
(FP Dag 2026)

A Geneaology of Functional
Programming Languages

Prepared by Philip KALUÐERČIĆ
https://cs.ru.nl/~pkal/pub/gfp/

Presented on 2026-01-09, last typeset on January 8, 2026

https://fpday26.cs.ru.nl/HomePage
https://cs.ru.nl/~pkal/pub/gfp/


The Conventional Summary. . .

1. λ-Calclus (1936)
2. LISP (1958) — Implemented λ-Calculus
3. ML (1978) — Add Static Types
4. Haskell (1989) — Add Monads

5. Java 8/C++ 11/Rust/... — FP becomes
mainstream/sells out?



The Conventional Summary. . .

1. λ-Calclus (1936)
2. LISP (1958) — Implemented λ-Calculus
3. ML (1978) — Add Static Types
4. Haskell (1989) — Add Monads
5. Java 8/C++ 11/Rust/... — FP becomes

mainstream/sells out?



History is messy. . .

and life imitates art!



History is messy. . .
and life imitates art!



Figure 1. From Church’ “An Unsolvable Problem of
Elementary Number Theory” (1936)



Figure 2. From Chrch’ “A Formulation of the Simple
Theory of Types” (1940)



Figure 3. From Curry’s “Grundlagen der
Kombinatorischen Logik” (1930)



These are all formal systems, not programming
languages!

A caricature of PL history:
1950s: What are programming languages?
1960s: What else can programming languages be?
1970s: What do programming languages need to
be?
1980s: What do programming languages need?
1990s: What do programmers need?
2000s: How do programming languages scale?
. . .



These are all formal systems, not programming
languages!

A caricature of PL history:
1950s: What are programming languages?
1960s: What else can programming languages be?
1970s: What do programming languages need to
be?
1980s: What do programming languages need?
1990s: What do programmers need?
2000s: How do programming languages scale?
. . .



Figure 4. The “Maxwell-Equations of Software” from the
LISP 1.5 Programmers Manual (1962)



Lisp

▶ Not first that manipulates expressions
(BACAIC)

▶ New: (Proper) Conditional Expressions,

“Language ∼= Encoding”

▶ Real-world code was imperative and
FORTRAN then ALGOL-like

▶ Not until Scheme (1975) was lexical scoping
and TCO implemented



Figure 5. An example of the prog macro from the
MacLisp manual (1974)



Figure 6. From Knuth’s “The Early Development of
Programming Languages” (1975); ADES was implemented
in 1956



Figure 7. From Knuth’s “The Early Development of
Programming Languages” (1975)



Figure 8. ISWIM: From Landin’s “The Next 700
Programming Languages” (1966)



If You See What I Mean

▶ A family of idealized languages
▶ Syntactically a variation of ALGOL with

more “mathematical notation”
▶ Never implemented, but inspired many

subsequent languages (POP-2,
GEDANKEN, PAL)

▶ Introduces where and let notation



An important distinction is the one between in-
dicating what behavior, step-by-step, you want
the machine to perform, and merely indicating
what outcome you want. [...]

The word “denotative” seems more appropri-
ate than nonproeedural, declarative or functional.
The antithesis of denotative is “imperative.” —
Landin



An important distinction is the one between in-
dicating what behavior, step-by-step, you want
the machine to perform, and merely indicating
what outcome you want. [...]
The word “denotative” seems more appropri-
ate than nonproeedural, declarative or functional.
The antithesis of denotative is “imperative.” —
Landin



Figure 9. From “Hope: An Experimental Applicative
Language” (1980)



Pattern Matching

▶ NPL (1977) and HOPE (1988) implement
pattern matching as control flow!

▶ (They implemented “set/list
comprehension”)

▶ Not the first: Refal (1968, Turchin)
preceded

▶ Pattern-matching on input: SNOBOL
(1962), AWK (1977)



Fact { 0 = 1;
s.N = <* s.N <Fact <- s.N 1>>>; }

Fact { s.n = <Loop s.n 1>; };
Loop {

0 s.f = s.f;
s.n s.f = <Loop <- s.n 1> <* s.n s.f>>; }

Figure 10. An example from the “Refal” Wikipedia page



Figure 11. From Griswold’s “The SNOBOL 4
Programming Language” (1968/71)



1978 ML; 1985: CAML; 1996: OCaml

▶ ML := ISWIM with type inference (also
exceptions)!

▶ LCF ML used as language for tactics
▶ New: Strong, Polymorphic Type Inference
▶ With inspiration from HOPE, it matured

into Standard ML (1983-1989, 1997)
▶ CAML (1985), OCaml (996) developed in

INRIA
▶ Inspired F# (2005), Rust (2006), Rocq

(1989)



1978 ML; 1985: CAML; 1996: OCaml

▶ ML := ISWIM with type inference (also
exceptions)!

▶ LCF ML used as language for tactics

▶ New: Strong, Polymorphic Type Inference
▶ With inspiration from HOPE, it matured

into Standard ML (1983-1989, 1997)
▶ CAML (1985), OCaml (996) developed in

INRIA
▶ Inspired F# (2005), Rust (2006), Rocq

(1989)



1978 ML; 1985: CAML; 1996: OCaml

▶ ML := ISWIM with type inference (also
exceptions)!

