(FP Dac 2026)
A Geneaology of Functional
Programming Languages

Prepared by Philip KALUPERCIC
https://cs.ru.nl/~pkal/pub/gfp/

Presented on 2026-01-09, last typeset on January 8, 2026

https://fpday26.cs.ru.nl/HomePage
https://cs.ru.nl/~pkal/pub/gfp/

The Conventional Summary. ..

. A-Calclus (1936)

. LISP (1958) — Implemented A-Calculus
. ML (1978) — Add Static Types

. Haskell (1989) — Add Monads

=~ W N =

The Conventional Summary. ..

Stk o=

A-Calclus (1936)

LISP (1958) — Implemented A-Calculus
ML (1978) — Add Static Types

Haskell (1989) — Add Monads

Java 8/C++ 11/Rust/... — FP becomes
mainstream/sells out?

History is messy. . .

History is messy. . .
and life imitates art!

2. Conversion and A-definability. We select a particular list of sym-
bols, consisting of the symbols {, 3}, (,), A, [,], and an enumerably infinite
set of symbols a, b, ¢,* - - to be called variables. And we define the word
formula to mean any finite sequence of symbols out of this list. The terms
well-formed formula, free variable, and bound variable are then defined by
induction as follows. A variable x standing alone is a well-formed formula
and the occurrence of x in it is an occurrence of x as a free variable in it;
if the formulas F and X are well-formed, {F}(X) is well-formed, and an
occurrence of x as a free (bound) variable in F or X is an occurrence of x
as a free (bound) variable in {F}(X); if the formula M is well-formed and
contains an occurrence of x as a free variable in M, then Ax[M] is well-formed,
any occurrence of x in Ax[M] is an occurrence of x as a bound variable in
Ax[M], and an occurrence of a variable y, other than x, as a free (bound)
variable in M is an occurrence of ¥ as a free (bound) variable in Ax[M].

Figure 1. From Church’ “An Unsolvable Problem of
Elementary Number Theory” (1936)

Iaa — A% a.

K aga = AMAYsTa

Oa' - Afaaxxaxa,

la’ —)\faama(faaxa);

2, — xfaa)‘xc(faa(faaxa))r
3o = MaalZa(faa(faa(faaTa))), ete.
Sa'u' — Rn«'.l'xfaalx¢:(,fm:(nc:l'faaxﬁl))-

Figure 2. From Chrch’ “A Formulation of the Simple
Theory of Types” (1940)

le =2z

Kzy ==z
Bzyz =z (yz)
Cxyz = z2y
Szyz = x2(yz).

Figure 3. From Curry’s “Grundlagen der
Kombinatorischen Logik” (1930)

These are all formal systems, not programming
languages!

These are all formal systems, not programming
languages!

A caricature of PL history:

1950s:
1960s:
1970s:

be?

1980s:
1990s:
2000s:

What are programming languages?
What else can programming languages be?
What do programming languages need to

What do programming languages need?
What do programmers need?
How do programming languages scale?

apply[fn;x;a] =
[atom[fn] ~ [eq[fn;CAR] - caar[x];
~ eq[fn;CDR] - cdar[x];
eq[fn; CONS] - cons[car[x];cadr[x]];
eq[fn;ATOM] - atom[car[x]};
eq[fn; EQ] - eq[car[x];cadr[x]};
T —apply[evallfn;a];x;a]];
eq[car[fn; LAMBDA] - eval[caddr[fn];pairlis[cadr[fn];x;a]];
eq[car[fn}; LABEL] - apply[caddr[fn];x;cons[cons[cadr[fn];

caddr[fn]);a]]]
eval[e;a] = [atom[e] = cdr[assoc[e;a]];
atom[car[e]]~
|ea[car[e].QUOTE] - cadr[e];
eq[car[e];COND] -~ evcon[cdr[e];a];

T - apply[car[e];evlis[cdr[e];a);a]);
T - apply[car[e];evlis[cdr[e];a];a]]

Figure 4. The “Maxwell-Equations of Software” from the
LISP 1.5 Programmers Manual (1962)

Lisp

Not first that manipulates expressions
(BACAIC)

New: (Proper) Conditional Expressions,
“Language = Encoding”

Real-world code was imperative and
FORTRAN then ALGOL-like

Not until Scheme (1975) was lexical scoping
and TCO implemented

(prog (x y 2) :x, ¥, 2 are prog variables

- temporaries.

