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Introduction

X:F% S FZ x>y

yi = Xi + (Xit1 + 1)Xiq2

Investigate different forms of :

® as a map of n-periodic sequences;
® as a map of bi-infinite sequences;
® as a univariate polynomial;

® the function rule over other finite fields.
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X on n-periodic sequences

X on bi-infinite sequences

Univariate forms of y,

Bounds on univariate forms of x,

Number of univariate representations of x,

Polynomial automorphisms
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Known properties

® v\ is shift-invariant, we have y o 7 = 7 o x, with:
7 FZ S FZ x—y

Yi = Xi+1

® Restricting x to finite sequences of odd length, then it is bijective. [Daemen,1995]
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Definition
A state o € ]F% is called periodic when there exists an integer n > 1 such that
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Periodic states

Definition
A state o € ]F% is called periodic when there exists an integer n > 1 such that
m"(0) = 0.

® \We say that o is n-periodic.

® The minimal n for which o is n-periodic, is called the period of o.

® \We write ]}'?2 for the set of all periodic spaces.

® \We write ¥, for the set of n-periodic states.

The set of n-periodic spaces has 2" elements and is isomorphic to 7.

We can define x on IFAQ or as xp on Ff (here indices modulo n).
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Xn» and invertibility

Theorem (Daemen, 1995)

If n is odd, then x is invertible.

The ANF for X;l is given by [Liu, Sarkar, Meier, Isobe, 2022].
The map x,: F5 — FJ, for odd n, is an element of (Bij(F3), o).

Theorem
If n is odd, then the order of x, is 28]
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Example: x¢

1 time:

Name: 1-cycle
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Example: x¢
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Example: x¢

2 times:
a\
/ b— ¢
d \ ei/ f
Name: spin
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Example: x¢ summary

shape number number of states

1-cycle 1 1
2-cycle 12 24
4-cycle 6 24
prong 1 3

spin 2 12
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Example: x¢ summary

shape number number of states

1-cycle 1 1

2-cycle 12 24

4-cycle 6 24

prong 1 3

spin 2 12
64
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State diagram bigger example

We omit the zeroes in even positions, to obtain:

A M v A
100011 011100
~1007
4 »
111000 o11— =101 110001 =
Q. / ¥
001 m< 010
4 »,
~000111 001110 <
E T
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State diagram bigger example

We omit the zeroes in even positions, to obtain:

000001 111110
> 100011 011100~ 100110 000011 010110
- 011001 — 101011 000101 111010 < 101001
. , 111100 001111
+ 111000 o11— 101 110001 =
. / \ / ) 010100 010001
o m——____—0m 000100 001100/ S 110011 ~ 110000 < 010000
~ 000111 001110 < 111011 101110 101111
011010 100101

11/38



S ELGS

® States that have a 1 in an odd position and a 1 in an even position, occur in
cycles;

12/38



S ELGS

® States that have a 1 in an odd position and a 1 in an even position, occur in
cycles;

® States that have all odd (or even) positions 0 (name: S, ) occur in snowflake-like
components;

12/38



S ELGS

® States that have a 1 in an odd position and a 1 in an even position, occur in
cycles;

® States that have all odd (or even) positions 0 (name: S, ) occur in snowflake-like
components;

® These states can be represented by polynomials:

12/38



S ELGS

® States that have a 1 in an odd position and a 1 in an even position, occur in
cycles;

® States that have all odd (or even) positions 0 (name: S, ) occur in snowflake-like
components;

® These states can be represented by polynomials:

n—1
(Xo, 0, X1, 0, ey Xn—1, O) — inxn—(i-H)
i=0

12/38



S ELGS

® States that have a 1 in an odd position and a 1 in an even position, occur in
cycles;
® States that have all odd (or even) positions 0 (name: S, ) occur in snowflake-like
components;
® These states can be represented by polynomials:
n—1
(Xo, 0,x1,0,...,xp-1, 0) — ZX,'XH_(H—I)
i=0

® Then X, is just multiplication by 1 + X modulo X" + 1.