▶ LCF ML used as language for tactics
▶ New: Strong, Polymorphic Type Inference

▶ With inspiration from HOPE, it matured
into Standard ML (1983-1989, 1997)

▶ CAML (1985), OCaml (996) developed in
INRIA

▶ Inspired F# (2005), Rust (2006), Rocq
(1989)



1978 ML; 1985: CAML; 1996: OCaml

▶ ML := ISWIM with type inference (also
exceptions)!

▶ LCF ML used as language for tactics
▶ New: Strong, Polymorphic Type Inference
▶ With inspiration from HOPE, it matured

into Standard ML (1983-1989, 1997)

▶ CAML (1985), OCaml (996) developed in
INRIA

▶ Inspired F# (2005), Rust (2006), Rocq
(1989)



1978 ML; 1985: CAML; 1996: OCaml

▶ ML := ISWIM with type inference (also
exceptions)!

▶ LCF ML used as language for tactics
▶ New: Strong, Polymorphic Type Inference
▶ With inspiration from HOPE, it matured

into Standard ML (1983-1989, 1997)
▶ CAML (1985), OCaml (996) developed in

INRIA

▶ Inspired F# (2005), Rust (2006), Rocq
(1989)



1978 ML; 1985: CAML; 1996: OCaml

▶ ML := ISWIM with type inference (also
exceptions)!

▶ LCF ML used as language for tactics
▶ New: Strong, Polymorphic Type Inference
▶ With inspiration from HOPE, it matured

into Standard ML (1983-1989, 1997)
▶ CAML (1985), OCaml (996) developed in

INRIA
▶ Inspired F# (2005), Rust (2006), Rocq

(1989)



absrectype * tree = * + * tree # * tree
with leaf n = abstree(inl n)
and node (t1, t2) = abstree(inr(t1, t2))
and isleaf t = isl(reptree t)
and leafval t = outl(reptree t) ? failwith ’leafval’
and leftchild t = fst(outr(reptree t) ? failwith ’leftchild’
and rightchild t = snd(outr(reptree t) ? failwith ’leftchild’

(Example from Leroy’s “25 years of OCaml”)



Figure 12. From Millner’s “A Theory of Type
Polymorphism in Programming” (1978)



LCF ML as “typed Lisp”
(1978)

letrec sumtree t =
if isleaf t then

leafval t
else

sumtree (leftchild t)
+ sumtree (rightchild t)

Core ML toward SML (1983)

type ’a tree =
| Leaf of ’a
| Node of ’a tree

* ’a tree

let rec sumtree t =
match t with
| Leaf n -> n
| Node (l, r) ->

sumtree l
+ sumtree r



Figure 13. From the “APL\360 User Manual” (1968)



Figure 14. From Backus’ “ Can Programming Be
Liberated from the von Neumann Style” (1977)



▶ Backus introduced FP in his 1977 Turing
Award Paper, inspired by APL

▶ Focus is on combinations of “functional
forms”

▶ Functionals: Composition, conditionals,
apply-to-all, insert-right

▶ Untyped, not based on λ-Calculus,
succeeded by FL



David Turner

▶ SASL (1976) implemented the functional
subset of ISWIM

▶ Initially eager, later turned lazy
▶ Used as Burroughs to implement an

Operating System
▶ Turner later developed KRC (1982) and

Miranda (1985)
▶ None of these functions hat λ Expressions
▶ Miranda was proprietary software, interest in

a free alternative spawned Haskell



Figure 15. SASL: From Turner’s “A New Implementation
Technique for Applicative Languages” (1979)



Figure 16. From Turner’s “Miranda: A non-strict
functional language with polymorphic types” (1985)



Haskell (1989)
▶ Lazy Evaluation grew more popular from

late 70’s onwards.
▶ Designed in late 1980s to concentrate

disparate efforts (Miranda, Lazy ML, Orwell,
Alfl, Id, . . . ).

▶ Goal: A pure, lazy, functional language
standard

▶ “Type classes” used to solve SML’s eq-type
and arithmetic-overloading Problems

▶ Initially many implementations, over time
Haskell became GHC defacto



More Languages worth Mentioning
Curry (1995) Extends pattern-matching with a

special form of Prolog-like unification
Lucid (1985) A “dataflow language” where each

program generates a stream of values
Clean (1987) Use of “uniqueness types” as

opposed to monads
Erlang (1986) A distributed programming

language inspired by the Actor model
Idris (2007) Dependent types in a “real-world”

language (+ more)
Unison (2017) Effect system in a “real-world”

language (+ more)



Figure 17. From Curry’s homepage



Closing Comments and Questions

▶ What is the sine qua non of functional
programming? (functions, lambdas, static
types, composition, pattern matching,
referential transparency, . . . )

▶ Is functional programming really declarative?
▶ Will functional programming be reduced to a

historical footnote, as the ideas are absorbed
into “mainstream” languages?



Closing Comments and Questions

▶ What is the sine qua non of functional
programming? (functions, lambdas, static
types, composition, pattern matching,
referential transparency, . . . )

▶ Is functional programming really declarative?

▶ Will functional programming be reduced to a
historical footnote, as the ideas are absorbed
into “mainstream” languages?



Closing Comments and Questions

▶ What is the sine qua non of functional
programming? (functions, lambdas, static
types, composition, pattern matching,
referential transparency, . . . )

▶ Is functional programming really declarative?
▶ Will functional programming be reduced to a

historical footnote, as the ideas are absorbed
into “mainstream” languages?


	Formal Systems
	Lisp
	ALGOL and ISWIM
	HOPE
	ML
	APL and FP
	SASL to Miranda
	Haskell
	Appendix