(setq y (car w) z (cdr w)) ;W is a free wvariable.

loop
(cond ((null y) (return x))
((nul1 2) (go err)))
rejoin
(setq x (cons (cons {car y) (car z))
x))
(setq y (cdr y)
Z (cdr 2))
(go 1oop)
err
(break are-you-sure? t)
(setq z y)
(go rejoin))

Figure 5. An example of the prog macro from the

MacLisp manual (1974)

1 aoll:qoll,

2 f50=+/abscl"'501clcl,
5 4Py =Ty

4 dyoby = < b5 400, b3, 999,

2 ‘05 = f50 ay Ty

6 r, = -10 q,,

T ‘v'OquObO__fOble,

Figure 6. From Knuth’s “The Early Development of

Programming Languages” (1975); ADES was implemented
i 19KA

TPK: begin integer i; real y; real array a[0:10];
real procedure £(t); };%?%Nt’?}?% t;
f := sqrt(abs(t)) +5 xt t3;
for i := 0 step 1 until 10 do read(a[il);
£2£ i =10 EEEE -1 EEE££ 0 23
begin y := f(a[il);
if y > 40O then write(i,"T00 LARGE")
else write(i,y);
end

~

end.
NN

Figure 7. From Knuth’s “The Early Development of
Programming Languages” (1975)

Fb+20) + f@b—c)
where f(z) = z(z+a) E
f(b+2¢) + f(2b—c)
where f(x) = x(z+a)
and b = u/(u+1)
and ¢ = v/(v+1)
g(f where f(x) = ax?* + bz + ¢,
w/ (ut1),
v/(v+1))
where ¢(f, p, ¢) = [(p+2q, 2p—q)

Figure 8. ISWIM: From Landin’s “The Next 700
Programming Languages” (1966)

If You See What I Mean

» A family of idealized languages

» Syntactically a variation of ALGOL with
more “mathematical notation”

» Never implemented, but inspired many
subsequent languages (POP-2,
GEDANKEN, PAL)

» Introduces where and let notation

An important distinction is the one between in-
dicating what behavior, step-by-step, you want
the machine to perform, and merely indicating
what outcome you want. [...|

An important distinction is the one between in-
dicating what behavior, step-by-step, you want
the machine to perform, and merely indicating
what outcome you want. |...J

The word “denotative” seems more appropri-
ate than nonproeedural, declarative or functional.

The antithesis of denotative is “imperative.” —
Landin

module ordered_trees
Rubtype otree
pubconst empty, imsert, flatten

data otree == empty ++ tip(num)
++ node(otree#num#otree)

dec insert : num#otree -> otree
dec flatten : otree -> list num

--—- insert(n,empty) <= tip(n)
—-~ insert(n,tip(m))
<= n<m then node(tip(n),m,empty)
else node(empty,m,tip(n))
--- insert(n,node(t1,m,t2))
<= n<m then node(insert(n,t1),m,t2)
else node(t1,m,insert(n,t2))

-— flatten(empty) <= nil
--- flatten(tip(n)) <= [n]
--- flatten(node(tt,n,t2))
<= flatten(t1) <> (n::flatten(t2))

Figure 9. From “Hope: An Experimental Applicative
Language” (1980)

Pattern Matching

» NPL (1977) and HOPE (1988) implement
pattern matching as control flow!

» (They implemented “set/list
comprehension”)

» Not the first: Refal (1968, Turchin)
preceded

» Pattern-matching on input: SNOBOL
(1962), AWK (1977)

o

Fact { = 1;
s.N = <x s.N <Fact <= s.N 1>>>; }

Fact { s.n = <Loop s.n 1>; };
Loop {
0 s.f=s.1T;
s.n s.f = <Loop <- s.n 1> <x s.n s.f>>; }

Figure 10. An example from the “Refal” Wikipedia page

Recursive definitions can be quite complicated, as in the following example, which
recognizes a simple class of arithmetic expressions.