12/38



S ELGS

® States that have a 1 in an odd position and a 1 in an even position, occur in
cycles;

® States that have all odd (or even) positions 0 (name: S, ) occur in snowflake-like
components;

® These states can be represented by polynomials:

n—1
(Xo, 0, X1, 0, ey Xn—1, O) — inxn—(i-H)
i=0

® Then X, is just multiplication by 1 + X modulo X" + 1.
REASON:

X(x0,0,x1,0,...,x,-1,0) = (x0 + x1,0,x1 + x2,0, ..., Xp—1 + X0, 0)
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Snowflakes: Statements

Proposition
Let n=2m with m > 1 an odd integer. Then the length of the cycle in a snowflake
is a divisor of 2° — 1, where o = ordy/y,7(2).
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Snowflakes: Statements

Proposition
Let n=2m with m > 1 an odd integer. Then the length of the cycle in a snowflake
is a divisor of 2° — 1, where o = ordy/y,7(2).

Proposition

The length of the cycle in snowflakes of period n with 5 = 2K m with m > 1 odd, is
2k times the length of the cycle in the snowflakes of period n with 53 =m.

Theorem

Let 0 = (00, ...,0n-1)" be a state in Spo. We have that o is in the cycle if and only
if £,(X) has exactly 2= divisors X + 1.

Furthermore, if f,(X) has 2k~ — ¢ divisors X + 1, then x*(c) is in the cycle.

13/38



X is surjective on periodic states

e For even n, x, is not surjective, as 0", (10)"/2 and (01)"/2 all map to 0.
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e For even n, x, is not surjective, as 0", (10)"/2 and (01)"/2 all map to 0.
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X is surjective on periodic states

e For even n, x, is not surjective, as 0", (10)"/2 and (01)"/2 all map to 0.

Thus, there exists some y € F] such that x,(x) # y for all x € F3.

® However, there exists a z € F3” such that x2,(z) = y||y.

We see that every element in ¥, has a preimage in Xo,.

14/38



x on bi-infinite sequences
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Surjective on periodic states

Proposition

x: Fo — Fy is surjective.

REASON: Every element x € ﬁ‘; has a period n, so is in X,. Then either it has a
preimage in X, or it has a preimage in X5, C Fo. AN

Can we give a concrete explanation whether y: IF% — F% is surjective?
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Intermezzo: Non-periodic state

Define a sequence (A(M)> ) by
A =1 and AT = A(M)0"1

Let A = lim A,

n—oo

For every n < 0, we set A, = A_,,.

A =-.-00010010111010010001000010000010000001000000010000000010000000 - - -

17/38



Non-constructive proof that x: FZ — FZ is surjective.
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Non-constructive proof that x: FZ — FZ is surjective.

Take [, with the discrete topology and extend it to the product topology on F%. Then
Fy C IF% is dense and IE‘% is a compact Hausdorff space, by Tychonoff's Theorem.

Theorem (Tikhonov, 1935)
Let (X, T) be a compact Hausdorff space and let A C X be dense. Let f: X — X be
a continuous map such that fiy: A — A is surjective. Then f is surjective.

Since, with x(x) =y, each y; depends on only three bits of x, x is continuous in the
product topology, and thus x is surjective.

18/38



Univariate forms of y,
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Univariate expressions

Choosing an isomorphism (of vector spaces) from F5 to Fan: X, as a univariate
polynomial function: xh(t).

In practice: interpolation on the inputs and outputs for y, to obtain x!(t).

Different outcomes for x“(X) possible.

Example: x4(t) = t° (With specific choice of basis {a3,a® a®} and
F3 — Fs, (a,b,c) — aa® + bab + ca’.)

20/38
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Power functions

A power function is a function (—)¢: Fan — Fon, t — t€.

