \sigma$
- Displayed 1-cells and 2-cells have more complicated formulae.

The total bicategory: categories with a commutative operation. Note: we reused previous definitions.

More Complicated Examples

We can use it to make complicated bicategories:

- Pseudofunctors between bicategories
- Algebraic structures
- CwFs

And now: univalence with displayed bicategories

Theorem

Let B be a bicategory and let D be a displayed bicategory on B. If both B and D are univalent, then so is the total bicategory of D.

We use this to prove univalence of

- Pseudofunctors between bicategories (if target is univalent)
- ► Algebraic structures
- CwFs

Reason about small edible pieces rather than huge chunks

Take-Home Message

With displayed bicategories one can conveniently construct complicated bicategories layerwise and prove their univalence

Note: all is formalized in UniMath.