§ANCHOR = 1

VARIABLE = ANY('XYZ')

ADDOP = ANY('+-')

MULOP = ANY('*/')

FACTOR = VARIABLE | '(' #*EXp ')'

TERM = FACTOR | #*TERM MULOP FACTOR

EXP = ADDOP TERM | TERM | #*EXP ADDOP TERM
LOOP STRING = TRIM(INPUT) :F (END)

STRING EXP RPOS(0) :F (NOGOOD)

OUTPUT = STRING ' IS AN EXPRESSION.' : (LOOP)
NOGOOD OUTPUT = STRING ' IS NOT AN EXPRESSION.' : (LOOP)

END
Output for typical data is

X+Y*(2+4X) IS AN EXPRESSION.
X+Y+Z IS AN EXPRESSION.
XY IS NOT AN EXPRESSION.

Figure 11. From Griswold’s “The SNOBOL 4
Programming Language” (1968/71)

1978 ML; 1985: CAML; 1996: OCaml

» ML := ISWIM with type inference (also
exceptions)!

1978 ML; 1985: CAML; 1996: OCaml

» ML := ISWIM with type inference (also
exceptions)!
» LCF ML used as language for tactics

1978 ML; 1985: CAML; 1996: OCaml

» ML := ISWIM with type inference (also
exceptions)!

» LCF ML used as language for tactics

» New: Strong, Polymorphic Type Inference

1978 ML; 1985: CAML; 1996: OCaml

» ML := ISWIM with type inference (also
exceptions)!

» LCF ML used as language for tactics

» New: Strong, Polymorphic Type Inference

» With inspiration from HOPE, it matured
into Standard ML (1983-1989, 1997)

1978 ML; 1985: CAML; 1996: OCaml

>

>
>
>

ML := ISWIM with type inference (also
exceptions)!

LCF ML used as language for tactics
New: Strong, Polymorphic Type Inference

With inspiration from HOPE, it matured
into Standard ML (1983-1989, 1997)

CAML (1985), OCaml (996) developed in
INRIA

1978 ML; 1985: CAML; 1996: OCaml

>

>
>
>

ML := ISWIM with type inference (also
exceptions)!

LCF ML used as language for tactics
New: Strong, Polymorphic Type Inference

With inspiration from HOPE, it matured
into Standard ML (1983-1989, 1997)
CAML (1985), OCaml (996) developed in
INRIA

Inspired F# (2005), Rust (2006), Rocq
(1989)

absrectype * tree = * + * tree # * tree
with leaf n = abstree(inl n)
and node (t1, t2) = abstree(inr(tl, t2))
and isleaf t = isl(reptree t)
and leafval t = outl(reptree t) ? failwith ’leafval’
and leftchild t = fst(outr(reptree t) ? failwith ’leftchild’
and rightchild t = snd(outr(reptree t) ? failwith ’leftchild’

(Example from Leroy’s “25 years of OCaml”)

(1) As we said in the introduction, the addition of extra (primitive) type operators
such as X (Cartesian product), + (disjoint sum) and Zst (list forming), causes no
difficulty. Together with —, these are the primitive type operators in the language ML.
For X one has the standard polymorphic functions

pair: a — B — (a X f) (one could add the syntax (e, ') for pair (e)(e’)),
fst: o X B—

snd: o« X B — 8.

For -+, one has

inl: @« > o 4 B, inr: f—> a4 B (left and right injections),
outb a +B—a outria+ f—>pB (left and right projections),
isl: @ -+ B—> bool, isr: a + B — bool (left and right discriminators)

Figure 12. From Millner’s “A Theory of Type
Polymorphism in Programming” (1978)