Invertible iff gcd(e,2" — 1) = 1.

ord((—)¢) = ordan_1(e).

® Fasy: x, is not a power function when n even.

xn((01)"/2) = 0" = «° = 0 for some non-zero a € Fon. JAN
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Power functions

® A power function is a function (—)¢: Fan — Fon, t — t€.
Invertible iff gcd(e, 2" — 1) = 1.
ord((—)€) = ordan_1(e).

® Fasy: x, is not a power function when n even.

® |ess easy: xp is not a power function when n > 3.
If n > 3 is such that 2”7 — 1 is a prime number, then easy:
ord(xn) > 4, but (2" — 1) = 2" — 2 has only one factor 2. A
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Power functions

® A power function is a function (—)¢: Fon — Fon, t — t€.
® Invertible iff gcd(e, 2" — 1) = 1.
[ ]

ord((—)¢) = ordan_1(e).
® Easy: x, is not a power function when n even.

® | ess easy: X, is not a power function when n > 3.

Done by investigating the differential probabilities for x, and power functions.
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Differential distributions

Definition (Differential probability [Biham, Shamir, 2009])
Let f: G — H be a map between finite groups G and H. Let g € G and h € H be
arbitrary. Then we define the differential probability of f at (g, h) as

DP¢(g, h) = #{x € G [ f(x) — f(x — g) = h}/|G|.
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Differential distributions

Definition (Differential probability [Biham, Shamir, 2009])
Let f: G — H be a map between finite groups G and H. Let g € G and h € H be
arbitrary. Then we define the differential probability of f at (g, h) as

DP¢(g, h) = #{x € G [ f(x) — f(x — g) = h}/|G|.

input difference

X3 | 000 001 010 011 100 101 110 111

000 | 1 - - - - - - -
g 001 - s - s - s - 1/a
g 010 - - s  1/a - s 1/a
?3'0_—) 011 | - a  1/4 - a  1/4 -
_4; 100 | - - - - Vs s 1fa  1/a
%‘ 101 | - s - a  1a - s -
° 110 - - Vs L4 1a 1)a - -

111 | - s 1/a = 1/a = = 1/a

22/38



Differential distribution for y

Proposition (Differential probabilities for xy [Daemen,1995])
Let n > 1 be an arbitrary odd integer. Let a € F5 be arbitrary. Then for any
compatible b € F§ we have DP,, (a, b) = 2=%(3), where

n—1 ifa=1";
wt(a) + r else,

where r is the number of (cyclic) 001-substrings in a.
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Proposition (Differential probabilities for xy [Daemen,1995])
Let n > 1 be an arbitrary odd integer. Let a € F5 be arbitrary. Then for any
compatible b € F§ we have DP,, (a, b) = 2=%(3), where

n—1 ifa=1";
wt(a) + r else,

where r is the number of (cyclic) 001-substrings in a.

Let n > 3 be odd.

® 2=110""2 = DP,,(a,b) =

e =101 =

[ee]
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Differential distribution for y

Proposition (Differential probabilities for xy [Daemen,1995])
Let n > 1 be an arbitrary odd integer. Let a € F5 be arbitrary. Then for any
compatible b € F§ we have DP,, (a, b) = 2=%(3), where

n—1 ifa=1";
wt(a) + r else,

where r is the number of (cyclic) 001-substrings in a.

Let n > 3 be odd.

® 2=110""2 = DP,,(a,b) =
e J/=10"! = DP,,(d,b) =

D= 0=

23/38



Proposition (Differential probabilities under linear isomorphisms)

Let G = H be isomorphic groups. Let f: G — G be a map and let f: H— H be the
map induced through the isomorphism . Then DP (g, h) = DP¢(¢(g), o~ 1(h))
for all g, h € H.
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Let G = H be isomorphic groups. Let f: G — G be a map and let f: H— H be the
map induced through the isomorphism . Then DP (g, h) = DP¢(¢(g), o~ 1(h))
for all g, h € H.

