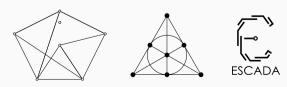


Introduction to Finite Affine Geometry, with an application to Cryptography

Vahid Jahandideh, <u>Jan Schoone</u>, Lejla Batina Radboud University (The Netherlands) ESCADA meeting 21 March 2025



Euclidean Geometry example

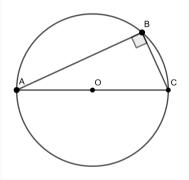


Figure: Thales' Theorem.

- (Mostly) planar geometry concerning points, lines and circles;
- Based on postulates:
 - (I): There is a line between any two points;
 - (II): Any line can be extended infinitely long;
 - (III): There is a circle for each center and radius;
 - (IV): All right angles are equal;
 - (V): (Parallel postulate) Given a line and a point not on the line, there is a line parallel to it through that point.¹

¹This is actually Playfair's axiom, which is equivalent.

- (Mostly) planar geometry concerning points and lines;
- Based on postulates:
 - (I): For any two distinct points, there is a line containing both;
 - (II): Any line can be extended infinitely long;
 - (III): There is a circle for each center and radius;
 - (IV): All right angles are equal;
 - (V): (Playfair's axiom) Given a line ℓ and a point p not on ℓ , there exists a line ℓ' such that $\ell \cap \ell' = \emptyset$ and $p \in \ell'$.

Definition (Finite Pre-Affine plane)

A <u>finite pre-affine plane</u> consists of a set of points P and a set of lines L such that it satisfies the postulates (I) and (V).

Example

Let $P = \emptyset$ and $L = \emptyset$. Then (P, L) satisfies (I) and (V) and thus is a finite pre-affine plane.

Example

Let $P = \{x_1 \dots, x_n\}$ and $L = \{P\}$ (the line contains all points in P). Then (P, L) satisfies (I) and (V) and thus is a finite pre-affine plane.

Non-example and non-trivial example

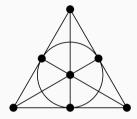


Figure: Fano plane.

The Fano plane has 7 points and 7 lines, where each line contains 3 points, each point lies on 3 lines and all lines intersect. It is actually an example of a projective plane.

This finite pre-affine plane has 4 points, 6 lines, and satisfies postulates (I) and (V).

Definition

A finite affine plane consists of a set of points P and a set of lines L such that it satisfies the postulates (I) and (V) and additionally that there is a set of four points in P such that no three of them are on the same line.

Figure: Affine plane of order 2.

- All lines in a finite affine plane have the same number of points;
- All points in a finite affine plane are on the same number of lines;
- The number of points per line in a finite affine plane is called the <u>order</u> of the affine plane.
- Let A = (P, L) be an affine plane of order k.
 - Every point is on k+1 lines.
 - A has k^2 points.
 - For any line ℓ there are k lines that are parallel to ℓ .
 - A has $k^2 + k$ lines.

Construction (Coordinatization)

Let \mathbb{F} be a field and consider $P := \mathbb{F} \times \mathbb{F}$. Furthermore, let $a, b, s \in \mathbb{F}$ and define $\ell_{s,b} := \{(x,y) \mid y = sx + b\}$ and $\ell_a := \{(a,y) \mid y \in \mathbb{F}\}$. Set $L = \{\ell_{s,b}\} \cup \{\ell_a\}_{a \in \mathbb{F}}$. Then (P, L) is an affine plane of order $\#\mathbb{F}$.

Example (Affine plane of order 2)

Let $P := \{(0,0), (0,1), (1,0), (1,1)\}.$

$$\ell_{0} := \{(0,0), (0,1)\}; \quad \ell_{1} := \{(1,0), (1,1)\}; \\ \ell_{0,0} := \{(0,0), (1,0)\}; \quad \ell_{0,1} := \{(0,1), (1,1)\}; \\ \ell_{1,0} := \{(0,0), (1,1)\}; \quad \ell_{1,1} := \{(0,1), (1,0)\}.$$

Figure: Affine plane of order 2.

- Lines ℓ_a are parallel;
- Lines in $\{\ell_{s,b} \mid b \in \mathbb{F}\}$ are parallel for each slope s.
- We say that the lines ℓ_a have slope ∞ .

A finite affine plane of order 4. We take $\mathbb{F} := \mathbb{F}_2[X]/(X^2 + X + 1)$:

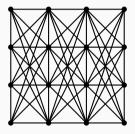


Figure: A finite affine plane of order 4.

Definition (Cluster)

Let X be a set of $n = s^2$ elements. A <u>cluster</u> C is a partition of X in s sets of equal size s.

Definition (MNO clusters)

Let C^1 and C^2 be two clusters of X, then they are maximally non-overlapping (MNO) if given any set $c \in C^1$ and any set $d \in C^2$, we have $|c \cap d| = 1$.

Definition (SMNO clusters)

Let \mathfrak{C} be a collection of clusters. Then \mathfrak{C} is called <u>a collection of simultaneous MNO</u> clusters if each pair of clusters in \mathfrak{C} is MNO.

Maximum number of SMNO clusters

- Assume we have a finite affine plane A = (P, L) of order s;
- Any set s of parallel lines is a cluster of P;
- Then any two clusters so obtained are MNO;
- Then we obtain s + 1 SMNO clusters.
- Known to be possible for all prime powers (*s* = *p^k*).

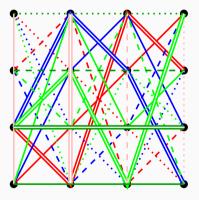


Figure: Example for s = 4.

- Masking is replaces gates like AND and XOR with gadgets;
- Gadgets are small circuits that operate on shared values and produce shared outputs;
- Gadgets typically require randomness;
- Use the clustering approach for making deterministic gadgets:
 - (uniform) AND-gadget;
 - Toffoli gadget;
 - higher-order gadgets to compute χ_5 ;
- Vahid will present about this two weeks from now!