LCF ML as “typed Lisp” Core ML toward SML (1983)
(1978)
type ’a tree =

| Leaf of ’a

| Node of ’a tree

* ’a tree

letrec sumtree t = let rec sumtree t =
if isleaf t then match t with
leafval t | Leaf n -> n

else | Node (1, r) —>

sumtree (leftchild t) sumtree 1

+ sumtree (rightchild t) + sumtree r

vIncalv

Z«<A IN B;d
J<(AL1]=B)/1pB
J<(J<1+(pB)-pA)/d
Z<(B[Jo.+ 1+1p41A,=4)/d

vIvifQle
T«A IN1 B
T«<A IN B
»2xJ<p T+ (~(1pT)ed«1+((pA)>|-/[11(2,14pT)pT)11)/T

W<'THE"
T«'THE MEN THEN WENT HOME.'
W IN T

W IN1 T

'ABA' IN 'NOWABABABABABABABA'
g 10 12 14 16

'ABA' IN1 'NOWABABABABABABABA'
12 16

Figure 13. From the “APL\360 User Manual” (1968)

5.2 A Functional Program for Inner Product

Def Innerproduct
= (Insert +)°(ApplyToAll X)-Transpose

Or, in abbreviated form:

Def IP = (/+)o(aX)oTrans.

Figure 14. From Backus’ “ Can Programming Be
Liberated from the von Neumann Style” (1977)

Backus introduced FP in his 1977 Turing
Award Paper, inspired by APL

Focus is on combinations of “functional
forms”

Functionals: Composition, conditionals,
apply-to-all, insert-right

Untyped, not based on A-Calculus,
succeeded by FL

David Turner

» SASL (1976) implemented the functional
subset of ISWIM

» Initially eager, later turned lazy

» Used as Burroughs to implement an
Operating System

» Turner later developed KRC (1982) and
Miranda (1985)

» None of these functions hat A Expressions

» Miranda was proprietary software, interest in
a free alternative spawned Haskell

steve (from 2)
where
fromn = n: from (n+1)
sieve (p : x) = p: sieve (filter x)
where
filter (n:x) =
nrem p = 0 — filter x;
n: filter x

Figure 6. The list of all the prime numbers

Figure 15. SASL: From Turner’s “A New Implementation
Technique for Applicative Languages” (1979)

abstype stack *
with empty :: stack *

isempty :: stack *->bool
push :: *->stack *->stack *
pop :: stack *->stack *
top :: stack *->x

stack * == [x]

empty = []

isempty x = (x=[])
push a x = a:x
pop(a:x) = x
top(a:x) = a

Figure 16. From Turner’s “Miranda: A non-strict
functional language with polymorphic types” (1985)

Haskell (1989)

» Lazy Evaluation grew more popular from
late 70’s onwards.

» Designed in late 1980s to concentrate
disparate efforts (Miranda, Lazy ML, Orwell,

Alfl, Id, ...).
» Goal: A pure, lazy, functional language
standard

» “Type classes” used to solve SML’s eq-type
and arithmetic-overloading Problems

» Initially many implementations, over time
Haskell became GHC defacto

More Languages worth Mentioning

Curry (1995) Extends pattern-matching with a
special form of Prolog-like unification

Lucid (1985) A “dataflow language” where each
program generates a stream of values

Clean (1987) Use of “uniqueness types” as
opposed to monads

Erlang (1986) A distributed programming
language inspired by the Actor model

Idris (2007) Dependent types in a “real-world”
language (+ more)

Unison (2017) Effect system in a “real-world”
language (+ more)

-- Returns the last number of a list.
last :: [Int] -> Int
last (_ ++ [x]) = X

-- Returns some permutation of a list.
perm :: [a] -> [a]
perm [] = [l
perm (X:Xs) insert (perm Xxs)
where insert ys =X ! Yys
insert (y:ys) =y : insert ys

Figure 17. From Curry’s homepage

Closing Comments and Questions

» What is the sine qua non of functional
programming? (functions, lambdas, static
types, composition, pattern matching,
referential transparency, . ..)

Closing Comments and Questions

» What is the sine qua non of functional
programming? (functions, lambdas, static
types, composition, pattern matching,
referential transparency, . ..)

» [s functional programming really declarative?

Closing Comments and Questions

» What is the sine qua non of functional
programming? (functions, lambdas, static
types, composition, pattern matching,
referential transparency, . ..)

» [s functional programming really declarative?

» Will functional programming be reduced to a
historical footnote, as the ideas are absorbed
into “mainstream” languages?

	Formal Systems
	Lisp
	ALGOL and ISWIM
	HOPE
	ML
	APL and FP
	SASL to Miranda
	Haskell
	Appendix