Proposition (Differential probabilities for power functions [Blondeau, Canteaut,
Charpin, 2010])

Let 0 < e <2"—1 andlet f =(-)¢: Fon — Fon be a power function. Then

DP¢(a, b) = DP¢(ya, y¢b) for all y € F3,.
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Proposition (Differential probabilities under linear isomorphisms)

Let G = H be isomorphic groups. Let f: G — G be a map and let f: H— H be the
map induced through the isomorphism ¢. Then DP;(g, h) = DP¢(p(g),»*(h))
for all g, h € H.

Proposition (Differential probabilities for power functions [Blondeau, Canteaut,
Charpin, 2010])

Let 0 <e<2"—1 andlet f =(-)¢: Fon — Fon be a power function. Then

DP¢(a, b) = DP¢(ya, y€b) for all y € F3,.

Proof.
Substitute x := yy~1x =: yx’ in
DP¢(ya,y¢b) = #{x € Fan | x® + (x + ya)¢ = y°b}/2". O
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Proposition (Differential probabilities under linear isomorphisms)

Let G = H be isomorphic groups. Let f: G — G be a map and let f: H— H be the
map induced through the isomorphism . Then DP (g, h) = DP¢(¢(g), o~ 1(h))
for all g, h € H.

Proposition (Differential probabilities for power functions [Blondeau, Canteaut,
Charpin, 2010])

Let 0 < e <2"—1 andlet f =(-)¢: Fon — Fon be a power function. Then

DP¢(a, b) = DP¢(ya, y¢b) for all y € F3,.

Thus, we have that the rows of the DDT all have the same number of occurrences of
0,2,4,....

24 /38



X is not a power function and corollary

Theorem

Let n # 1,3 be a positive integer. Then x4 is not a power function.
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X is not a power function and corollary

Theorem

Let n # 1,3 be a positive integer. Then x4 is not a power function.

Corollary

There is no function F, that is extended affine equivalent to x, (i.e.,
AFn,B + C = xn), such that FY is a power function.
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® Fact: Since x, has degree 2, all exponents in x4(X) need to have binary
Hamming weight at most 2.
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Bounds on degrees

® Fact: Since x, has degree 2, all exponents in x4(X) need to have binary
Hamming weight at most 2.

® The degree of x4 is bounded by 2" — 1 (= #F3,).

e Combining, yields maximum degrees for y“: 2"—1 4 202,

n 3 5 7 9 11 13 15 17
maxdeg(xh) | 6 24 96 384 1536 6,144 24,576 98,304
2" -1 7 31 127 511 2,047 8,191 32,767 131,071
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Hamming weight at most 2.
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Bounds on sparsity

® Fact: Since x, has degree 2, all exponents in x4(X) need to have binary
Hamming weight at most 2.

® \,(0") = 0", so no constant term in x4(X).

® Number of monomials bounded by (1) + (3).

n 3 5 7 9 11 13 15 17
max. mon. in x5 | 6 15 28 45 66 91 120 153
2" 8 32 128 512 2,048 8,192 32,768 131,072
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Normal elements and normal bases

Definition (Normal basis)

Consider IFy C Fon. Then 8 € Fon is called a normal element of Fan over Fy if the set
B,B2,6%, ..., 82" "V is a linearly independent set.
y
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Definition (Normal basis)
Consider IFy C Fon. Then 8 € Fon is called a normal element of Fan over Fy if the set
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set, it is called a normal basis of Fan over .
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Normal elements and normal bases

Definition (Normal basis)
Consider IFy C Fon. Then 8 € Fon is called a normal element of Fan over Fy if the set
{5752,622, e ,,82"_1} is a linearly independent set. When considered as an ordered

set, it is called a normal basis of Fon over F.

Theorem

Let F: F5 — F7 be a shift-invariant map. Let 3 be a normal element of Fo» and
. n on—1

(pB.FZ—)]FQn, (Xo,...,Xn_l)'—)Xo,@—l—...—i—xn_lﬁ .
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Normal elements and normal bases

Definition (Normal basis)

Consider IFy C Fon. Then 8 € Fon is called a normal element of Fan over Fy if the set
{ﬁ,/32,622, . ,,82"_1} is a linearly independent set. When considered as an ordered
set, it is called a normal basis of Fon over F.

Theorem

Let F: F5 — F7 be a shift-invariant map. Let 3 be a normal element of Fo» and
wp: F5 = Fon, (X0,..-,Xn—1) = X0B8 + ...+ x,,_152n71. Consider the map

FU: Fan — Fan defined by FY := g o F o pg™.
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Normal elements and normal bases

Definition (Normal basis)
Consider IFy C Fon. Then 8 € Fon is called a normal element of Fan over Fy if the set

{5752,622, e ,,82"_1} is a linearly independent set. When considered as an ordered
set, it is called a normal basis of Fon over F.

Theorem

Let F: F5 — F7 be a shift-invariant map. Let 3 be a normal element of Fo» and
wp: F5 = Fon, (X0,..-,Xn—1) = X0B8 + ...+ x,,_152n71. Consider the map

FY: Fon — Fon defined by F“ := pgo F o gpgl. Then FY is a polynomial function
with FY(X) € Fa[X].
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Different univariate expressions

® For Fon := [ X]/(f(X)) with deg f = n. The choice of the polynomial does not
matter!

® Choosing an (ordered) normal basis gives xh € Fo[X].
e Different normal elements possible.

Theorem (Number of normal elements (Ore, 1934))

Let n > 1 be an integer. There exist precisely (X" — 1)/n normal elements in Fan
(w.r.t. Fy).

e Different orderings of the normal basis possible.
There are ¢(n) different orderings given a normal element.
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Number of normal elements

Theorem (Number of normal elements (Ore, 1934))

Let n > 1 be an integer. There exist precisely ®(X" — 1)/n normal elements in Fon
(W.r.t. Fg).
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Number of normal elements

Theorem (Number of normal elements (Ore, 1934))
Let n > 1 be an integer. There exist precisely ®(X" — 1)/n normal elements in Fon
(W.r.t. Fg).

Definition
For a polynomial f(X) € Fa[X] we have ®»(f(X)) = #(F2[X]/(f(X))*.

Example
If f is irreducible, then ®(f(X)) = 2de8f — 1.

Let F(X) = X*+ X3+ X + 1, then ®(f) = d(X2+ 1)Po(X2+ X + 1)
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Number of normal elements

Theorem (Number of normal elements (Ore, 1934))
Let n > 1 be an integer. There exist precisely ®(X" — 1)/n normal elements in Fon
(W.r.t. Fg).

Definition
For a polynomial f(X) € Fa[X] we have ®»(f(X)) = #(F2[X]/(f(X))*.

Example
If f is irreducible, then ®(f(X)) = 2de8f — 1.

Let F(X) = X*+ X3+ X + 1, then ®y(f) = ®(X2+1)P(X2+ X +1) =2-3 =6.
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Let gcd(k, n) = 1. Solve the equation ¢ o Tk =()%0 ¢% for o € 5. We have
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Let gcd(k, n) = 1. Solve the equation ¢ o Tk =()%0 ¢% for o € 5. We have
o(0) = 0, since xj is shift-invariant.

n=5 k=3:

2 (1) (2) +(3) (4)
(X0, X1, X2, X3, Xa) ———= x08 + x18%" + x8%"" +x38%" + xa/3?

I(-)2

1)+1 o(2)+1 o
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Number of orderings of the normal basis

Let ged(k, n) = 1. Solve the equation ¢ o 7 = (-)? 0 ¢ for o € S,. We have
o(0) = 0, since x4, is shift-invariant.

n=5, k=3:

?5 (1) (2) o(3) o(4)
(X0, X1, X2, X3, Xg) ———=x0 8 + x18%7 + 382" + x38% + x5

I(Y

o(1)+1 o(2)+1 o
73 %082 + 38 + 3B + xa 82

(1) (2 (3) 4)
(X3, X4, X0, X1, X2) e x3B + xaB% 4+ x0B8% 7 + B + xB%
5
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+ xa 3
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Number of orderings of the normal basis

Let gcd(k, n) = 1. Solve the equation ¢ o Tk =()%0 ¢% for o € 5. We have
o(0) = 0, since xj is shift-invariant.

n=5 k=3:

¢ (1) (2) *(3) o(4)
(X0, X1, X2, X3, Xa) ———= x08 + x18%" + x8%" +x38%" + xa/3°

I(-)2

o(2)+1 o
20(2) —|-X3ﬁ2(

o(1) (2) o(3) o(4)
(X3, X4, X0, X1, X2) — x3B + xaB% 4+ x0B8% + x1 8% + x5
B

1)+1 3)+1

o o(4)+1
3 x08% + x132 + %8 + x4 8

0=0(3)+1,
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Number of orderings of the normal basis

Let gcd(k, n) = 1. Solve the equation ¢ o Tk =()%0 ¢% for o € 5. We have
o(0) = 0, since xj is shift-invariant.

n=5 k=3:

¢ (1) (2) *(3) o(4)
(X0, X1, X2, X3, Xa) ———= x08 + x18%" + x8%" +x38%" + xa/3°

I(-)2

o(2)+1 o
+ x0 32 = X3ﬁ2

o(1) (2) o(3) o(4)
(X3, X4, X0, X1, X2) — x3B + xaB% 4+ x0B8% + x1 8% + x5
B

1)+1 3)+1

o o(4)+1
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Number of orderings of the normal basis

Let gcd(k, n) = 1. Solve the equation ¢ o Tk =()%0 ¢% for o € 5. We have
o(0) = 0, since xj is shift-invariant.

n=5 k=3:

¢ (1) (2) *(3) o(4)
(X0, X1, X2, X3, Xa) ———= x08 + x18%" + x8%" +x38%" + xa/3°

I(-)2

o(2)+1 o
+ x0 32 = X3ﬁ2

o(1) (2) o(3) o(4)
(X3, X4, X0, X1, X2) — x3B + xaB% 4+ x0B8% + x1 8% + x5
B

1)+1 3)+1

o o(4)+1
73 x0B% + x1 32 + X 32
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Number of orderings of the normal basis

Let gcd(k, n) = 1. Solve the equation ¢ o Tk =()%0 ¢% for o € 5. We have
o(0) = 0, since xj is shift-invariant.

n=5 k=3:

¢ (1) (2) *(3) o(4)
(X0, X1, X2, X3, Xa) ———= x08 + x18%" + x8%" +x38%" + xa/3°

I(-)2

o(2)+1 o
+ x0 32 = X3ﬁ2

o(1) (2) o(3) o(4)
(X3, X4, X0, X1, X2) — x3B + xaB% 4+ x0B8% + x1 8% + x5
B

1)+1 3)+1

o o(4)+1
73 x0B% + x1 32 + X 32

0=03)+1, o(1)=0(4)+1, o(2)=1, o(3)=0(1)+1,
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Number of orderings of the normal basis

Let gcd(k, n) = 1. Solve the equation ¢ o Tk =()%0 ¢% for o € 5. We have
o(0) = 0, since xj is shift-invariant.

n=5 k=3:

¢ (1) (2) *(3) o(4)
(X0, X1, X2, X3, Xa) ———= x08 + x18%" + x8%" +x38%" + xa/3°

I(-)2

o(2)+1 o
+ x0 32 = X3ﬁ2

o() () o(3) o(4)
(X3, Xa, X0, X1, X2) " x3B 4+ xaB% + x0B% + 8% + x28?

1)+1 3)+1

o o(4)+1
73 x0B% + x1 32 + X 32

0=03)+1, o(1l)=0(4)+1, o(2)=1, o(B)=0(1)+1, o(4) =0(2)+1.
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Number of orderings of the normal basis

Let ged(k, n) = 1. Solve the equation ¢ o 7 = (-)? 0 ¢ for o € S,. We have
o(0) = 0, since x4, is shift-invariant.

n=5, k=3:

?5 (1) (2) o(3) o(4)
(X0, X1, X2, X3, Xg) ———=x0 8 + x18%7 + 382" + x38% + x5

I(Y

o(1)+1 o(2)+1 o
73 %082 + 38 + 3B + xa 82

(1) (2 (3) 4)
(X3, X4, X0, X1, X2) e x3B + xaB% 4+ x0B8% 7 + B + xB%
5

3)+1 o(4)+1
+ xa 3

Thus: 0 =(1342).
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® For what finite fields ' is a map &,: F” — ", defined by
¥i = Xi + (Xip1 + 1)xipo

invertible?
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® For what finite fields F is a map &,: 7 — F”, defined by
Yi = Xi + (Xit1 + 1)Xit2

invertible?

® Not for characteristic p > 2:
REASON: 0" + 0" and (p — 2)" — 0", as
yi=p—2+(p—1)(p—2)=p(p—2) A
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Yi = xi + (X1 + 1)xipo
invertible?
® Most general way to view such a map is as a polynomial map:
Definition (Polynomial map)

Let F[Xi,...,X,] be the polynomial ring in n indeterminates. A polynomial map
F:F" — F"is a map of the form

(X1y- ey xn) = (FL(xa, ooy Xn)y - oy Fa(X1,y - ooy Xn),

where Fi(X1,...,Xn) € F[X1,..., Xy].
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® For what finite fields ' is a map &,: F” — ", defined by

Yi = xi + (X1 + 1)xipo
invertible?
® Most general way to view such a map is as a polynomial map:
Definition (Polynomial map)

Let F[Xi,...,X,] be the polynomial ring in n indeterminates. A polynomial map
F:F" — F"is a map of the form

(X1y- ey xn) = (FL(xa, ooy Xn)y - oy Fa(X1,y - ooy Xn),
where Fi(X1,...,Xn) € F[X1,..., Xy].

® Related to the Jacobian conjecture!
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Jacobian conjecture

® A polynomial map is a polynomial automorphisms if there exists a polynomial map
G: F" — F" such that X; = G(Fq,..., Fp).

® By the chain rule of calculus, the determinant of the Jacobian of a polynomial
automorphism has to be invertible.

Conjecture (Jacobian conjecture, characteristic 0)
If the determinant of the Jacobian of a polynomial map is invertible, then the
polynomial map is a polynomial automorphism.

® False in characteristic p. However,

Theorem

Let ¥ be an algebraically closed field and F: F" — F" an invertible polynomial
function, then F is a polynomial automorphism.
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Consequence(s)

® The map &,: F," — Ty, regarded as a polynomial map has a non-invertible

Jacobian.
® By previous theorem, as a polynomial function &, is not invertible.
® There exists a (finite) field extension Fyx of Fy where &, is not invertible.
Conjecture

Let n, k be positive integers greater than 1 and n odd. Then &,: F7, — FJ, is not

invertible.
® |f the conjecture holds for prime k, then it holds.
® The conjecture holds for kK = 2, 3.
e |f the conjecture holds for prime n, then it holds, [Otal, 2023]

® The conjecture holds. [Graner, Kriepke, Krompholz, Kyureghyan, 2024]
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® There are clear bounds on the degree and sparsity.
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& is almost never invertible.

Thank you for your attention!
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